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INTRODUCTION

Bone morphogenetic proteins (BMPs) other than the clinically available BMP-2 and BMP-7
may be useful for improving fracture healing through both increasing osteogenesis and
creating a favorable healing environment by altering cytokine release by endogenous cells.
Given the spectrum of potential applications for BMPs, the objective of this study was to
evaluate various BMPs under a variety of conditions to provide further insight into their
therapeutic capabilities. The alkaline phosphatase (ALP) activity of both C2Cq2 and human
adipose-derived stem cells (hASCs) was measured after exposure of increasing doses of
recombinant human BMP-2, -4, -5, -6, -7, or -9 for 3 and 7 days. BMPs-2, -4, -5, -6, -7,
and -9 were compared in terms of their ability to affect the release of stromal derived
factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and basic fibroblast growth
factor (b-FGF) from human bone marrow stromal cells (h(BMSCs). Gene expression of
ALP osteocalcin, SDF1, VEGF, and b-FGF following shRNA-mediated knockdown of BMP-2
and BMP-6 in hBMSCs or human osteoblasts under osteogenic differentiation conditions
was also evaluated. Collectively, BMPs-6 and -9 produced the greatest osteogenic
differentiation of C,C2 and hASCs as determined by ALP. The hBMSC secretion of SDF-1
was most affected by BMP-5, VEGF by BMP-4, and b-FGF by BMP-2. The knockdown of
BMP-2 in BMSCs had no effect on any of the genes measured whereas BMP-6 knockdown
in hBMSCs caused a significant increase in VEGF gene expression. BMP-2 and BMP-6
knockdown in human osteoblasts caused significant increases in VEGF gene expression
and trends toward decreases in osteocalcin expression. These findings support efforts to
study other BMPs as potential bone graft supplements, and to consider combined BMP
delivery for promotion of multiple aspects of fracture healing.

Keywords: bone morphogenetic protein, osteoblast, bone marrow stromal cell, osteogenesis, angiogenesis,
chemotaxis

utilizing cells with relatively robust osteogenic potential, [e.g.,

In 1965, Marshall R Urist published a landmark study on a mor-
phogenetic matrix that affected differentiation of cartilage and
bone tissues (Urist, 1965). He continued experimentation with
decalcified bone material from which leached a diffusible bone
morphogenetic property, and later identified this morphogenetic
property as protein though radioactive isotope labeling (Urist,
1970; Urist and Strates, 1971; Nogami et al., 1977). Wozney
et al. (1988) later identified these proteins as members of the
transforming growth factor (TGFP) family of growth factors.
Of the greater than twenty types of bone morphogenetic pro-
teins (BMPs) that have been identified, two recombinant human
BMPs, BMP-2 and BMP-7, are available for limited clinical use.
The BMPs vary widely in their genetic profile, protein structure,
and effector pathways. Bone regeneration is a complex process
involving multiple spatial and temporal interactions among tis-
sues, cells, and growth factors; therefore, the distinct roles BMPs
have during bone healing should be taken into account when
designing a biological and/or tissue engineering-based therapy.
To date the majority of studies comparing BMPs have
focused on the direct osteogenic effects of the different BMPs

osteoblasts, C,Cj; cells, and bone marrow-derived mesenchymal
stem cells (BMSCs)]. Comprehensive studies, some using ade-
noviral approaches and a large number of recombinant BMPs,
have demonstrated that BMPs-4, -6, and -9 in addition to the
clinically available BMP-2 and -7 have significant osteogenic
potential in vitro and/or in vivo providing enthusiasm for fur-
ther exploration (Cheng et al., 2003; Li et al., 2003; Kang et al.,
2004; Luu et al,, 2007; Kang et al., 2009). More recently, the
notion that stem and progenitor cells, including mesenchymal
stem cells (MSCs), contribute to bone healing through their
ability to influence regenerative processes including angiogene-
sis and chemotaxis has been expanding and is beginning to be
considered to play an essential role during tissue regeneration
(Guo et al., 2006; Geiger et al., 2007; Marsell and Einhorn, 2011;
Shinoharaetal., 2011). To gain a comprehensive understanding of
the role of the various BMPs on overall tissue regeneration, their
effects on the secretion of factors by MSCs important for other
important processes during healing, (i.e., angiogenesis and cell
migration) should be considered in addition to their osteogenic
potential.
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Tissue engineering strategies for improved fracture healing
have been expanding to include the use of MSCs derived from
adipose tissue (adipose-derived stem cells, ASCs) due to the rel-
ative tissue abundance and potential to provide a large number
of MSCs (Kim et al., 2012). Since differences exist among BMPs
on cells well-documented to possess a high osteogenic capac-
ity, a difference also likely exists among them for ASCs as well
and may prove to be useful in maximizing their therapeutic
potential. Therefore, in the current study the effects of vari-
ous BMPs with regards to their osteogenic potential for ASCs,
and their ability to influence the secretion of regenerative fac-
tors of MSCs were determined. Increasing the levels of BMPs
for the purpose of improving fracture healing is indeed valu-
able to maximize their potential. However, relatively less is known
about the consequences subsequent to decreases in the levels of
BMPs. To this end, to begin to gain insight into the effects of
decreased endogenous levels of BMPs-2 and 6, shRNA was used
to decrease their mRNA levels in both BMSCs and osteoblasts and
resultant changes in genes important for overall fracture healing
measured.

MATERIALS AND METHODS

ALKALINE PHOSPHATASE ASSAY (ALP)

Human adipose-derived stem cells (hASCs) (PromoCell
USA, Heidelberg, Germany) were cultured in alpha-MEM
(Invitrogen™, Carlsbad, CA) containing 10% fetal bovine serum
(FBS) (Thermo Scientific, Waltham, MA) and 1% Antibiotic-
Antimycotic (Invitrogen™, Carlsbad, CA). C,C;; mouse
myoblasts (ATCC®, Manassas, VA) were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM, ATCC®, Manassas, VA)
containing 10% FBS and 1% Antibiotic-Antimycotic. C,C; cells
(n = 5-6 wells/dose/BMP) or ASCs (n =3 wells/dose/BMP)
were seeded at 2 x 10* cells/cm? on 24-well tissue culture-treated
plates overnight. The next day, BMP-2,- 4,-5, -6, -7, or -9
(all from R&D Systems®, Minneapolis, MN) were added to
achieve the desired concentration. Three or 7 days later, cells
were washed twice with phosphate buffered saline (PBS) and
whole cell extracts were obtained with the addition of 200 ul
of CelLytic™ M lysis buffer (Sigma-Aldrich®, St. Louis, MO)
according to the manufacturer’s recommendation. For the 7
days treatment groups, after 3 days of BMP treatment on the
C,C cells and ASCs the media was changed to their respective
growth media without BMPs for an additional 4 days, after
which the cells were lysed for alkaline phosphatase (ALP) activity.
ALP was determined by incubating lysates with the p-nitro
phenyl phosphate phosphatase (p-NPP) for 30 min (AnaSpec,
Inc., Fremont, CA), and the absorbance read at 405 nm using a
Spectra Max M2 plate reader and SoftMax Pro 4.7.1 software.
ALP readings were normalized to protein achieved with the
Bio-Rad Bradford Protein assay (Bio-Rad Laboratories, Inc,
Richmond, VA).

ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

Human bone marrow stromal cells (hBMSCs) (STEMCELL
Technologies, Vancouver, Canada) were cultured in alpha-
MEM containing 10% FBS and 1% Antibiotic-Antimycotic.
hBMSCs were seeded at 2 x 10* cells/cm? on 24-well tissue

culture-treated plates overnight. The next day, BMP-2,- 4,-5,
-6, -7, or -9 were added to achieve the desired concentra-
tion. Supernatants were collected from hBMSCs treated with
BMPs (n =3 wells/dose/BMP) 3 days later. Stromal-derived
factor 1 (SDF-1; R&D Systems®, Minneapolis, MN), Vascular
endothelial growth factor (VEGF; R&D Systems®, Minneapolis,
MN), and basic fibroblast growth factor (b-FGF; Invitrogen™,
Carlsbad, CA) enzyme linked immunosorbent assay (ELISA)
assays were completed as per the respective manufacturer’s
recommendation. ELISA results from each well were nor-
malized to its respective cell number as determined by the
CyQUANT® assay (Invitrogen™, Carlsbad, CA) where cell lysates
were incubated in fluorescent dye and the cell lysis buffer
from the CyQUANT® DNA assay kit for 10 min. The fluores-
cent intensity was determined on a SpectraMax M2 microplate
reader with software SoftMax Pro 4.7.1 with excitation at
480nm and emission at 520nm and adjusted to a standard
curve.

shRNA TRANSDUCTION

hBMSCs (STEMCELL Technologies, Vancouver, Canada) were
seeded (2-3 wells/condition) at 2 x 10* cells/cm? on 24-well
tissue culture-treated plates overnight. Twenty-four hours after
seeding, cells were treated with osteogenic induction media
consisting of alpha-MEM containing 10% FBS, 2mM L-
glutamine, absorbic acid (50 ug/ml), B-glycerophosphate (5 mM),
and dexamethasone (10 nM), and 0.001% antibiotic-antimycotic.
Twenty-four hours later cells were infected at a multiplic-
ity of infection of 5 with control, BMP-2, or BMP-6 shRNA
lentivral particles in osteogenic media containing polybrene
(all from Santa Cruz Biotechnology, Santa Cruz, CA). Twenty-
four and forty-eight hours later the media was replaced with
osteogenic induction media and osteogenic induction media
containing puromycin, respectively. On the sixth day (after
three total days of shRNA knockdown) cells were lysed for
mRNA analyses as described below. Knockdown of BMP-
7 mRNA and BMP-9 mRNA using shRNA lentiviral par-
ticles was attempted, however, under the real-time poly-
merase chain reaction (PCR) conditions we utilized BMP-
7 and BMP-9 mRNA levels were too low to reproducibly
measure.

REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (PCR)

Total RNA was isolated from cells using RNeasy® Mini Kit
(Qiagen, Valencia, CA) according to the manufacturer’s instruc-
tions. Contaminating DNA was removed with DNAse I treatment
during the purification process. cDNA was synthesized using
the SuperScript® III First-Strand Synthesis SuperMix (Invitrogen,
Carlsbad, CA) and 100 ng of total RNA in a 20 pl volume making
a cDNA concentration of 5 ng/jl. Real-time PCR was performed
with 2 ul of cDNA, 1l RT? gPCR Primer Assay (10 uM stock)
and 12.5pl of SYBR Green (QuantiTect SYBR Green PCR Kit,
Qiagen) in an iQ5 PCR Thermal Cycler (Bio-Rad Laboratories,
Inc, Richmond, VA). PCR amplification conditions were 95°C
for 10 min, 40 cycles of 15s at 95°C and 1 min at 60°C. Primer
sets used to create amplicons from mRNA were all pre-designed
and validated by SABiosciences (Qiagen, Valencia, CA). Relative
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mRNA abundances were quantified as Ct (cycle threshold value)
relative to the Ct of GAPDH, a housekeeping gene, based on the
assumption that cell GAPDH mRNA levels are constant and RT
and PCR reaction efficiencies are constant. Expression levels are
shown as fold or percentage increases or decreases in mRNA lev-
els as calculated by the 2742t method (Livak and Schmittgen,
2001).

STATISTICAL ANALYSIS

Comparisons among BMP treatments were made using an anal-
ysis of variance (ANOVA) with Tukey—Kramer post-hoc analyses
where appropriate. Significance for real-time PCR data was eval-
uated by the Student’s two tailed ¢-test. The data are shown as
mean £ SEM relative to control. Statistical significance was set at
p < 0.05.

RESULTS

ALKALINE PHOSPHATASE ASSAY (ALP)

There was a main effect of BMP type on ALP for both the C,Cy;
cells (Figure 1) and hASCs (Figure 2) after treatment with BMP-
2,- 4,-5, -6, -7, or -9 when lysed on day 3 (Figures 1A, 2A),
or exposed to 3 days of treatment followed by 4 days without
any BMP (day 7; Figures 1B, 2B) 7 days after the initiation of
treatment. For the C,Cj, cells, BMP-9 was the most effective
at increasing ALP on both days 3 and 7 where it significantly
increased ALP as compared to all of the other BMPs, and ALP
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FIGURE 1 | C2C12cells were treated with BMP-2,- 4,-5, -6, -7, or -9 for 3
days and lysed on day 3 (A) or 7 (B) after the initiation of treatment.
Error bars are & SEM. Different letters signify a difference among groups,
p < 0.05. *Significantly different control (0 ng/ml BMP) within group,
p < 0.05.

was increased relative to control (0ng/ml) at all doses tested
(p < 0.05). BMPs-4, -6, and -7 increased ALP compared to con-
trol (0 ng/ml) at doses >250ng/ml on both days 3 and 7 (p <
0.05). For the hASCs, BMP-9 was the most effective at increasing
ALP on day 3 where it significantly increased ALP as compared
to all of the other BMPs and was greater than control (0 ng/ml)
at doses >100ng/ml (p < 0.05). Similar to that observed with
the C,Cj; cells, BMPs-6 and -7 increased ALP as compared to
control at 500 ng/ml. On day 7, BMPs-6 and -9 were similar and
significantly increased ALP as compared to all other BMPs, and
ALP was increased relative to control (0 ng/ml) at all doses tested
(p < 0.05).

ELISA

There was a main effect of BMP type on SDF-1 (A), VEGF (B),
and b-FGF (C) when BMPs were added to hBMSCs for 3 days
(Figure 3). BMPs-5, -6, -and -9 were similar and statistically
greater than BMPs-2, -4, and 7 with regards to SDF-1 secre-
tion, with doses >50 ng/ml and 100 ng/ml greater than control
(0 ng/ml) for BMPs-2 and -4, -9, respectively (Figure 3A). BMPs-
4 and -5 were similar and statistically greater than all other BMPs
with regards to VEGF secretion (Figure 3B). BMP-2 appeared to
be most effective in its ability to increase b-FGF secretion as it
was significantly greater than all other BMPs, and significantly
greater than its own control at both 100 and 500 ng/ml (p < 0.05;
Figure 3C).
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FIGURE 2 | Adipose-derived stem cells (ASCs) were treated with
BMP-2,- 4,-5, -6, -7, or -9 for 3 days and lysed on day 3 (A) or 7 (B) after
the initiation of treatment. Error bars are = SEM. Different letters signify

a difference among groups, p < 0.05. *Significantly different control
(0 ng/ml BMP) within group, p < 0.05.
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FIGURE 3 | Effect of different BMPs on SDF-1 (A), VEGF (B), and b-FGF
(C). BMSCs were treated with BMP-2,- 4,-5, -6, -7, or -9 for 3 days, and
the supernatant collected for ELISA on the third day. The bar graph
represents the mean ELISA value normalized to cell number and is

presented as relative to control. Different letters signify a difference among
groups, p < 0.05. Error bars are & SEM. Different letters signify a
difference among groups, p < 0.05. *Significantly different control (0ng/ml
BMP) within group, p < 0.05.
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FIGURE 4 | Effect of shRNA mediated knockdown of BMP-2 (A,C) and
BMP-6 (B,D). BMSCs (A,B) or osteoblasts (C,D) were infected with control,
shRNA BMP-2 (A,C) or shRNA BMP-6 (B,D) lentiviral particles in osteogenic
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induction media. After 3 days of knockdown gene expression for BMP-2,
BMP-6, ALP, osteocalcin (OC), SDF-1, VEGF, and b-FGF was determined. Error
bars are & SEM. *Significantly different control, p < 0.05.

REAL-TIME PCR

The average knockdown for hBMSCs for BMP-2 and BMP-
6 was 52+ 8 and 94=£0.2%, respectively (p < 0.05)
(Figures 4A,B). Whereas the knockdown of endogenous
BMP-2 mRNA in human BMSCs resulted in no signifi-
cant changes in the mRNA expression levels of any of the
genes measured, there were trends toward increased mRNA
expression of VEGE bFGE and SDF-1. BMP-6 mRNA
knockdown resulted in a significant increase in VEGF (78%
increase) and trends toward increases in SDF and osteocalcin
mRNA.

There was a considerable amount of variability with the BMP-
2 lentiviral transduction of osteoblasts where the decrease in
BMP-2 gene expression ranged from 34 to 99% (Figure 4C).
Nonetheless, lentiviral transduction of shRNA for BMP-2 caused
a significant change in VEGF gene expression (51% increase).
Although statistical significance was not reached, presumably due
to the low sample number, an interesting observation regard-
ing osteocalcin expression was that the individual samples with
the highest knockdown of BMP-2 mRNA also had the greatest
decrease in osteocalcin expression. More specifically, decreases in
BMP-2 of 34, 67, and 99% resulted in 2, 41, and 92% decreases
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in osteocalcin expression, respectively. BMP-6 knockdown was
more consistent as the percent decrease in BMP-6 gene expres-
sion ranged from 93-95%. As a result, significant changes in
VEGF (61% increase) and bFGF (24% decrease) were observed
(p < 0.05). Also there was a strong trend toward knockdown of
BMP-6 leading to an increase in BMP-2 mRNA in osteoblasts.
Although not significant, 21% decreases in both ALP and osteo-
calcin gene expression, and a 66% increase in BMP-2 was mea-
sured in the presence of BMP-6 mRNA knockdown (p > 0.05)
(Figure 4D).

DISCUSSION

The primary objective of this study was to gain a more compre-
hensive understanding of the therapeutic benefits of six selected
BMPs. While BMPs-2 and -7 have shown promise in a series
of clinical trials both in spine and in orthopedic trauma, it is
unclear whether or not these are the most effective BMPs for
promotion of fracture healing. To this end, recombinant BMPs
were compared with regards to their effects on osteogenesis using
C,Cy; cells, a model cell line with differentiation potential, and
ASCs which are currently being explored for a variety of muscu-
loskeletal applications. To assess and compare the ability of the
BMPs to influence the secretory capacity of hBMSCs, growth fac-
tors produced by hBMSCs that are important for bone healing
(SDE-1, VEGE, and b-FGF) were also evaluated. A final objective
was to gain insight into the role of endogenous BMPs which was
achieved by decreasing their levels using shRNA.

Despite differences in the dosage, method of growth factor
manipulation, and duration of treatment our findings were in
agreement with previous studies where the BMPs-2, -4, -6, -7,
and -9 produced significant increases in the ALP activity of C,C;»
cells during treatment as compared to untreated controls (Li et al.,
2003; Luu et al., 2007). In the current study, BMP-9 was the most
effective at increasing ALP when compared directly to all other
BMPs. Previously, when compared to BMP-2, 4, and 7, BMP-6
performed the best with regards to the osteogenic differentiation
of human MSCs (Friedman et al., 2006). Although their study did
not include BMP-9, our results are in agreement with the poten-
tial for BMP-6 for osteogenic differentiation, and are in close
agreement with others where the adenoviral over-expression of
BMPs-6 and -9 were exceptional when using C,Cy; cells (Luu
et al., 2007). It is worth emphasizing that the 7 day time point
in the current study included the culturing of cells in the presence
of BMPs for 3 days, followed by the removal of the BMPs and an
additional 4 days of culture with no BMP treatment. Under these
circumstances the trend remained consistent between days 3 and
7 and there was an apparent increase in ALP activity between 3
and 7 days despite removal of the BMP, an observation that was
the most obvious with BMP-9 (Figures 1, 2). A logical speculation
is that bolus of BMPs during the first 3 days was sufficient to initi-
ate osteogenesis that was maintained during the remaining 4 days
of culture. For many tissue engineering applications a sought after
objective is the controlled and often prolonged release of growth
factors in vivo (Lee et al., 2011). Conversely, in vivo studies have
demonstrated the importance of a bolus release of BMPs for bone
repair (Li et al., 2009). In light of these concepts, BMP-9 seems
to be particularly effective. The treatment with BMP-9 for 3 days,

followed by its removal for 4 days, was effective and appears to be
particularly suitable for the initiation and maintenance of osteo-
genesis with a large therapeutic window, i.e., 10-500 ng/ml in the
current study.

Although regenerative medicine approaches for bone healing
have relied heavily on bone marrow-derived MSCs since MSCs
can be derived from a multitude of tissues, a likely possibil-
ity is that strategies for improving fracture healing bone repair
will include the application of cells derived from tissues other
than bone that may provide logistical, and potentially biologi-
cal advantages. An obvious example is the use of adipose tissue,
which from a logistical standpoint is practical due to its rela-
tive abundance and the potential to provide a large number of
MSCs, in addition to the limited invasiveness and technical lim-
itations for the procurement of ASCs (Zuk et al., 2001). Despite
the potential benefits of using ASCs, their osteogenic capacity is
still a matter of contention as a limitation to their application
for bone repair (Hattori et al., 2006; Hayashi et al., 2008). In
the current study the effect of BMPs-2, -4, -6, -7, or -9 on the
osteogenic differentiation of ASCs was evaluated to determine
the most appropriate BMP for the osteogenic differentiation of
ASCs. Similar to that observed with C,C;, cells, there was an
increase in the ability of several of the BMPs to increase ALP activ-
ity as compared to control, with BMP-9, and BMPs-6 and -9 being
superior to all other BMPs at days 3 and 7, respectively (Figure 2).
Although there was an almost 2-fold increase in ALP activity with
the best doses as compared to control, the absolute ALP activity
achieved was still ~10-fold less in ASCs as compared to C,Cj;
cells (Figure 1 vs. Figure 2). Nonetheless, the superior ability of
BMPs-6 and -9, BMP-9 in particular, suggests these BMPs may
be particularly useful for osteogenic differentiation when con-
sidering the need to differentiate cells that have varying levels of
osteogenic potential.

In addition to the necessity for osteogenic differentiation, the
process of fracture healing includes cell migration, cell prolifer-
ation, and angiogenesis, which involves a variety of regenerative
cells at the site of fracture healing (Marsell and Einhorn, 2011).
Of these regenerative cells, BMSCs are a particularly attractive
target given their more recently characterized and increasingly
appreciated ability to secrete factors that potentially influence
healing through their interaction with other cells within the frac-
ture environment (Guo et al., 2006; Geiger et al., 2007; Shinohara
et al., 2011). To this end, growth factors with significant roles in
cell recruitment (SDF-1), angiogenesis (VEGF), and angiogene-
sis and mitogenesis (b-FGF) were evaluated after BMP exposure.
Collectively, although the various BMPs were capable of alter-
ing BMSC secretion as when compared to untreated controls, the
emergence of a particular BMP as having a significant advantage
was less apparent than that was observed for osteogenic differen-
tiation. An obvious limitation to the current approach is that a
single relatively early time point was chosen, however, it can be
argued that the presence of these factors during the early phases
of BMSC appearance at the site of fracture healing improves the
environment to enable successful regeneration.

Of the factors secreted by hBMSCs during BMP exposure, a
surprising outcome was found with the use of BMP-5, which
was not particularly osteogenic (Figures 1, 2), in the secretion of
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SDF-1. SDF-1 is a chemokine that binds CXCR4 which influences
chemotaxis of lymphocytic cells to areas of inflammation and
homing of stem/progenitor cells during development and tissue
regeneration (Libura et al., 2002). The current findings suggest
that through SDF-1 up-regulation, BMP-5 could help modulate
proper trafficking of immune cells and progenitor cells to an
injured area. Once relevant cells have migrated to the wound
environment, both the osteogenic differentiation of relevant cells
and the initiation of angiogenesis, especially that which can be
achieved with modified BMSCs, are two important processes that
impact overall healing (Guo et al., 2006; Geiger et al., 2007).
Both BMPs-4 and -5 were effective at improving VEGF secretion
as compared to the other BMPs, the former being in agreement
with previous reports that BMP-4 has a positive effect on angio-
genesis (David et al., 2009). If angiogenic capacity is inferred
from the ability to improve both b-FGF and VEGF secretion
(Figures 3B,C), BMP-2 was superior to all others tested. In other
words, BMP-2 was capable of improving both b-FGF and VEGF
whereas other BMPs only improved VEGE. This somewhat cor-
relates with clinical findings since high doses of BMP-2 was also
associated with a reduced infection rate following Type III open
tibia fractures, potentially because of its ability to augment vascu-
lar supply to the injured area (Govender et al., 2002). BMP-2 gene
expression is up-regulated with in the first 24 h after fracture dur-
ing the inflammation phase of healing (Cho et al., 2002; Ai-Aq]l
et al., 2008; David et al., 2009). A logical speculation is that the
production of both acid and basic FGF as a result of BMP-2 expo-
sure during the early phases of healing, promotes the induction
of bone marrow derived stem cells to become osteoblasts while
also improving angiogenesis and mitogenesis (Einhorn et al,
2007).

Deviating from the therapeutic application of the various
BMPs an attempt was made to gain more insight into the role
of endogenous BMP levels of BMSCs while under osteogenic
induction conditions. The endogenous expression of BMP-2, -4,
and -6 with little constitutive expression of BMPs-7 and -9 have
been previously reported (Seib et al., 2009). In agreement with
these findings in the current study, the expression levels of BMP-7
and -9 expression levels were barely detectable (data not shown).
Overall, this data should be interpreted with caution given the
low sample number, however, the relatively small changes in gene
expression of markers of osteogenesis and growth factors despite
significant decreases in BMPs-2 and -6 suggest that significant
redundancy exists within the cells’ genetic machinery to respond
to osteogenic cues. Decreases in the levels of BMP-2 or BMP-6 in
hBMSCs by 52 and 94%, respectively, were insufficient to affect
ALP or osteocalcin expression (Figures 4A,B). Given the abil-
ity of other BMPs, specifically BMP-9, to affect osteogenesis it is
plausible that sufficient redundancy exists to compensate for the
deficiency of either of these BMPs. The observation that BMP-6
knockdown caused an increase in BMP-2 expression (Figure 4B)
provides evidence to support this speculation. Whether other
BMPs were up-regulated to compensate for a deficiency in BMP-
2 or -6 was not determined. Nonetheless, decreases in osteoblast
BMP-2 and BMP-6 mRNA caused decrements (although not sig-
nificant) in ALP and osteocalcin expression. Differences in ALP
and osteocalcin between hBMSCs and osteoblasts at this early

time point may be reflective of osteoblasts being further along the
differentiation process. The lack of change in b-FGF expression
with BMP-2 knockdown is interesting considering the ability of
exogenous BMP-2 to improve its secretion, however, cell signal-
ing cascades that affect growth factor production with exogenous
exposure of BMPs are likely affected differently when endoge-
nous expression of genes is manipulated. With knockdown of
both BMP-2 and -6 in hBMSCs and osteoblasts, VEGF mRNA
expression increased. This was an interesting observation. Our
postulation for the reason VEGF increased in the absence of BMPs
is that the cells were possibly attempting to compensate for the
decrease in BMPs as it has been shown that VEGF can increase
BMP-2 mRNA (Bouletreau et al., 2002). Furthermore, given that
VEGF secretion was decreased at the highest level of BMP-6 used
(Figure 3B), it was interesting to observe a significant increase in
VEGEF gene expression with BMP-6 knockdown. Whether BMP-6
plays a unique role in the regulation of VEGF production or vice
versa requires further investigation.

In summary, the findings herein add to the growing body
of literature that suggests there are the divergent effects among
the various BMPs, especially those other than the clinically used
BMPs-2 and -7. When deciding which of the BMPs is the most
appropriate for improving bone regeneration other processes
related to bone regeneration including, but not limited to, the
effect on the secretory capacity of growth factors involved in
repair needs to be considered. Bone healing is a carefully orches-
trated event that must have appropriate biological cues to affect
regenerative events at the right time. In this regard, our obser-
vations support the idea that there is a divergence among the
BMPs and the processes that they influence. In light of this
idea, it is logical to propose that temporal administration of
several BMPs be used to maximize bone repair. Future investi-
gations are also needed to delineate how multiply delivered BMPs
can augment the combined processes required for fracture heal-
ing. In summary, these findings support efforts to study other
BMPs as potential bone graft supplements, and to consider com-
bined BMP delivery for promotion of multiple aspects of fracture
healing.
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