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Targeted drug delivery to sites of inflammation will provide effective, precise, and safe
therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side
effects and/or increasing drug action. Disease-site targeting is believed to play a major role in
the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles.
This article will focus on the factors and mechanisms involved in drug targeting to sites
of inflammation and the importance of cell adhesion molecules, in particular intercellular
adhesion molecule-1, in this process.
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INTRODUCTION
Targeted delivery of therapeutics to sites of inflammation is an
important goal. The endothelium represents a key target for
pharmacological interventions in many disease conditions, includ-
ing rheumatological, cardiovascular, hematological, pulmonary,
and oncological (Koning et al., 2002; Metselaar and Storm, 2005;
Muro and Muzykantov, 2005; Ding et al., 2006). The goal of
endothelial targeting is to achieve specific and safe delivery of
a drug to, into, or across endothelial cells, in order to local-
ize effects in the lumen, desired intracellular endothelial cell
compartments, or extravascular space, thereby improving phar-
macological interventions. However, due to their lack of affinity
to the endothelium, only a small fraction of injected therapeu-
tics binds to endothelial cells (Ding et al., 2006). Progress in
understanding disease mechanisms provides better selection of
drugs for endothelial interventions and a deeper insight into
designing drug delivery carriers to target inflammatory specific
destinations.

DRUG TARGETING TO SITES OF INFLAMMATION
In inflamed tissues, the permeability of the vasculature is often
increased to the extent that particulate carriers, which are normally
excluded from these tissues, can extravasate and localize in the
tissue interstitial space. Endothelial cells also start to express sev-
eral types of adhesion molecules: the selectins, the integrins, and
the immunoglobulins, which mediate recruitment of leukocytes
into the inflamed tissue (Koning et al., 2002; Metselaar and Storm,
2005; Ding et al., 2006). Furthermore, the process of angiogenesis
(formation of new blood vessels from pre-existing vasculature)
may occur in several chronic inflammatory disorders, such as
rheumatoid arthritis, psoriasis, and inflammatory bowel disease
(Koning et al., 2002; Metselaar and Storm, 2005). In this com-
plex cascade of events, numerous cell-surface receptors, adhesion
molecules, and growth factors are involved, which may serve as
potential targets for therapeutic intervention.

Targeted intervention in inflammatory disease at the vascular
endothelial cell (VEC) level has great potential. Rational design
of such drug delivery systems includes: (1) selection of proper
target determinants on endothelial surfaces, such as cell adhe-
sion molecules (CAMs); (2) production of affinity ligands useful
for targeting, such as affinity peptides, antibodies, or their frag-
ments; (3) selection and adopting of suitable delivery vehicles,
such as liposomes; and (4) formulation of drug delivery sys-
tem with optimal targeting and therapeutic features (Ding et al.,
2006). Specific drug delivery should concentrate the drug at the
targeted site, increasing efficacy, and also decreasing side effects
in other tissues (Willis and Forssen, 1998; Maruyama, 2002).
This concept is particularly attractive in cancer therapy, where
the dose a patient can tolerate is limited due to high toxic-
ity to non-target cells. Targeted delivery to tumor tissue may
allow the use of lower drug-concentrations. Moreover, targeting
therapeutic agents to the vasculature of tumors offer additional
advantages; in particular blood vessels are more readily acces-
sible to intravenously administered therapy than tumor cells
(Bendas, 2001). In the same respects, targeted drug delivery of
opioid analgesics to peripheral opioid receptors upregulated at
sites of inflammation will significantly alleviate nociception with-
out the central opioid mediated side effects (Hua and Cabot,
2013).

TARGETING ADHESION MOLECULES
Adhesion molecules are glycoproteins expressed on cell sur-
faces, where they mediate the contact between two cells (both
homotypic and heterotypic interactions) or between cells and
the extracellular matrix. They are essential for the regulation
of immune cell responses and migration of inflammatory cells
from the blood vessels into inflamed tissues (Bloemen et al.,
1995; Mastrobattista et al., 1999). In fact, the expression of
particular CAMs [e.g., intercellular adhesion molecule-1 (ICAM-
1), E-selectin, P-selectin, vascular cell adhesion molecule-1
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(VCAM-1)] are locally induced or enhanced at areas of inflam-
mation (Bloemen et al., 1995; Spragg et al., 1997; Mastrobattista
et al., 1999; Koning et al., 2002; Sakhalkar et al., 2003; Muro
and Muzykantov, 2005; Voinea et al., 2005). Upregulated and/or
overexpressed CAMs can be found in a multitude of clinical dis-
eases where inflammation and immune cells are involved (e.g.,
ischemia-reperfusion injury, transplant rejection, and inflam-
matory diseases of the cardiovascular system, skin, kidneys,
gastrointestinal tract, brain, and liver; Bloemen et al., 1995; Spragg
et al., 1997; Mastrobattista et al., 1999; Koning et al., 2002; Muro
and Muzykantov, 2005). Additionally, tumor cells use adhesion
molecules to grow and spread throughout the body (Janssen et al.,
2003).

Of particular note is the implication of CAMs in the patho-
genesis of several rheumatic diseases. For example, rheumatoid
arthritis is a chronic inflammatory disease in which adhesion
molecules play an important role in the invasion of leukocytes into
synovial tissues, leading to tissue damage (Mojcik and Shevach,
1997; Metselaar et al., 2003). Not only have increased expression
of E-selectin, VCAM-1, and ICAM-1 been found on the vascular
endothelium of synovial tissues, but immunohistochemical stud-
ies have shown elevated levels of adhesion molecule expression in
ongoing inflammatory lesions (Mojcik and Shevach, 1997; Koning
et al., 2002). Although reduction or blockade of the expression or
function of a specific CAM is a possible therapeutic way to dimin-
ish infiltration and/or activation of inflammatory immune cells
in order to reduce inflammation, this approach is complicated by
the fact that most types of adhesion molecules are expressed on
more than one cell type, that most cells express more than one
adhesion molecule on their surface, and that several molecules
can function as a ligand for a single adhesion molecule (Mojcik
and Shevach, 1997; Koning et al., 2002). Importantly, blockade
of CAMs can interfere with functions of immune cells essential
for host defense (Mojcik and Shevach, 1997; Koning et al., 2002).
Induction and/or increased expression of certain CAMs at inflam-
matory loci associated with various diseases offers opportunities
for the development of new therapeutic strategies aimed toward
selective drug-targeting. Adhesion molecules represent an easily
accessible target molecule for therapeutics circulating in the blood
compartment (Bloemen et al., 1995; Koning et al., 2002; Metse-
laar and Storm, 2005; Muro and Muzykantov, 2005; Ding et al.,
2006).

INTERCELLULAR ADHESION MOLECULE-1
Intercellular adhesion molecules (ICAMs) are structurally related
transmembrane glycoproteins of the immunoglobulin supergene
family and are ligands for the β2 integrin molecules present on
leukocytes (Almenar-Queralt et al., 1995; Hubbard and Rothlein,
2000). Of the five ICAMs identified, ICAM-1 is the most exten-
sively studied (Koning et al., 2002; Muro and Muzykantov, 2005).
ICAM-1 specifically participates in trafficking of inflammatory
cells, in leukocyte effector functions, in adhesion of antigen-
presenting cells to T lymphocytes, in microbial pathogenesis,
and in signal transduction pathways through outside-in signaling
events (Almenar-Queralt et al., 1995; Hubbard and Rothlein, 2000;
Muro and Muzykantov, 2005). This adhesion molecule is local-
ized to both the apical and basolateral surface of endothelial cells,

making it ideally positioned to facilitate transendothelial migra-
tion of leukocytes (Almenar-Queralt et al., 1995). In fact, ICAM-1
(along with VCAM-1) is considered to represent the most impor-
tant adhesion molecule for leukocyte recruitment to inflamed sites
(Koning et al., 2002). Additionally, ICAM-1 has been shown to
exist in a soluble form in circulation, which results from proteolytic
cleavage mediated by neutrophil proteases (leukocyte elastase and
cathepsin G) in a process independent of ICAM-1 surface density
(Muro and Muzykantov, 2005).

Intercellular adhesion molecule-1 is widely distributed and
expressed constitutively at low levels on leukocytes, VECs, fibrob-
lasts, and epithelial cells. Although ICAM-1 is present in several
cell types, the level of expression is orders of magnitude lower
than that of VECs (Almenar-Queralt et al., 1995; Scholz et al.,
1996; Mojcik and Shevach, 1997; Hubbard and Rothlein, 2000;
Koning et al., 2002; Muro et al., 2003b, 2005; Muro and Muzykan-
tov, 2005). Stimulation of a variety of cells with inflammatory
cytokines such as interleukin-1 (IL-1), tumor necrosis factor-
α (TNF-α), and interferon-γ (IFN-γ) has been documented to
increase ICAM-1 expression on multiple cell types (Almenar-
Queralt et al., 1995; Scholz et al., 1996; Hubbard and Rothlein,
2000; Muro et al., 2003b, 2005; Muro and Muzykantov, 2005).
Strong upregulation of ICAM-1 is observed under inflamma-
tory conditions within 24 h (Scholz et al., 1996). In contrast
to the selectins, which are rapidly down regulated after induc-
tion, ICAM-1 and VCAM-1, once upregulated, remain on the
cell surface for more than 48 h (Koning et al., 2002). Infor-
mation on the internalization capacity of ICAM-1 is, however,
rather contradictory (Koning et al., 2002). Some authors report
the total absence of internalization on TNF-activated human
umbilical vein endothelial cells (HUVEC) or a rather slow pro-
cess of internalization by HUVECs, whereas others report on
(rapid) internalization of ICAM-1-binding peptides by lympho-
cytes, antibody-targeted liposomes or poly lactic-co-glycolic acid
(PLGA) nanoparticles by epithelial cells (Koning et al., 2002;
Chittasupho et al., 2009). In fact, it has been reported that
ICAM-1 internalization levels are practically indistinguishable
from background (<10% of surface expressed ICAM-1; Muro
and Muzykantov, 2005). These contradictory findings may not
only be attributed to the difference in cell types and targeting lig-
ands used, but also to the timeframe of the study (Koning et al.,
2002). It is therefore of great importance to test the internaliza-
tion capacity of the developed drug delivery system. Targeting
to non- or slow-internalizing epitopes may be of specific inter-
est for drugs that work at the luminal site of the VECs, whereas
fast-internalizing epitopes are interesting for drugs with an intra-
cellular address (Koning et al., 2002; Muro and Muzykantov,
2005).

Several adhesion molecules involved in the leukocyte adhe-
sion cascade, in principle, comply with the requirements for
achieving targeted delivery of drugs into VECs. However of
these, ICAM-1 represents an attractive target since it is a high-
density determinant stably exposed from the endothelial surface,
which is upregulated and functionally involved in inflamma-
tion (Almenar-Queralt et al., 1995; Scholz et al., 1996; Mojcik
and Shevach, 1997; Hubbard and Rothlein, 2000; Koning et al.,
2002; Muro et al., 2003b, 2005; Muro and Muzykantov, 2005).
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In particular, ICAM-1 seems to be well suited for drug tar-
geting to the luminal surface, due to ineffective internalization
of either monomolecular or large anti-ICAM conjugates (Muro
and Muzykantov, 2005). Potentially this will allow extravasa-
tion of the delivery carrier across the endothelial cells and
release of the therapeutic drug specifically into the inflamma-
tory site of action (Metselaar and Storm, 2005; Ding et al., 2006).
This feature distinguishes ICAM from other similarly prevalent
endothelial determinants all of which are rapidly internalized,
therefore leading to early release of the drug within the endothe-
lial cells themselves (Koning et al., 2002; Muro and Muzykantov,
2005).

Antibodies to CAMs are being explored as therapeutics and
delivery carriers in cell cultures, animal models, and early clin-
ical studies (Muro et al., 2005). A small number of studies have
demonstrated the validity of such an approach, in particular show-
ing specific binding and drug delivery to VECs in vitro and in vivo
(Bloemen et al., 1995; Spragg et al., 1997; Bendas et al., 1998; Mas-
trobattista et al., 1999; Kessner et al., 2001; Jaafari and Foldvari,
2002b; Koning et al., 2002; Asgeirsdottir et al., 2003; Everts et al.,
2003; Murciano et al., 2003; Muro et al., 2003a, 2005; Muro and
Muzykantov, 2005; Voinea et al., 2005; Ding et al., 2006). Presum-
ably, the specific and strong upregulation of these CAMs at sites of
inflammation still allows specific targeting to be observed. There-
fore, ICAM-1 targeting seems attractive, as this CAM shows basal
levels of expression on VECs in general, but is strongly upreg-
ulated on VECs at inflamed sites (Almenar-Queralt et al., 1995;
Scholz et al., 1996; Mojcik and Shevach, 1997; Hubbard and Roth-
lein, 2000; Koning et al., 2002; Muro et al., 2003b, 2005; Muro
and Muzykantov, 2005). These developments in drug targeting
to VECs will result in increasing knowledge on the role of the
endothelium in inflammatory disorders and will further improve
clinical therapy.

SELECTIVE INTERACTION WITH ICAM-1 AND UPTAKE BY TARGET CELLS
There are a number of potential modes of delivery of encap-
sulated therapeutics from ICAM-1 targeted carriers, which
will affect its therapeutic availability and action. Contradict-
ing results have been reported of the extent of internalization
of ICAM-1-directed carriers by endothelial cells (Koning et al.,
2002). The capacity of endothelial cells to uptake anti-CAM
multimeric conjugates may depend on the size of the parti-
cles, with conjugates having diameters from 100 to 300 nm
readily entering endothelial cells, whereas conjugates of larger
size (500 nm to 1 μm) remained attached to the cell sur-
face at 37◦C (Murciano et al., 2003; Muro et al., 2003a; Muro
and Muzykantov, 2005). The notion that small multimeric lig-
ands can undergo internalization within endothelial cells by
CAM-mediated endocytosis is of pharmacological and physiolog-
ical relevance (Murciano et al., 2003; Muro et al., 2003a; Muro
and Muzykantov, 2005). The signaling and cytoskeletal events
involved in endothelial internalization of anti-CAM conjugates
are similar to those triggered by CAM-clustering in course of
leukocyte adhesion and transmigration (Muro and Muzykantov,
2005). This parallelism supports the notion that intracellular
drug delivery mediated by anti-CAM conjugates may be fur-
ther enhanced in inflammation and pathological conditions that

activate such transduction pathways in endothelial cells (Muro and
Muzykantov, 2005).

In addition to delivering therapeutic cargoes intracellularly or
to the luminal surface to have an anti-inflammatory effect on
the endothelial cells involved in inflammation (Przewlocki and
Przewlocka, 2001; Stein et al., 2001), it is plausible for liposomes
under pathological conditions to extravasate through the endothe-
lial barrier directed by ICAM-1 on the surface of endothelial cells
at sites of inflammation to release drugs within the extravascu-
lar tissue space (Oku and Namba, 1994; Vingerhoeds et al., 1994;
Willis and Forssen, 1998; Koning et al., 2002; Antohe et al., 2004;
Metselaar and Storm, 2005).

FACTORS INFLUENCING TARGET ACCUMULATION IN INFLAMMATION
Drug targeting using liposomes as carriers holds much promise,
especially in reducing toxicity and targeting delivery to patho-
logical sites of inflammation (e.g., musculoskeletal conditions,
infection, burns, tumors) that are characterized by increased vas-
cular permeability (Oku and Namba, 1994; Vingerhoeds et al.,
1994; Yuan et al., 1994; Thurston et al., 1998; Willis and Forssen,
1998; Klimuk et al., 1999; Laverman et al., 1999; Bendas, 2001;
Koning et al., 2002; Maruyama,2002; Antohe et al., 2004; Metselaar
and Storm, 2005). Long-circulating liposomes are currently used
in targeted drug delivery to tumors and inflammatory regions, and
have shown impressive improvement of the therapeutic index of
encapsulated drugs (Oku and Namba, 1994; Torchilin, 1994, 1996;
Laverman et al., 1999; Bendas, 2001; Koning et al., 2002; Metselaar
and Storm, 2005; Ding et al., 2006). For example, rats and mice
with arthritis treated with a single intravenous (IV) injection of
sterically stabilized liposomes (SL) containing prednisolone phos-
phate resulted in complete remission of paw inflammation for 1
week in comparison to free drug (Metselaar and Storm, 2005).
Mechanistic studies showed that the increased therapeutic bene-
fit was a result of selective joint targeting (Metselaar and Storm,
2005).

Within inflamed tissues the permeability of the vasculature is
often increased to the extent that particulate carriers, which are
normally excluded from these tissues, can extravasate and local-
ize in the tissue interstitial space (Antohe et al., 2004; Metselaar
and Storm, 2005). This selective accumulation and increase in
drug concentration at inflamed target sites is due to the so-called
enhanced permeability and retention (EPR) effect (Maruyama,
2002; Metselaar and Storm, 2005). Inflammation results in a
dramatic change in blood vessel permeability as the capillary
vasculature undergoes structural remodeling to allow leukocyte
diapedesis into the peripheral tissue (Klimuk et al., 1999). The
width of the tight junctional regions between endothelial cells in
vivo has been reported to be from 12 to 20 nm (Antohe et al.,
2004), however exposure of endothelial cells to inflammatory
mediators increases permeability of the microvasculature, with
the formation of gaps of up to 1 μm (Antohe et al., 2004). In
fact, pore sizes ranging from 0.2 to 1.2 μm have been observed,
though the size and number of pores are dependent upon the
microenvironment of the pathological site (Klimuk et al., 1999;
Antohe et al., 2004). Observations using fluorescence and electron
microscopy have shown that SL can indeed extravasate beyond
the endothelial barrier, mainly in postcapillary venules, with
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SL ranging from 100 to 200 nm in diameter having a higher
probability of encountering the leaky vessels of the inflamed
tissue (Willis and Forssen, 1998; Antohe et al., 2004; Metse-
laar and Storm, 2005). Leukocytes are able to open intercellular
junctions of the endothelium monolayer by stimulating con-
traction of the endothelial cells or by causing a gap by passing
between the cells (Antohe et al., 2004). It is therefore plausible
that liposomal carriers may cross the monolayer in association
with leukocytes or migrate independently across gaps formed
in the monolayer by leukocyte migration (Klimuk et al., 1999;
Sipkins et al., 2000; Antohe et al., 2004; Metselaar and Storm,
2005).

Currently, systemic liposome targeting strategies investigated
are able to deliver no more than a few percent of the admin-
istered dose to their desired sites in vivo (Willis and Forssen,
1998). Although these formulations represent significant improve-
ments over corresponding conventional drug therapies, much
of the administered dose is still delivered to non-targeted tis-
sues (Willis and Forssen, 1998). For example, a biodisposition
study of polyethylene glycol (PEG)-coated lipid microspheres
of indomethacin in arthritic rats reported an overall drug tar-
geting efficiency of 7.5-fold higher than the conventional lipid
microspheres (Palakurthi et al., 2005). The enhanced accumula-
tion of the drug in the inflammatory tissue may be attributed
to extravasation through the leaky vasculature and their possi-
ble uptake by circulating monocytes, which would subsequently
be concentrated in the rheumatic joints (Palakurthi et al., 2005).
Importantly, formulation as lipid microspheres drastically reduced
the concentration of the drug in the brain (Cmax) from 1.73 to
0.69 μg/g of the tissue, thereby reducing central nervous sys-
tem (CNS) adverse effects (Palakurthi et al., 2005). PEG-coated
lipid microspheres further reduced the concentration to 0.58 μg/g
(Palakurthi et al., 2005). The lower accumulation in sensitive non-
target tissues (e.g., brain, kidneys) may be due to the reduced
availability of the free drug in the blood (Palakurthi et al., 2005).
It should be noted that the blood–brain barrier is often the
rate-limiting factor in determining permeation of therapeutic
drugs into the brain due to both physical (tight junctions) and
metabolic (enzymes) barriers (Rousseau et al., 1999; Schmidt
et al., 2003). Thus liposomal carriers are only able to localize
in the brain more efficiently when this barrier has been altered
(Rousseau et al., 1999; Schmidt et al., 2003; Palakurthi et al.,
2005).

Attachment of target-specific ligands to the liposome surface
(active targeting) has been shown to further enhance targeting
to specific cells or tissues (Senior, 1987; Torchilin, 1994, 1996;
Vingerhoeds et al., 1994; Willis and Forssen, 1998; Bendas, 2001;
Maruyama, 2002; Ulrich, 2002). Targeting endothelial cells by
exploiting cell-specific surface markers has been widely investi-
gated in vitro (Bloemen et al., 1995; Willis and Forssen, 1998;
Koning et al., 2002; Muro and Muzykantov, 2005; Ding et al.,
2006). Liposomes have been modified with ligands that can
selectively interact with E-selectin (Bendas et al., 1998; Kessner
et al., 2001; Everts et al., 2003), ICAM-1 (Bloemen et al., 1995;
Willis and Forssen, 1998; Mastrobattista et al., 1999; Sipkins et al.,
2000; Jaafari and Foldvari, 2002a,b; Muro and Muzykantov, 2005;
Ding et al., 2006) and VCAM-1 (Voinea et al., 2005) molecules

that are upregulated on the surface of endothelial cells following
activation by inflammatory signals. For example, P0-peptide-1
linked to liposome surfaces is capable of mediating the spe-
cific binding of liposomes to melanoma cells expressing high
levels of ICAM-1, thus making it possible to target cancerous
melanocytes in lymph nodes and skin melanomas (Jaafari and
Foldvari, 2002b). Most of the work with liposomes in inflam-
matory disorders are based on imaging agents, with only few in
vivo studies having been conducted using ligand-targeted lipo-
somes incorporating therapeutic agents (Metselaar and Storm,
2005). For example, the biodistribution and target localization
of E-selectin-targeted dexamethasone-containing liposomes was
examined in a murine delayed-type hypersensitivity model, which
reported enhanced uptake by activated endothelium at inflamed
sites as compared with control tissue (Everts et al., 2003). Simi-
larly, selective interaction with target cells following extravasation
of targeted liposomes into the inflamed tissue has hardly been
addressed in vivo (Metselaar and Storm, 2005). Boot et al. (2005)
reported that the surface receptor CD134, specifically expressed by
auto-aggressive T cells at sites of inflammation, could efficiently be
targeted by liposomes modified with anti-CD134 antibody. It was
observed that encapsulation of 5′-fluorodeoxyuridine dipalmitate
in these liposomes could lead to inactivation of auto-aggressive
T cells and amelioration of experimental arthritis (Boot et al.,
2005). In addition, loperamide-encapsulated ICAM-1 targeted
immunoliposomes have been shown to induce significant periph-
eral antinociceptive and anti-inflammatory activity in rats with
complete Freund’s adjuvant-induced inflammation of the paw
via an opioid receptor dependent mechanism (Hua and Cabot,
2013).

This phenomenon of disease-site targeting is believed to play
a major role in the enhanced efficacy observed for a variety of
drugs when formulated inside lipid vesicles (Oku and Namba,
1994; Vingerhoeds et al., 1994; Torchilin, 1996; Willis and Forssen,
1998; Bendas, 2001; Maruyama, 2002; Ulrich, 2002). Formula-
tion of ICAM-1-directed sterically stabilized immunoliposomes
(SIL) will not only allow prolonged circulation but also active
targeting to sites of inflammation (Bloemen et al., 1995; Willis
and Forssen, 1998; Koning et al., 2002; Muro and Muzykan-
tov, 2005; Ding et al., 2006). Such drug carriers may escape
from the gaps between adjacent endothelial cells and openings
at the vessel termini during inflammation by passive convective
transport and/or ligand-directed targeting (Antohe et al., 2004;
Metselaar and Storm, 2005). It is also plausible that some lipo-
somes can attach onto activated leukocytes undergoing diapedesis
into inflammatory sites (Sipkins et al., 2000), as CAMs such as
ICAM-1 are expressed not only on the surface of vascular endothe-
lium and neurones, but also by activated T lymphocytes (Sipkins
et al., 2000; Koning et al., 2002; Hua et al., 2006). This field of
research of targeting therapeutics to sites of inflammation spe-
cific to pathological disease states will improve the efficacy of
therapeutic agents and reduce the toxicity to other parts of the
body.
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