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Although β1-blockers have been perioperatively used to reduce the cardiac disorders
associated with general anesthesia, little is known about the mechanistic characteristics
of ultra-short-acting highly selective β1-blocker landiolol. We studied its membrane-
interacting property in comparison with other selective and non-selective β1-blockers.
Biomimetic membranes prepared with phospholipids and cholesterol of varying compo-
sitions were treated with β1-selective landiolol and esmolol and non-selective propranolol
and alprenolol at 0.5–200 μM. The membrane interactivity and the antioxidant activity
were determined by measuring fluorescence polarization and by peroxidizing membrane
lipids with peroxynitrite, respectively. Non-selective β1-blockers, but not selective ones,
intensively acted on 1,2-dipalmitoylphosphatidylcholine (DPPC) liposomal membranes and
cardiomyocyte-mimetic membranes to increase the membrane fluidity. Landiolol and its
inactive metabolite distinctively decreased the fluidity of DPPC liposomal membranes, sug-
gesting that a membrane-rigidifying effect is attributed to the morpholine moiety in landiolol
structure but unlikely to clinically contribute to the β1-blocking effect of landiolol. Propranolol
and alprenolol interacted with lipid raft model membranes, whereas neither landiolol nor
esmolol. All drugs fluidized mitochondria-mimetic membranes and inhibited the membrane
lipid peroxidation with the potency correlating to their membrane interactivity. Landiolol
is characterized as a drug devoid of the interactivity with membrane lipid rafts relating
to β2-adrenergic receptor blockade. The differentiation between β1-blocking selectivity
and non-selectivity is compatible with that between membrane non-interactivity and
interactivity. The mitochondrial membrane fluidization by landiolol independent of blocking
β1-adrenergic receptors is responsible for the antioxidant cardioprotection common to
non-selective and selective β1-blockers.
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INTRODUCTION
Noxious stimuli by anesthesia induction, operative incision,
laryngoscopy, tracheal intubation, and/or extubation excite the
sympathetic nervous system, resulting in heart rate increase,
arterial blood pressure elevation, and cardiac ischemia occur-
rence. The perioperative use of β-adrenergic receptor antagonists
has been suggested to reduce the risk of such heart events as
tachycardia, hypertension, myocardial ischemia and infarction
and the surgery-relating cardiac morbidity and mortality dur-
ing general anesthesia (Devereaux et al., 2005; Wiesbauer et al.,

Abbreviations: CB, cerebroside; CL, cardiolipin; DMD, 2,2-dimethyl-1,3-
dioxolane-4-methanol; DMSO, dimethyl sulfoxide; DOPC, 1,2-
dioleoylphosphatidylcholine; DPH, 1,6-diphenyl-1,3,5-hexatriene; DPPC,
1,2-dipalmitoylphosphatidylcholine; DPPP, diphenyl-1-pyrenylphosphine;
EM, 4-ethylmorpholine; PI, phosphatidylinositol; POPC, 1-palmitoyl-2-
oleoylphosphatidylcholine; POPE, 1-palmitoyl-2-oleoylphosphatidylethanolamine;
POPS, 1-palmitoyl-2-oleoylphosphatidylserine; SM, sphingomyelin; TMA-DPH,
1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene.

2007; Zangrillo et al., 2009). In addition, β-blockers show the
antinociceptive property to decrease intraoperative anesthetic and
analgesic requirements (Davidson et al., 2001) and the blocking
effects on voltage-gated sodium channels (Wang et al., 2010).

Propranolol was previously used as a pre-, intra-, and postoper-
ative β-blocker (Ivey et al., 1983; Wiesbauer et al., 2007), followed
by oxprenolol, labetalol, nadolol, timolol, and alprenolol (Burns
et al., 1988; Fleisher et al., 2009). However, these conventional
drugs have the possibility to cause long-lasting cardiac failures
and respiratory side-effects due to their concomitant β2-blocking
effects. Although cardioselective β-blockers such as atenolol and
metoprolol were alternatively used, their duration and intensity of
action were problematic for the perioperative use, leading to the
development of short-acting β1-selective esmolol with the selec-
tivity of β1/β2 = 33 and the half-life (t1/2) = 9.19 min (Sum
et al., 1983). The subsequent studies produced ultra-short-acting
highly β1-selective landiolol with the selectivity of β1/β2 = 255
and the half-life (t1/2) = 3.96 min (Iguchi et al., 1992). Landiolol
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and esmolol show Ki values of 62/1890 nM and 125/2620 nM
in human β1-/β2-adrenergic receptors and 993/12416 nM and
1054/5900 nM in dog β1-/β2-adrenergic receptors, indicating that
the β1-selectivity relative to propranolol is 74–380 for landiolol
and 39–263 for esmolol (Japan Pharmaceutical Information Cen-
ter [JAPIC], 2012). These sophisticated β1-blockers have been
evaluated as an agent suitable for perioperative tachycardia and
hypertension without the risk of prolonged cardiac depression but
with the benefit to decrease anesthetic requirements (Saito et al.,
2005; Tanabe et al., 2009).

The selectivity of antagonists is exclusively attributed to their
structure-specific binding to receptors embedded in biomem-
branes. Besides receptor proteins, however, β-blockers also
act on membrane lipids to modify the physicochemical prop-
erty of biomembranes such as fluidity (Varga et al., 1999;
Lombardi et al., 2009). Because lipid bilayers provide transmem-
brane receptors with the surrounding environments optimal
for their activity, changes in membrane fluidity influence the
β-adrenergic receptor signaling (Ma et al., 1997). The property
to change membrane fluidity has been suggested for several drugs
acting on β-adrenergic receptors (Butler et al., 2006; Lombardi
et al., 2009). Conventional β1-blockers possess the ability to inter-
act with lipid bilayer membranes (Varga et al., 1999; Pereira-Leite
et al., 2013). The membrane-interacting characteristics including
potency and selectivity were recently reported to be useful for
differentiating between non-selective β1-blockers (including pro-
pranolol, alprenolol, and oxprenolol) and selective β1-blockers
(including atenolol, metoprolol, and esmolol; Mizogami et al.,
2010).

Although both landiolol and esmolol are classified as a
short-acting β1-selective blocker, they are different in pharmaco-
logical features (Iguchi et al., 1992; Saito et al., 2005). However,
there have been no investigations on the membrane effects to
characterize landiolol despite that its structurally relating or
structural moiety-containing compound acts on lipid mem-
branes (Tian et al., 2011). In order to provide a novel phar-
macological insight into landiolol, we studied its interactivity
with different kinds of biomimetic membranes by comparing
with β1-selective esmolol and non-selective propranolol and
alprenolol.

MATERIALS AND METHODS
REAGENTS
Landiolol ((–)-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl 3-{4-
[(S)-2-hydroxy-3-(2-morpholinocarbonylamino)ethylamino]
propoxy}phenylpropionate) and its metabolite (3-{4-[(S)-2-
hydroxy-3-(2-morpholinocarbonylamino)ethylamino]propoxy}
phenylpropionic acid) were supplied by Ono Pharmaceuticals
(Osaka, Japan), and esmolol by Maruishi Pharmaceuticals (Osaka,
Japan). Propranolol and alprenolol were purchased from Sigma-
Aldrich (St. Louis, MO, USA), and 4-ethylmorpholine (EM)
and 2,2-dimethyl-1,3-dioxolane-4-methanol (DMD) from Tokyo
Chemical Industrials (Tokyo, Japan). Their chemical structures are
shown in Figure 1. 1,2-Dipalmitoylphosphatidylcholine (DPPC),
1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1,2-dioleoylph
osphatidylcholine (DOPC), 1-palmitoyl-2-oleoylphosphatidyleth
anolamine (POPE), 1-palmitoyl-2-oleoylphosphatidylserine

(POPS), bovine heart cardiolipin (CL), porcine brain phos-
phatidylinositol (PI), porcine brain sphingomyelin (SM), and
porcine brain cerebroside (CB) were purchased from Avanti Polar
Lipids (Alabaster, AL, USA), and cholesterol and α-tocopherol
from Wako Pure Chemicals (Osaka, Japan). 1,6-Diphenyl-1,3,5-
hexatriene (DPH) was obtained from Molecular Probes (Eugene,
OR, USA), and diphenyl-1-pyrenylphosphine (DPPP) and perox-
ynitrite from Dojindo (Kumamoto, Japan). Dimethyl sulfoxide
(DMSO) of spectroscopic grade (Kishida, Osaka, Japan) was used
for preparing reagent solutions.

MEMBRANE PREPARATION
Biomimetic membranes labeled with DPH were prepared with
phospholipids and cholesterol to be unilamellar vesicles sus-
pended in a buffer as reported previously (Tsuchiya and Mizogami,
2008). In brief, an aliquot (250 μl) of the ethanol solution of
phospholipids and cholesterol (total lipids of 10 mM) and DPH
(50 μM) was injected four times into 199 ml of 10 mM HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer of
pH 7.4 containing 125 mM NaCl and 25 mM KCl under stir-
ring above the phase transition temperatures of phospholipids.
The membrane lipid compositions were as follows: (1) 100 mol%
DPPC for DPPC liposomal membranes which have been most
frequently used in membrane interaction experiments (Mizogami
et al., 2010; Pereira-Leite et al., 2013), (2) 25 mol% POPC, 20 mol%
POPE, 5 mol% POPS, 5 mol% PI, 5 mol% SM, and 40 mol%
cholesterol for cardiomyocyte-mimetic membranes (Wheeldon
et al., 1965), (3) 16.7 mol% DOPC, 16.7 mol% POPE, 16.7 mol%
SM, 16.7 mol% CB, and 33.3 mol% cholesterol for lipid raft
model membranes (Schroeder et al., 1994) and (4) 25 mol%
POPC, 16 mol% POPE, 3 mol% POPS, 10 mol% CL, 3 mol% PI,
3 mol% SM, and 40 mol% cholesterol for mitochondria-mimetic
membranes (Tsuchiya et al., 2010a).

MEMBRANE INTERACTIVITY
The membrane interactivity was determined by analyzing the
drug-induced changes in membrane fluidity as reported previ-
ously (Tsuchiya et al., 2011). In brief, landiolol, its metabolite,
its structurally relating compounds (EM and DMD), esmolol,
propranolol, and alprenolol were dissolved in DMSO. The result-
ing solutions were applied to the membrane preparations so
that a final concentration of drugs was 0.5–200 μM. These
drug concentrations were chosen because the tested β1-blockers
were reported to show blood concentrations of a micromo-
lar level in their pharmacokinetic studies (de Bruijn et al.,
1987; Murakami et al., 2005). The concentration of DMSO was
adjusted to be 0.25% (v/v) of the total volume so as not to
affect the fluidity of intact membranes. Beta1-selective esmolol
and non-selective propranolol and alprenolol were used for
the comparisons because they have the structurally same sub-
stituent (2-hydroxy-3-(isopropylamino)propoxyl group) attached
to aromatic rings (see Figure 1). Control experiments were
conducted with the application of an equivalent volume of
DMSO vehicle. After the reaction at 37◦C for 30 min, DPH
fluorescence polarization was measured by an RF-540 spec-
trofluorometer (Shimadzu, Kyoto, Japan) equipped with a
polarizer at excitation 360 nm and at emission 430 nm as
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FIGURE 1 | Structures of selective and non-selective β1-blockers and landiolol-related compounds.

reported previously (Mizogami et al., 2010). Polarization values
were calculated by the formula (IVV − GIVH)/(IVV + GIVH)
according to the method of Ushijima et al. (2005), in which
I is the fluorescence intensity and the subscripts V and H
refer to the vertical and horizontal orientation of excita-
tion and emission polarizer, respectively. The grating cor-
rection factor (G = IHV/IHH) is the ratio of the detec-
tion system sensitivity for vertically and horizontally polarized
light, which was used to correct the polarizing effects of a
monochromator. Decreasing and increasing polarization changes
from controls mean an increase (membrane fluidization) and
a decrease of membrane fluidity (membrane rigidification),
respectively.

ANTIOXIDANT ACTIVITY
The antioxidant activity to inhibit membrane lipid peroxidation
was determined by the liposomal system as reported previously
(Tsuchiya et al., 2010b). In brief, DPPP-incorporated membranes
with the molar ratio of DPPP to total membrane lipids of being
1:100 were prepared to be liposomes suspended in Dulbecco’s
phosphate-buffered saline of pH 7.4 (Dainippon Pharmaceuti-
cals, Osaka, Japan). Their membrane lipid compositions were
(1) 100 mol% DOPC for unsaturated phospholipid membranes
and (2) 25 mol% POPC, 16 mol% POPE, 3 mol% POPS,
10 mol% CL, 3 mol% PI, 3 mol% SM, and 40 mol% cholesterol

for mitochondria-mimetic membranes (Tsuchiya et al., 2010a).
Liposome suspensions of 3.97 ml were pre-incubated at 37◦C for
30 min with each 10 μl of selective and non-selective β1-blocker
solutions in DMSO (a final concentration of 100 μM for each
drug) or the α-tocopherol solution in DMSO (2.5 μM) as a
reference antioxidant. A corresponding volume (0.25%, v/v) of
DMSO vehicle was added to controls. Lipid peroxidation was
induced by adding 20 μl of the peroxynitrite solution in 0.1 M
NaOH (a final concentration of 20 μM) and then incubating at
37◦C for 10 min. Since membrane-incorporated DPPP quantita-
tively reacted with a lipid hydroperoxide to produce a fluorescent
phosphine oxide, the liposome suspensions were fluorometri-
cally analyzed at excitation 355 nm and at emission 382 nm.
When the peroxynitrite-induced increase in fluorescence inten-
sity reached a plateau, membrane lipid peroxidation was defined
as completed (100%). The lipid peroxidation-inhibiting percent-
ages were determined by comparing the fluorescence intensity
with controls. Because DMSO has the antioxidant property to
potentially inhibit lipid peroxidation (Sanmartín-Suárez et al.,
2011), it may cooperatively increase the lipid peroxidation-
inhibitory effects of the tested drugs. In the present study, the
fluorescence intensity of liposomes treated with DMSO alone
was subtracted from that of liposomes treated with drugs plus
DMSO so that the determined activity was not influenced by
DMSO.
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STATISTICAL ANALYSIS
All results are expressed as means ± SEM (n = 8 for membrane
interactivity experiments and n = 5 for antioxidant activity exper-
iments). Data were analyzed by a one-way analysis of variance
(ANOVA) followed by a post hoc Fisher’s protected least significant
difference (PLSD) test using StatView version 5.0 (SAS Institute,
Cary, NC, USA). A p value of being < 0.05 was taken as significant.

RESULTS
INTERACTION WITH BIOMIMETIC MEMBRANES
Propranolol and alprenolol interacted with different membrane
preparations to increase the fluidity of all of them as shown
by polarization decreases in Figure 2. These non-selective
β1-blockers fluidized DPPC liposomal membranes (Figure 2A),
cardiomyocyte-mimetic membranes (Figure 2B) and lipid raft
model membranes (Figure 2C) at 20–200 μM and mitochondria-
mimetic membranes (Figure 2D) at lower concentrations of
0.5–20 μM. In contrast, selective β1-blockers so differently acted
on DPPC liposomal membranes that landiolol decreased the
membrane fluidity at 20–200 μM as shown by polarization
increases, but not esmolol (Figure 2A). Landiolol and esmolol

induced much less fluidization in cardiomyocyte-mimetic mem-
branes (Figure 2B) and no fluidization in lipid raft model
membranes (Figure 2C) even at 200 μM. However, both selective
β1-blockers interacted with mitochondria-mimetic membranes to
fluidize them at 20–200 μM as well as non-selective propranolol
and alprenolol (Figure 2D).

MEMBRANE EFFECTS OF LANDIOLOL AND RELATED COMPOUNDS
Not only landiolol but its metabolite and a hydrolysis fragment
analog EM rigidified DPPC liposomal membranes (Figure 3).
However, another hydrolysis fragment DMD was not effective in
rigidifying the membranes or reversely fluidized the membranes
at a relatively high concentration.

ANTIOXIDANT EFFECTS ON BIOMIMETIC MEMBRANES
Both selective and non-selective β1-blockers inhibited the
peroxynitrite-induced peroxidation of DOPC liposomal mem-
branes and mitochondria-mimetic membranes as well as antioxi-
dant α-tocopherol (Figure 4). Propranolol was greatest in antiox-
idant activity on biomimetic membranes, followed by alprenolol,
landiolol, and esmolol in the decreasing order of potency.

FIGURE 2 | Interaction of selective and non-selective β1-blockers

with different kinds of biomimetic membranes. All drugs were
reacted at the indicated concentrations with 100 mol% DPPC
liposomal membranes (A), cardiomyocyte-mimetic membranes

(B), lipid raft model membranes (C), and mitochondria-mimetic
membranes (D), followed by measuring DPH fluorescence polarization.
Values represent means ± SEM (n = 8). *p < 0.05 and
**p < 0.01 vs. control.
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FIGURE 3 | Effects of landiolol, its hydrolysis metabolite and structural

fragments (40 and 200 μM for each) on 100 mol% DPPC liposomal

membranes. Values represent means ± SEM (n = 8). **p < 0.01 vs.
control.

FIGURE 4 | Inhibitory effects of selective and non-selective β1-blockers

(100 μM for each) and antioxidant α-tocopherol (2.5 μM) on

peroxynitrite-induced lipid peroxidation of 100 mol% DOPC liposomal

membranes and mitochondria-mimetic membranes. Values represent
means ± SEM (n = 5). *p < 0.05 and **p < 0.01 vs. control.

DISCUSSION
Pereira-Leite et al. (2013) used different fluorescence probes DPH
and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene
(TMA-DPH) for comparing the membrane interactivity of
non-selective and selective β1-blockers. All the drug-induced
polarization changes were much greater in DPH than in TMA-
DPH. DPH is localized in the hydrocarbon core of lipid bilayers
to show the fluidity change in deeper membrane regions, whereas
TMA-DPH is anchored at the polar head groups of phospho-
lipids to show the fluidity change in surface membrane regions
(Tsuchiya, 2001). Both non-selective and selective β1-blockers
are considered to preferentially interact with the hydrophobic
acyl chain regions of phospholipid membranes. Therefore, we
used DPH for determining the membrane interactivity of lan-
diolol and reference drugs. Our main findings are as follows:

(1) propranolol and alprenolol interact with DPPC liposomal,
cardiomyocyte-mimetic, lipid raft model, and mitochondria-
mimetic membranes to fluidize all of them at sub-μM or μM
concentrations, although landiolol and esmolol are not so inter-
active with cardiomyocyte-mimetic and lipid raft model mem-
branes, (2) only landiolol rigidifies DPPC liposomal membranes
in contrast to membrane-fluidizing propranolol and alprenolol
or membrane-inactive esmolol, and (3) both non-selective
and selective β1-blockers interact with mitochondria-mimetic
membranes to increase their fluidity together with inhibit-
ing the peroxynitrite-induced lipid peroxidation of biomimetic
membranes.

Beta1-blockers are structurally composed of an aromatic ring
and a 2-hydroxy-3-(isopropylamino)propoxyl group or its struc-
tural analog. Alprenolol is the phenyl derivative with a 2-hydroxy-
3-(isopropylamino)propoxyl group and a 2-propenyl group at
the ortho-position and propranolol has a bulky α-naphthalene
nucleus with a 2-hydroxy-3-(isopropylamino)propoxyl group.
Such molecular structures of non-selective β1-blockers occupy
more space in membrane lipid bilayers with the resultant per-
turbation of the alignment of phospholipid acyl chains, thereby
inducing fluidity changes in biomimetic membranes. On the
other hand, landiolol and esmolol have two side chains in the
para-positions. Therefore, they show an almost linear configura-
tion in membrane lipid bilayers which allows drug molecules to
align approximately parallel to phospholipid acyl chains. Due to
such an alignment, these selective β1-blockers could not induce
significant changes in membrane fluidity even if penetrating
into cardiomyocyte-mimetic and lipid raft model membranes
(Mizogami et al., 2010).

Landiolol characteristically acted on DPPC liposomal mem-
branes to rigidify them. Its metabolite lacking a DMD substructure
and its hydrolysis fragment analog EM also rigidified DPPC lipo-
somal membranes, but not landiolol hydrolysis fragment DMD,
suggesting that the morpholine moiety provides landiolol with
a rigidifying effect on DPPC membranes. Landiolol is metaboli-
cally hydrolyzed by esterase in plasma and liver and the resulting
metabolite is pharmacologically inactive. Biological membranes
are composed of different phospholipids and cholesterol, not of
DPPC alone. Although the action on DPPC membranes is of
much interest as a unique physicochemical property of landi-
olol, it is unlikely to clinically contribute to blocking β1-adrenergic
receptors.

A recent concept on biomembranes has indicated that they
are not a simple bilayer structure of uniformly distributed lipids
but contain the microdomain lipid rafts biophysically differ-
ent from bulk membranes (Simons and Toomre, 2000). Highly
ordered membrane microdomains encompass β-adrenergic recep-
tors and provide them with the platform to regulate their
functions (Lanoul et al., 2005). Lipid rafts form caveolae by
polymerizing with caveolins which bind to cholesterol. The local-
ization in caveolae/lipid rafts is prerequisite to β2-adrenergic
receptors for physiologic signaling, but not to β1-adrenergic
receptors (Xiang et al., 2002). Propranolol and alprenolol act
on lipid raft model membranes and fluidize them. Mem-
brane fluidization is associated with the decreased function of
β2-adrenergic receptors (Lombardi et al., 2009). Non-selective
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β1-blockers would reduce the β2-adrenergic receptor activity by
interacting with membrane lipid rafts together with antagoniz-
ing β1-adrenergic receptors by binding to β1-receptor proteins,
thereby producing the non-selective blockade. Their effects on
cardiomyocyte membranes may also contribute to blocking β2-
adrenergic receptors. Because neither landiolol nor esmolol
interact with lipid raft model membranes, these selective β1-
blockers could not influence the β2-adrenergic receptor activity
through membrane fluidization, enhancing the selectivity to
β1-adrenergic receptor blockade. The differentiation between
selectivity and non-selectivity to β1-adrenergic receptors is com-
patible with that between non-interactivity and interactivity with
biomimetic membranes, which is consistent with the previous
comparisons between selective (atenolol, metoprolol, esmolol)
and non-selective β1-blockers (alprenolol, oxprenolol, propra-
nolol; Mizogami et al., 2010). A correlation between mem-
brane interaction and low β1-specificity is likely to apply to
most non-selective drugs. Unlike β1-non-selective propranolol,
β1-selective landiolol and esmolol show no interactions with
lipid raft model membranes or much less interactivity with
cardiomyocyte-mimetic membranes. The β1-selectivity associated
with the membrane non-interactivity is consistent with the rela-
tive β1-selectivity of landiolol (74–380), esmolol (33–263), and
propranolol (1) reported previously (Sum et al., 1983; Iguchi
et al., 1992; Japan Pharmaceutical Information Center [JAPIC],
2012).

Both non-selective and selective β1-blockers not only inter-
act with mitochondria-mimetic membranes to increase their
fluidity but also inhibit lipid peroxidation of DOPC liposo-
mal membranes and mitochondria-mimetic membranes. In
this study, mitochondria-mimetic membranes were prepared
to contain 10 mol% CL. CL is preferentially located in car-
diac mitochondrial membranes to play an important role in
heart functions and it comprises 8–20% of total mitochondrial
phospholipids in cardiomyocytes (Houtkooper and Vaz, 2008).
CL has two negatively charged head groups, whereas the side
chains of all the tested β1-blockers have a positively chargeable
imino structure. Cationic non-selective and selective β1-blockers
appear to electrostatically interact with anionic CL in mem-
brane lipid bilayers (Tsuchiya et al., 2010a). Such an interaction
accounts for their greater effects on mitochondria-mimetic mem-
branes compared with cardiomyocyte-mimetic membranes not
containing CL.

Reactive oxygen species are produced during various cardiac
disorders (Paradies et al., 2004). Nitric oxide and superoxide anion
rapidly react to generate peroxynitrite which is pathologically
responsible for cardiac ischemia-reperfusion injury, surgery-
relating complication, and cardiovascular damage through the
lipid peroxidation of biomembranes (Lalu et al., 2002). When lipid
peroxidation is induced by peroxynitrite, the rank order of antiox-
idant activity (propranolol > alprenolol > landiolol > esmolol)
agrees with that of mitochondria-mimetic membrane interactiv-
ity. The modification of membrane fluidity is mechanistically
associated with the inhibition of membrane lipid peroxidation
(Saija et al., 2001; Lúcio et al., 2007). Radical and antioxidant
molecules are likely to interact more efficiently in fluidized mem-
brane lipid environments (Tsuchiya et al., 2010b; Pereira-Leite

et al., 2013). Since reactive oxygen species peroxidize cell mem-
branes to produce myocardial ischemia/reperfusion damages, the
reduction of membrane lipid peroxidation leads to the protec-
tion of hearts (Kimura-Kurosawa et al., 2007). The antioxidant
activity not directly relating to β-adrenergic receptor blockade
has been indicated to underlie the cardioprotective effects of β-
blockers (Kramer et al., 2006). Landiolol, esmolol, propranolol,
and alprenolol would exert the cardioprotection by their common
membrane-fluidizing property distinct from the β1-adrenergic
receptor-blocking one.

The clinical implications of the membrane interaction of
β1-blockers may be argued about their relevant concentra-
tions to modify membrane fluidity. The concentrations of lan-
diolol, esmolol, and propranolol to inhibit membrane lipid
peroxidation almost correspond to those to protect from the
ischemia-reperfusion injury (Kurosawa et al., 2003). Hydropho-
bic β1-blockers are concentrated in membrane lipid bilayers and
intracellularly accumulated over 1000 times higher than their incu-
bation medium concentrations (Butler et al., 2006; Kramer et al.,
2006).

CONCLUSION
To our knowledge, this is the first study to determine the
membrane interactivity of landiolol depending on the lipid com-
position of biomimetic membranes. Landiolol is characterized by
the non-interactivity with membrane lipid rafts which enhances its
selectivity to β1-adrenergic receptor blockade. On the other hand,
landiolol is able to interact with CL-containing mitochondrial
membranes to increase the membrane fluidity as well as propra-
nolol, alprenolol, and esmolol. Its lipid peroxidation-inhibitory
effect associated with membrane fluidization would produce the
clinical benefit of cardioprotection common to non-selective and
selective β1-blockers by the mechanism independent of blocking
β1-adrenergic receptors.
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