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Insomnia is a common clinical condition characterized by difficulty initiating or maintaining
sleep, or non-restorative sleep with impairment of daytime functioning. Currently,
treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi)
and pharmacological therapy. Among pharmacological interventions, the most evidence
exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although
concerns persist regarding their safety and their limited efficacy. The use of these
hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin)
neuropeptides have been shown to regulate transitions between wakefulness and
sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the
development of a new class of pharmacological agents that antagonize the physiological
effects of orexin. The development of these agents may lead to novel therapies for
insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed
arousal, and motor balance difficulties). However, antagonizing a system that regulates
the sleep-wake cycle may create an entirely different side effect profile. In this review, we
discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin
antagonists in the treatment of insomnia.
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INTRODUCTION
Insomnia is the most common sleep disorder in the world. In the
US alone, as much as 48% of the population reports experienc-
ing transitory insomnia, while 22% suffers from insomnia almost
every night as mentioned on the National Sleep Foundation
website.

According to the second International Classification of
Sleep Disorders (ICSD-2), insomnia is characterized by dis-
turbed sleep that leads to impaired daytime functioning (e.g.,
fatigue, memory impairment, poor school performance, irritabil-
ity, daytime sleepiness and proneness to errors, among other
symptoms). Disturbed sleep can manifest as a difficulty in ini-
tiating/maintaining sleep, early morning awakening, or sleep that
is chronically non-restorative or poor in quality, despite adequate
opportunity for sleep to occur. Insomnia becomes a chronic prob-
lem when symptoms have been present for at least a month (NIH
State-of-the-Science Conference Statement on Manifestations
and Management of Chronic Insomnia in Adults, 2005).

The definition for insomnia disorder in the Diagnostic and
Statistical Manual of Mental Disorders, 5th Edition, does not
differ much from that of the ICSD-2 as it also includes com-
plaints of dissatisfaction with sleep quantity or quality despite
adequate opportunity to sleep and low performance in daytime
functioning. In addition, the manual also includes a more specific
timeframe where complaints occur at least three nights per week
for at least 3 months.

The National Institutes of Health classifies insomnia as either
primary (PI) or comorbid (previously referred to as secondary

insomnia). PI refers to insomnia without comorbid condi-
tions, whereas comorbid insomnia is employed when complaints
arise in the context of another condition, such as depression,
Parkinson’s disease, rheumatoid arthritis, or restless leg syn-
drome; or as the side effect of a drug, such as caffeine, nicotine,
alcohol or beta-blockers.

The etiology of PI is thought to be related to sustained physio-
logical hyperarousal throughout the day. Management of insom-
nia can be achieved using cognitive behavioral therapy (CBTi)
and/or pharmacological therapy. Common prescription medica-
tions for insomnia are benzodiazepine (BZD) receptor agonists
(both BZDs and nonBZDs), sedating antidepressants and mela-
tonin receptor agonists. Pharmaceutical intervention is often the
first-line approach for the treatment of insomnia but still has
many pitfalls, such as the development of tolerance, addiction and
undesired side effects (including complex sleep related behaviors
and abnormal thoughts).

Orexin (hypocretin) receptor antagonists are a new, promising
pharmacological treatment for PI. The orexinergic system (oth-
erwise known as the hypocretinergic system) has been strongly
linked to the sleep/wake cycle (SWC) for its role in promoting and
sustaining arousal (Piper et al., 2000; Xi et al., 2001). In addition,
the antagonism of orexinergic receptors has been shown to induce
somnolence in different species (Brisbare-Roch et al., 2007). In
clinical trials orexin receptor antagonists have performed well,
and subjects have reported improved quality of sleep with few side
effects, the most common being complaints of mild headaches
and dizziness.
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In the first part of this review we discuss the current state of PI
and the research that has led to the use of orexin receptor antag-
onists as therapy for PI. In the second part we focus on existing
orexin receptor antagonists and their effectiveness in promoting
sleep in animal models and managing insomnia in humans.

OVERVIEW OF THE CURRENT TREATMENT OF INSOMNIA
CBTi
The main objective of CBTi is to tackle the cognitive and behav-
ioral factors that could be perpetuating insomnia. The most
frequent factors are excessive worrying about not sleeping enough
and maladaptive behaviors such as spending excessive time in
bed awake, excessive use of caffeine, and napping. Common tech-
niques applied in CBTi include sleep hygiene education, cogni-
tive restructuring, stimulus control, sleep restriction therapy and
relaxation training (Morin et al., 1994; NIH State-of-the-Science
Conference Statement on Manifestations and Management of
Chronic Insomnia in Adults, 2005). Several studies have found
that CBTi is an effective approach with long-term results for the
treatment of insomnia (Morin, 1999; Jacobs et al., 2004).

The shortcomings of CBTi are related to access and adher-
ence to treatment. Patients need to be trained by specialized
medical practitioners, who are not readily available, and to stay
highly motivated, as the therapy requires them to devote time to
practicing and carrying out the techniques.

PHARMACOLOGICAL TREATMENTS FOR INSOMNIA
Pharmacological treatments for insomnia can broadly be clas-
sified as prescription FDA approved and non-prescription,
over-the-counter (OTC), treatments.

Prescription FDA approved
Contemporary FDA approved pharmacological treatment
includes GABAA receptor agonists (BZDs and nonBZDs),
sedating antidepressants and melatonin agonists. The use of a
pharmacological therapy for the treatment of insomnia is some-
what easier than CBTi, but presupposes other difficulties, such as
unresponsiveness to treatment, limited therapeutic potential, a
poor side effect profile, tolerance and addiction. FDA medicines
approved for the treatment of insomnia are listed in Table 1.

BZDs and nonBZDs. The first FDA approved drugs for insom-
nia were BZDs (estazolam, quazepam, triazolam, flurazepam and
temazepam) and nonBZDs, also known as z-drugs (zaleplon,
zolpidem, and eszopiclone). These drugs, with the exception
of eszopiclone, are effective for the short-term management of
insomnia. Eszopiclone on the other hand, has been found to have
sustained efficacy for up to 6 months (Table 1).

BZD and nonBZD compounds are GABAA agonists. GABAA

receptors are pentameric receptors conformed of combinations
of α (1–6), β (1–3), γ (1–3), δ (1), ε (1), π (1), and θ (1) subunits.
The endogenous ligand GABA binds at the active site located at
the interface of α- and β-subunits, instead, the binding site for
BZDs and nonBZDs is located between α- and γ-subunits of α-
and γ-subunit containing GABAA receptors. Differences among
BZDs and nonBZDs relate to their selectivity for different types of
GABAA receptors, while BZDs can bind to subunits of the α1, α2,

α3, and α5 classes, nonBZDs preferentially bind to the α1 subclass
(Rudolph and Knoflach, 2011).

Activation of GABAA receptors tends to stabilize or hyperpo-
larize the resting potential, and can make it more difficult for
excitatory neurotransmitters to depolarize the neuron and gen-
erate an action potential. The net effect is typically inhibitory,
reducing the activity of the neuron. The GABAA channel opens
quickly and thus contributes to the early part of the inhibitory
post-synaptic potential. This can lead to several undesired side
effects that range from cognitive and psychomotor impairment,
rebound insomnia, and anterograde amnesia, to increased risk of
motor collisions and falls (Lader, 2012; Gunja, 2013).

Sedating antidepressants. For a long time, antidepressants were
used to treat insomnia in an off-label manner. Among these,
the serotonin antagonist and reuptake inhibitor trazodone was
the most popular. Then, in 2010, the FDA approved the tri-
cyclic antidepressant (TCA) doxepin for the treatment of sleep
maintenance insomnia (frequent nighttime or early morning
awakenings).

There are different classes of antidepressants with sedating
properties; in particular doxepin is classified as a serotonin and
norepinephrine reuptake inhibitor TCA. Despite this, the sleep-
promoting effects of doxepin are thought to relate mainly to its
antihistaminergic properties (Risberg et al., 1975). In this regard,
doxepin is a potent histamine H1 receptor antagonist (Richelson,
1979).

Therapeutic effects of doxepin are observed at very low
dosages (3–6 mg/day), improving sleep maintenance without
rebound insomnia or physical dependence. Common side effects
include sedation, nasopharyngitis, gastrointestinal effects, and
hypertension (Weber et al., 2010).

Melatonin agonists. Melatonin is a natural hormone produced by
the pineal gland following a circadian rhythm. The production of
melatonin peaks when the lights go out, which signals the organ-
ism that it is nighttime (Reiter, 1986). In humans, melatonin has
sleep-promoting effects as it has been found to induce sedation,
lower core body temperature, reduce sleep latencies and increase
total sleep time (Dollins et al., 1994; Zhdanova et al., 1996; Erman
et al., 2006).

Ramelteon is an FDA approved melatonin agonist that acts
upon MT1 and MT2 receptors improving sleep-onset latency at a
recommended dose of 8 mg/day. The most common complaints
users have described are headache, somnolence, dizziness and
sore throat (Pandi-Perumal et al., 2011). Overall, ramelteon is
very well tolerated, and unlike BZDs, residual effects such as cog-
nitive and psychomotor impairments are absent (Johnson et al.,
2006) (Table 1).

Non-prescription (OTC)
The most commonly used OTC sleep aids are antihis-
tamines; other OCT include alcohol, valerian and l-tryptophan.
Histaminergic neurons are mainly localized in the tuberomam-
millary nucleus (TMN) from where they project to many regions
of the (CNS) system including the wake-promoting basal fore-
brain (BF) and orexinergic neurons in the lateral hypothalamus
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Table 1 | FDA approved medications for the treatment of insomnia.

Generic name Therapeutic indication Dosage (mg) Known side effects Mechanism of action

BENZODIAZEPINE RECEPTOR AGONISTS

BDZs Estazolam Insomnia 0.5–2 Dizziness, drowsiness, next day
sedation, memory loss, anxiety,
loss of coordination.

Positive allosteric modulator
of GABAA receptors

Quazepam 7.5–15 Rebound insomnia.
Allergic reactions.

Triazolam 0.125–0.50 Complex sleep related behaviors:
sleep-driving, making phone calls,
eating.

Flurazepam 15–30 Abnormal thoughts and behavior:
worsening of depression, suicidal

Temazepam 7.5–30 thoughts or actions, increased
aggressiveness.

NonBDZs Zaleplon Sleep-onset insomnia 2.5–10 Dizziness, headache, drowsiness,
nausea, vomiting.

Zolpidem Sleep-onset and sleep
maintenance insomnia

5–20 Complex sleep related behaviors.
Abnormal thoughts and behavior.
Physical dependence.Eszopiclone 1–3

SEDATING ANTIDEPRESSANTS

Doxepin Sleep-maintenance
insomnia

3–6 Sedation, nasopharyngitis,
gastrointestinal effects,
hypertension.
Complex sleep related behaviors.
Abnormal thoughts and behavior.

5-HT & NE reuptake inhibitor
H1 receptor antagonist

MELATONIN RECEPTOR AGONISTS

Ramelteon Sleep-onset insomnia 8 Drowsiness, tiredness, dizziness.
Allergic reactions.
Complex sleep related behaviors
Abnormal thoughts and behavior.
Hormone effects: decreased
interest in sex, problems getting
pregnant.

MT1 & MT2 receptor agonist

All information was obtained from the FDA website (www.fda.gov). Abbreviations: BDZs, benzodiazepines; 5-HT, serotonin; NE, norepinephrine; H, histamine;

MT, melatonin.

(LH) (Köhler et al., 1985; Panula et al., 1989). The sedating effects
of antihistamines have been known for a long time (Risberg et al.,
1975) and are thought to be related to inhibition of H1 receptor
activity (Saitou et al., 1999).

Despite the popularity of OCT sedating antihistamines, these
agents have several undesirable side effects that limit their
usefulness as sleep aids (NIH State-of-the-Science Conference
Statement on Manifestations and Management of Chronic
Insomnia in Adults, 2005). In addition to antagonizing histamine
receptors, these compounds often display anticholinergic effects
(dry mouth, blurred vision, constipation, tachycardia, urinary
retention, and memory deficits) and next-day impairment (Kay,
2000; Meoli et al., 2005).

NEUROBIOLOGICAL MODEL OF INSOMNIA
PI, though classified as a sleep disorder, is thought to be a con-
sequence of physiological hyperarousal during sleep and wake-
fulness. For example, objective sleepiness measures such as the
Multiple Sleep Latency Test (MSLT), have failed to show increased

sleepiness in insomniacs when compared to healthy controls
(Edinger et al., 2003). Furthermore, insomniacs appear to be
more alert following a night of poor sleep when compared to con-
trol subjects (Stepanski et al., 1988) and during sleep exhibit a
surge of beta and gamma activity (Perlis et al., 2001), suggest-
ing a generalized disorder that persists throughout the SWC. This
model has been supported by studies that have detected phys-
iological differences between insomniacs and controls. Monroe
was the first to document that poor sleepers have increased phys-
iological activity, which includes augmented heart rate, body
temperature, oxygen consumption, secretion of cortisol, adreno-
corticotropic hormone (ACTH) and adrenaline (Monroe, 1967;
Adam et al., 1986; Vgontzas et al., 2001; Bonnet and Arand, 2010).

Elevated levels of free cortisol and ACTH in the
urine are indicators of the overactivation of the
hypothalamic-pituitary-adrenal axis (HPA) that could
account for some of the symptoms of PI, including
arousal, fragmented sleep and increased sleep latency
(Steiger et al., 1991; Richardson and Roth, 2001).

www.frontiersin.org December 2013 | Volume 4 | Article 163 | 3

www.fda.gov
http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Equihua et al. Orexin antagonists for insomnia

The HPA plays a fundamental role in the stress response;
increased levels of cortisol after a night of sleep loss have been
interpreted as reflecting the stress of maintaining a state of vigi-
lance (Chapotot et al., 2001). In normal conditions, cortisol levels
somewhat parallel arousal throughout the day, reaching peak
levels after waking and decreasing around midnight (Pruessner
et al., 1997; Bartter et al., 2006). In contrast, chronic insomni-
acs have significantly higher cortisol levels during the evening
(Spath-Schwalbe, 1992).

The hypothalamic nucleus that comprises the HPA is the par-
aventricular nucleus (PVN) where corticotropin-releasing hor-
mone (CRH) release is key to inducing stress responses and
augmenting the levels of ACTH and cortisol. A reciprocal exci-
tatory interaction between the HPA and the orexinergic system
has recently been revealed to occur. First, an anatomical inter-
face between these two nuclei has been observed: orexin neurons
extensively innervate the PVN, whereas CRH neurons innervate
the LH (Winsky-Sommerer et al., 2004). Second, a physiological
association has also been reported: there is an enhanced release of
CRH that follows the intracerebroventricular (ICV) infusion of
orexins (Al-Barazanji et al., 2001; Sakamoto et al., 2004), as well
as an activation of orexinergic neurons after CRH administration
(Winsky-Sommerer et al., 2004). This anatomical and functional
overlap has raised the question of whether or not the orexinergic
system is involved in the modulation of stress.

To study the response of orexinergic neurons in stressful sit-
uations, experiments have been carried out. In one trial, the
activity of orexin-producing neurons in rats was evaluated after
they were subjected to a swimming stress test known to increase
the amount of ACTH in plasma. During this test the activation
of orexinergic cells, measured by c-Fos immunoreactivity, signifi-
cantly increased, suggesting orexinergic activation associated with
stress. Furthermore, the study also showed that pretreatment with
an orexin antagonist significantly reduced the amount of ACTH
released to plasma (Chang et al., 2007), revealing a role for orexins
in this particular stress response. However, it seems that orexin-
producing neurons are not activated by all kinds of stress; instead
they appear to be specifically recruited by stressful scenarios that
require increased attention to environmental cues (Furlong et al.,
2009).

The HPA also directly influences the activity of the locus
coeruleus (LC), a major source of norepinephrine in the CNS
and a very important wake-promoting nucleus (Buckley and
Schatzberg, 2005). Orexinergic neurons also have an excitatory
influence on the LC, as they activate it during the waking hours
of the SWC (Hagan et al., 1999; Bourgin et al., 2000; Del Cid-
Pellitero and Garzón, 2011). Although it has not yet been tested,
it is possible that repetitive stressful events, requiring attention
to environmental cues, activate the HPA and induce the release
of CRH, subsequently activating the LC and orexinergic neurons.
This would promote attention and inhibit sleep, setting in motion
a vicious cycle that could develop into chronic insomnia.

RATIONALE FOR OREXIN ANTAGONISM AIMED AT THE
TREATMENT OF INSOMNIA
The orexinergic system was first described in the 1990s (de Lecea
et al., 1998; Peyron et al., 1998; Sakurai et al., 1998). Shortly

thereafter it was linked to the development of the sleep disor-
der narcolepsy (Chemelli et al., 1999; Lin et al., 1999; Thannickal
et al., 2000). Since then, orexins have been intensely studied for
their role in the SWC primarily as wake-promoting neurotrans-
mitters (Alexandre et al., 2013).

Orexin producing neurons are found in the LH. These neu-
rons synthesize two excitatory neuropeptides called orexin A and
B (OXA and OXB, alternatively known as hypocretin 1 and 2)
cleaved from a common protein precursor called prepro-orexin
(prepro-hypocretin). Orexinergic neurons extensively innervate
the CNS (Peyron et al., 1998), specifically areas known for their
role in promoting arousal like the LC, TMN, BF, cerebral cortex
and dorsal raphe (DR).

Several studies have corroborated the role of the orexinergic
system in sustaining wakefulness. For instance, it has been shown
that orexinergic neuronal activity is a function of the degree of
wakefulness, and is highest during active waking, and decreases
during quiet waking and sleep (Kiyashchenko et al., 2002; Lee
et al., 2005; Mileykovskiy et al., 2005). In addition, both ICV infu-
sions (Piper et al., 2000; De la Herrán-Arita et al., 2011) and
microinjections in sleep control related nuclei (Bourgin et al.,
2000; España et al., 2001; Xi et al., 2001) of OXA lengthen
the amount of time spent awake in a dose dependent manner.
Moreover, the use of optogenetics to activate orexinergic neurons
in the LH has been shown to increase the probability of a tran-
sition from nREM or REM sleep to waking (Adamantidis et al.,
2007).

Orexins exert their actions through their interaction with two
G protein-coupled receptors called OX1R and OX2R (hcrt1R and
hcrt2R, respectively). These receptors have different affinities for
the orexin peptides, while OXA binds to both receptors, OXB

selectively binds to OX2R (Sakurai et al., 1998) (Figure 1). In
addition, orexin receptors are differentially located throughout
the CNS; the LC mainly expresses OX1R, the TMN and the PVN
exclusively express OX2R, while the DR, BF and cortex express
both receptors (Marcus et al., 2001) (Figure 1).

FIGURE 1 | Orexin receptors and antagonists. Abbreviations: OX1R, type
1 orexin receptor; OX2R, type 2 orexin receptor; DR, dorsal raphe; TMN,
tuberomammillary nucleus; LDT, laterodorsal tegmental nucleus; PPT,
pedunculopontine tegmental nucleus; LC, locus coeruleus.
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The distinct distribution and affinities of orexin receptors sug-
gest they play different roles in the maintenance of wakefulness
(Table 2). This has been studied using different strains of trans-
genic mice, such as Knockouts (KO) for either one of the orexin
receptors, or both (DKO). These mice show varying degrees of
sleep disturbance. While OX1R KO mice do not exhibit any
obvious behavioral alterations (Sakurai, 2007), OX2R KO mice
manifest some features of narcolepsy, including an inability to
sustain wakefulness (Willie et al., 2003). DKO mice display the
most profoundly disturbed sleep phenotype of all three models:
narcolepsy with cataplexy (transient episodes of behavioral arrest)
(Kalogiannis et al., 2011). The robust narcoleptic phenotype in
DKO mice indicates a synergistic role between OX1R and OX2R
in the maintenance of wakefulness.

To further characterize the role of orexin receptors, selective
orexin receptor KO mice were stimulated with ICV infusions
of OXA. Specific stimulation of OX1R in OX2R KO mice pro-
duced a moderate improvement in wakefulness and suppression
of nREM, whereas the stimulation of OX2R in OX1R KO mice
resulted in a greatly enhanced wakefulness (Mieda et al., 2011).
This suggests that OX1R plays an important role in suppressing
the instigation of nREM sleep, while OX2R has a major role in
promoting wakefulness.

In another direction, overexpression of components of the
orexinergic system also disrupts the SWC. For example in the
zebrafish, overexpression of orexinergic neurons has been shown
to induce an insomnia-like phenotype (Prober et al., 2006).
Mice that overexpress prepro-orexin display sleep abnormalities
which include fragmentation of nREM sleep, reduced REM sleep,
and increased motor activity during REM sleep, suggesting an
inability to maintain sleep states (Willie et al., 2011).

Table 2 | Summary of orexin receptor antagonists.

Name Affinity (Ki, nM) Possible

applications
OX1R OX2R

SINGLE OREXIN SELECTIVITY

RECEPTOR ANTAGONIST

SB-334867 28 1704 OX1R Withdrawal,
substance
abuse, obesity,
panic disorder

SB-408124 22 1405

SB-674042 1.1 129

ACT-335827 6 417 (IC50)

TCS-OX2-29 – 7.4 (pKi) OX2R Sleep promotion

JNJ-10397049 1644 6

EMPA 900 1.1

Antagonist 26 6.34 7.23 (pKi)

DUAL OREXIN FDA PHASE

RECEPTOR ANTAGONIST

Almorexant 13 8 III (discontinued) Treatment of
insomniaSB-649868 0.3 0.4 II (completed)

Suvorexant 0.6 0.4 III (pending
approval)

MK-6096 2.5 0.3 – –

DORA 30 18 7 (IC50) – Sleep promotion

If we take into consideration that the activation of the orexin-
ergic system promotes wakefulness and that its disruption brings
about sleep disturbances, orexin antagonists could offer a very
effective therapeutic alternative for insomnia.

OREXIN ANTAGONISTS FOR TREATING INSOMNIA
The newest molecules in the pipeline for the treatment of insom-
nia are orexin antagonists. There are many orexin antagonists
currently being studied for the treatment of insomnia and they
fall into one of two categories: single orexin receptor antagonists
(SORAs) and dual orexin receptor antagonists (DORAs).

In the following part of this review, we evaluate the effective-
ness of these drugs for the treatment of insomnia. A summary of
orexin antagonists is provided in Table 2.

SORAs
Evidence from experiments conducted in transgenic models of
orexin receptor KO mice suggests that SORAs targeting OX1R will
not promote sleep as effectively as those aimed at OX2R.

OX1R
Of the available SORAs, SB-334867 was the first drug designed
to selectively antagonize OX1R (Smart et al., 2001). This SORA
is able to counteract the suppression of REM sleep after ICV
infusion of OXA in rats. However, it does not decrease wakeful-
ness, or increase the amount of time spent in sleep, nor does
it reduce sleep latency by itself at any given dose (Smith et al.,
2003). Morairty and colleagues, later noted that SB-334867 at 3
and 30 mg/kg increased cumulative nREM during the first 4 and
6 h following administration (Morairty et al., 2012). SB-334867
is classified as a selective OX1R antagonist, but unspecific bind-
ing to adenosine and serotonin receptors has been reported; it
also affects monoamine and norepinephrine transporters at high
concentrations (Lebold et al., 2013).

Although the effect of SB-334867 on sleep induction was poor,
this molecule has proven to be useful for the treatment of other
conditions, such as substance abuse, withdrawal, obesity and
panic disorder (White et al., 2005; Johnson et al., 2010; Jupp et al.,
2011; Smith and Aston-Jones, 2012).

Other selective OX1R antagonists include SB-408124, SB-
674042 and the newest AK-335827. So far, neither SB-408124 nor
AK-335827 have been found to promote sleep (Dugovic et al.,
2009; Steiner et al., 2013). In the case of SB-408124 however,
insufficient brain penetration was found and this could account
in part for the absence of observable effects (Morairty et al.,
2012).

There are few studies characterizing the effect of these antago-
nists; nonetheless, there is some evidence that they can be useful
in the treatment of substance abuse and withdrawal, and have
potential for treating obesity and panic disorder. For example, it
has been shown that subcutaneous administration of SB-408124
lowers the release of dopamine in the nucleus accumbens (Dugovic
et al., 2009), and orally administered AK-335827 has anxiolytic
effects (Steiner et al., 2013).

It is interesting that despite the lack of sleep-promoting effects
of OX1R SORAs on their own, these compounds have the capac-
ity to thwart the sleep inhibiting effects of ICV orexin infusion
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(Smith et al., 2003). Strikingly, they can also reduce the sleep-
promoting effects of other antagonists; as observed under the
coadministration of OX1R and OX2R antagonists which has a
milder sleep-promoting effect than when the OX2R antagonist is
administered by itself (Dugovic et al., 2009). This could be due
to the high concentrations used in these experiments (30 mg/kg)
and the unspecific binding that follows.

OX2R
Type 2 orexin receptors are selectively expressed both in the PVN
and the TMN. As mentioned above, the PVN is part of the
HPA, and the overactivation of the HPA has been proposed to
be involved in the etiology of PI. Withholding the orexinergic
stimuli to the HPA could help prevent the development of the
vicious cycle proposed earlier. Additionally, the TMN, a histamin-
ergic nucleus, has a major role in the arousal effect observed after
orexinergic stimulation (Huang et al., 2001). Inhibition of the
TMN with orexinergic antagonists could, facilitate the induction
of sleep by allowing the sleep promoting nuclei to prevail.

OX2R antagonists are less common than the other classes.
Among the few available molecules that have been studied in
the context of sleep promotion are EMPA, TCS-OX2-29 and
JNJ-10397049. These antagonists have been more successful at
diminishing wakefulness than OX1R antagonists.

EMPA is the least effective sleep-promoting OX2R SORA stud-
ied. While intraperitoneal administration of EMPA (100 mg/kg)
has been shown to selectively increase cumulative nREM sleep
during the first 4 and 6 h after administration, these increases
are not accompanied by any significant increase in REM sleep
or reduction in latencies for either sleep stage (Morairty et al.,
2012). On the other hand, rats that received an ICV infusion
of TCS-OX2-29 (40 nmol) increased their total sleep time by
7% in comparison to controls that received saline infusions.
Interestingly, this effect was secondary to a selective increase in
REM sleep (Kummangal et al., 2013).

Intraperitoneal administration (5, 25 or 50 mg/kg) of JNJ-
10397049 6 h into the dark phase, produced a robust increase in
total sleep time, traced to increases in both REM and nREM sleep
(Gozzi et al., 2011). Similar results have been observed with sub-
cutaneous injections (Dugovic et al., 2009). Starting at doses of
3 mg/kg, administration of JNJ-10397049 2 h into the light phase
significantly decreased the latency to nREM sleep while increasing
the length of each bout. At higher concentrations (30 mg/kg), this
drug also induced a decrease in REM sleep latency without notice-
able changes in its duration. Overall, 3 mg/kg of JNJ-10397049
increased total sleep time by 42% while keeping the proportion of
nREM/REM sleep observed in vehicle treated animals.

Furthermore, microdialysis assays showed that this compound
reduces histamine release in the LH (Dugovic et al., 2009). As
mentioned earlier, release of histamine in the TMN is fundamen-
tal for the wake-promoting effects of OXA ICV infusions (Huang
et al., 2001).

Animal studies support the notion that OX2R antagonists are
helpful as sleep inducing agents. Further research is needed to
determine the degree of sleep generation achieved by these com-
pounds in different species, including humans. It is possible that
the sleep-promoting effect of selectively antagonizing OX2R is less

pronounced than the one observed with DORAs, but it may also
be more specific, which would be worth investigating.

DORAs
It had been long suspected that antagonizing both orexin recep-
tors would elicit the most powerful sleep-promoting effects;
therefore, many of the studies around orexin antagonists have
focused on DORAs. So far, evidence has proven this to be the case
(Morairty et al., 2012), to the point that DORAs are the only
orexin antagonists currently undergoing clinical trials in the hope
that they will be approved by the FDA for the treatment of
insomnia.

Almorexant
ACT-078573 (almorexant) is the most widely studied DORA and
one of the first to enter phase III clinical trials (NCT00608985).

In wild type mice, the administration of almorexant 15 min
before lights-out reduced the amount of time spent awake, while
increasing the length of nREM and REM sleep bouts in a dose
dependent manner (Mang et al., 2012). Notably, the proportion
of REM sleep observed after almorexant administration during
the dark phase was in the range of that observed during the light
phase with vehicle treatment.

Further studies in KO mice determined that the sleep-inducing
effect of almorexant was related to the stimulation of OX2R and
not OX1R. This conclusion was reached after the authors did
not observe any changes in the amount of sleep in OX2R KO,
but did for OX1R KO mice. Interaction with sites other than
orexin receptors that could account for the changes in sleep times
was discarded when no changes were observed in the SWC of
DKO mice.

When administered in healthy humans, almorexant was well
tolerated. Doses of and above 200 mg elicited decreased alert-
ness, with increased reports of fatigue, drowsiness, sleepiness, and
sleep efficiency, measured as an increase in SWS and REM sleep
(Brisbare-Roch et al., 2007). In PI patients, it proved to be effec-
tive for boosting sleep, increasing total sleep time, and reducing
both REM sleep latency and the frequency of awakening (Hoever
et al., 2012). This effect was dose dependent, with the most noto-
rious effect on sleep architecture achieved at doses of 400 mg;
doses of 100 and 200 mg had modest effects on sleep, with fewer
adverse effects (e.g., headache, dizziness, blurred vision).

Although almorexant appeared to be well tolerated, the phar-
maceutical companies sponsoring this drug discontinued the
clinical trials in 2011 citing “safety observations” that required
further evaluation. Currently, almorexant is in a new phase
of clinical trials in order to evaluate its effect on cognitive
performance (NCT01243060).

SB-649868
SB-649868 is a potent orally active DORA manufactured by the
same pharmaceutical company as almorexant. There is also evi-
dence for the effectiveness of SB-649868 in promoting sleep, both
in animal studies and human trials.

When dispensed to rats, it elicited an increase in total sleep
time (related to increases of both nREM and REM sleep) and
reduced sleep latencies at doses of 10 and 30 mg. Moreover, the
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effect of SB-649868 on motor coordination was null, given that
the rotarod model of coordination failed to reveal any motor
impairment in rats treated with this compound, even when the
orexin antagonist was administered concurrently with ethanol
(Di Fabio et al., 2011). Compared to almorexant, the in vivo effi-
cacy of this compound is excellent, thus it has been moved on to
clinical trials.

The administration of SB-649868 to healthy volunteers who
participated in a noise-disturbed sleep study showed that this
compound is effective at inducing somnolence and fatigue at 10
and 30 mg doses (Bettica et al., 2012). Furthermore, patients diag-
nosed with PI reported that SB-649868 significantly improved
the quality of sleep (10, 30, and 60 mg) while objectively increas-
ing total sleep time, reducing sleep latency and suppressing
nighttime awakenings (Bettica et al., 2012). During this study,
the most common complaints were headaches, dry mouth and
nasopharyngitis; the number of complaints increased in a dose
dependent manner. Phase II clinical trials of SB-649868 have been
completed (NCT00426816).

Suvorexant
Another promising DORA is the potent MK-4305 (suvorexant),
a compound variation from the diazepane series. Animal studies
have shown that suvorexant reduces active wake time by increas-
ing nREM and REM sleep in rats, dogs, and monkeys (Winrow
et al., 2011). In all cases, these effects were achieved at much lower
doses (10 mg) than with almorexant.

This molecule is also in phase III clinical trials (NCT01097616)
and is currently under evaluation for approval by the FDA. In
healthy humans, the lowest dose (10 mg) reduced the number
of awakenings after sleep onset; and at higher doses (50 mg) it
reduced sleep latency, while increasing sleep efficiency and total
sleep time (Sun et al., 2013). High doses (50 and 100 mg) elicit
undesirable side effects such as an increase in reaction time,
difficulty waking up and reduced alertness following awaken-
ing; in addition it leads to mild complaints of headaches and
somnolence.

When administered to PI patients, suvorexant reduced sleep
latency and increased the time patients spent asleep after a sin-
gle administration without reducing the number of awakenings
after sleep onset. The increase in total sleep time was mostly
attributable to an increase in REM sleep. The most frequent
adverse effects were somnolence, headaches, dizziness and abnor-
mal dreams, all of which occurred in a dose dependent manner.
In addition, there were no next-day residual effects, no rebound
insomnia, complex sleep-related behaviors or withdrawal effects
after 4 weeks. Instead, during this study there were a few reports
of sleep paralysis (1, n = 59, at 40 mg), and at high doses (80 mg),
excessive daytime sleepiness (1, n = 61), and hypnagogic hallu-
cinations (1, n = 61) (Herring et al., 2012). These are symp-
toms of narcolepsy, and should be carefully monitored due to
the close association between narcolepsy and the orexinergic
system.

In general, suvorexant was well tolerated and, because the most
consistently effective dosages were 30 and 40 mg, the pharmaceu-
tical company manufacturing suvorexant submitted a dose range
of 15–40 mg for FDA approval. To date, suvorexant has not been

approved and the FDA has requested a lower starting dose of
10 mg for the general population and a 5 mg dose for those taking
concomitant CYP3A4 inhibitors.

One potential advantage of DORAs over classic insomnia
treatments, such as BZDs, is the possibility of inducing a more
physiological sleep. For instance, while DORAs enhance REM
sleep, BZDs have proven to suppress this sleep stage (Lanoir and
Killam, 1968; Borbély et al., 1985; Gaillard et al., 2009). In addi-
tion, orexin antagonists appear to have a better side effect profile,
with mild complaints of headaches and dizziness being the most
common. The only exception appears to be almorexant, given the
surprising suspension of clinical trials. Although the reasons for
halting clinical trials have not been disclosed to the public, it is
conceivable that the high doses required to achieve therapeutic
effects could also cause more severe adverse effects, not observed
in other drugs that require doses 10 times smaller.

One of the most important questions when characterizing an
orexin antagonist is whether or not it elicits narcoleptic symp-
toms. Thus far, orexin antagonists have not been observed to
cause cataplexy in animal models or in human patients. Up until
now, reports of human patients complaining of sleep paralysis
or hypnagogic hallucinations have been scarce, only occurring
with high doses of suvorexant. As clinical trials progress, med-
ical practitioners should still be on the alert for symptoms of
narcolepsy.

DISCUSSION
The research and evaluation of new insomnia treatments is often
complex, given that insomnia is usually of multifactorial etiology.
Understanding the molecular and receptor mechanisms involved
in promoting sleep in a variety of disorders could provide future
approaches to new drug development.

An abundance of current research data has demonstrated the
importance of the orexin system in the regulation of the SWC.
Excitement over the potential of orexin receptor antagonists for
treating insomnia peaked in 2007 when Actelion Pharmaceuticals
Ltd. revealed that almorexant significantly decreased wakeful-
ness in rats, dogs and humans, without evidence of cataplexy;
unfortunately, clinical trials were discontinued in 2011 due to
safety concerns that required further evaluation. Second gen-
eration inhibitors with improved pharmaceutical properties are
currently being developed and tested for the potential treatment
of insomnia and other disorders linked to dysfunction in the
orexin system.

Orexin antagonism may offer improved avenues for com-
bining medications with non-drug treatments such as CBTi
for insomnia. However, more randomized controlled trials are
needed to assess both the short- and long-term effects of these
medications, as well as their efficacy in comorbid diseases that
affect the quality and quantity of sleep.
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