
REVIEW ARTICLE
published: 12 February 2014

doi: 10.3389/fphar.2014.00016

Hypocretin (orexin) regulation of sleep-to-wake transitions
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The hypocretin (Hcrt), also known as orexin, peptides are essential for arousal stability.
Here we discuss background information about the interaction of Hcrt with other neu-
romodulators, including norepinephrine and acetylcholine probed with optogenetics. We
conclude that Hcrt neurons integrate metabolic, circadian and limbic inputs and convey
this information to a network of neuromodulators, each of which has a different role on the
dynamic of sleep-to-wake transitions. This model may prove useful to predict the effects
of orexin receptor antagonists in sleep disorders and other conditions.
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INTRODUCTION
Transitions between states of vigilance have long been associ-
ated with changes in cortical excitability associated with changes
in the activity of monoamines and neuromodulators (Steriade,
2003). Steriade and McCarley (1990), Steriade et al. (1993),
Steriade (2003) performed intracellular recordings of cortical
neurons in different brain states and proposed that the con-
certed activity of norepinephrine, histamine, acetylcholine, and
glutamate was sufficient to induce a sleep-to-wake transition.
However, the mechanisms underlying the precise coordina-
tion of sleep states have remained poorly understood. The
discovery of the hypocretins (Hcrts), also known as orex-
ins, has provided a missing link in the regulation of states of
vigilance.

THE HYPOCRETINS/OREXINS: CRITICAL REGULATORS OF AROUSAL
STABILITY
Soon after their discovery in 1998 (de Lecea et al., 1998; Saku-
rai et al., 1998), two groups described the association between
Hcrt deficiency and the sleep disorder narcolepsy (Chemelli
et al., 1999; Lin et al., 1999; Nishino et al., 2000, 2001; Peyron
et al., 2000; Thannickal et al., 2000). Several studies have shown
that the Hcrt knockout (KO) or Hcrt-R2 deficient (Mochizuki
et al., 2011) mice have normal amounts of sleep and wakefulness
across the light/dark cycle (Mochizuki et al., 2004) but exhibit
an increased instability of behavior states. Dogs with muta-
tions in Hcrt R2 exhibit narcolepsy with cataplexy (Lin et al.,
1999). Patients that suffer from narcolepsy with cataplexy have
very low levels of Hcrt-1 in their CSF (Nishino et al., 2000;
Peyron et al., 2000; Thannickal et al., 2000). These deficits are
likely caused by selective degeneration of Hcrt cells (rather than
down regulation of the Hcrt gene) because other markers that
colocalize with Hcrt are also reduced in narcoleptic patients
(Crocker et al., 2005). Indeed, a recent study has revealed epi-
topes in the Hcrt precursor sequence that trigger activation of

CD4 T-cells (De la Herran-Arita et al., 2013). All of these data
clearly demonstrate that Hcrt signaling is necessary for arousal
stability.

The first recordings of Hcrt neurons in vitro indicated that
these cells are spontaneously active and responsive to multiple
stimuli. Studies by Fujiki et al. (2001) using microdialysis and
Estabrooke et al. (2001) using c-fos mapping revealed a circa-
dian modulation of Hcrt peptide concentration in brain tissue.
Parallel studies using juxtacellular recordings in head-fixed or
freely moving animals showed that, surprisingly, Hcrt activ-
ity is mostly phasic, and precedes sleep-to-wake transitions by
10–20 s (Lee et al., 2005; Mileykovskiy et al., 2005). The ques-
tion remained as to whether this phasic activity of Hcrt neurons
was permissive or instructive for awakenings. In the first in vivo
application of optogenetics in behaving animals, Adamantidis
et al. (2007) found the photostimulation-induced activation of
Hcrt neurons specifically increases the probability of transitions
from sleep to wake (Adamantidis et al., 2007). This induction
was frequency-dependent as only frequencies > 5Hz increased
awakening probability. Semi-chronic stimulation of Hcrt neu-
rons did not result in significant increases in the amount of
non-rapid eye movement (NREM) sleep suggesting that pha-
sic activation of Hcrt cells is involved in the transition to wake,
but not in wake maintenance. Optogenetic silencing of Hcrt
neurons induces sleep during the light phase, but not during
the dark phase (Tsunematsu et al., 2011). These findings were
further validated using a newly developed pharmacogenetic tech-
nology designer receptors exclusively activated by designer drugs
(DREADDs; Sasaki et al., 2011) that allows the modulation of
neural activity with temporal resolution of several hours. There-
fore, the Hcrt system acts as a regulator of behavior states by
modulating the arousal threshold (Sutcliffe and de Lecea, 2002),
so that the organism can keep appropriate and adequate wake-
fulness to cope with fluctuations of the external and internal
environments.
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Then, does the existence of two subtypes of receptors account
for these two aspects of functions of Hcrt? Hcrt-R2 deficient
mice display fragmented wakefulness similar to the narcoleptic
phenotype whereas Hcrt-R1-knockout mice only show a mild
sleep disorder (Willie et al., 2001; Mieda et al., 2011). However,
the double Hcrt-R1 and Hcrt-R2 receptor knockout mice suffer a
more severe deficit in sleep–wake cycle than Hcrt-R2-knockouts,
which exhibit a low degree of cataplexy and rapid eye move-
ment sleep (REM) sleep intrusion (Chemelli et al., 1999; Willie
et al., 2003; Mieda et al., 2011). Therefore, both the Hcrt-R1
and Hcrt-R2 are essential in the process of keeping a stable
sleep/wakefulness cycle, with a larger contribution of Hcrt-R2. On
the other hand, a recent study revealed that the Hcrt-1-mediated
promotion of wakefulness was attenuated in both Hcrt-R1 and
Hcrt-R2-knockout mice, and both receptors seem to be associated
with the suppression of REM sleep (Mieda et al., 2011). However,
a recently functional magnetic resonance imaging (fMRI) study
revealed that the antagonist of Hcrt-R2 but not Hcrt-R1 increased
REM, non-REM and total sleep-time, suggesting the distinct roles
of the two receptors (Gozzi et al., 2011). Also, the recent develop-
ment of Hcrt receptor selective antagonists showed that Hcrtr-1
blockade attenuates Hcrt-R2 antagonism and revealed complex
interactions between Hcrt-R1 and Hcrt-R2 (Dugovic et al., 2009).
Selective and non-selective Hcrt receptor antagonists have recently
completed Phase III clinical trials for the treatment of insom-
nia (Herring et al., 2012), a remarkable development from a gene
product discovered only 15 years ago.

AFFERENTS TO HCRT NEURONS
Anatomical and electrophysiological evidence accumulated over
the last decade has shown that at least 10 other transmitters
and hormone are sensed by Hcrt cells (Inutsuka and Yamanaka,
2013). Most notably, NE, 5HT, NPY, CCK, ghrelin, nicotinic, and
muscarinic acetylcholine, AMPA, NMDA Glutamate, GABAa, and
GABAb receptors are expressed by Hcrt cells (Sakurai, 2007). In the
absence of co-localization studies, it is assumed that most of these
receptors are randomly distributed within the Hcrt population.
Thus, as a network, Hcrt neurons receive information about the gen-
eral excitability and arousal (Glu, GABA, ACh, NE, 5HT), feeding
and metabolic state (NPY, Ghrelin, Leptin, and CCK). Interestingly,
Hcrt neurons may change their sensitivity to NE after sleep depri-
vation (Grivel et al., 2005), thus providing a mechanism through
which Hcrt cells sense previous sleep history and homeostatic bal-
ance. Anatomical afferents have revealed several key areas that
send axons to Hcrt cells (Sakurai et al., 2005; Yoshida et al., 2006)
including the bed nucleus of the stria terminalis, the amygdala,
and the medial septum, supporting a role of the limbic system in
regulating Hcrt responses.

EFFECTORS OF HCRT NEURONS: THE MONOAMINES
The flip/flop model of sleep–wake cycle (Saper et al., 2010) posits
that monoamines stimulate neocortical neurons and inhibit sleep
centers to promote wakefulness. Importantly, these monoamin-
ergic neurons in tuberomammillary nucleus (TMN, Histamin-
ergic), locus coeruleus (LC, noradrenergic), dorsal raphe nuclei
(DRN, serotoninergic), ventral periaqueductal gray matter (vPAG,
dopaminergic) receive dense projections of Hcrt neurons (Peyron

et al., 1998; Saper et al., 2005), consist with the distribution of
HcrtRs (Marcus et al., 2001). LC neurons mainly express Hcrt-R1,
TMN neurons mostly Hcrt-R2 whereas DRN express both Hcrt-
R1 and Hcrt-R2. Moreover, Hcrt neurons exhibit parallel firing
patterns with monoaminergic neurons that represent tonic firing
during wakefulness especially during active wakefulness, mild fir-
ing during slow wave sleep, and then silent during REM sleep
(Estabrooke et al., 2001; Lee et al., 2005; Mileykovskiy et al., 2005),
except its intensive firing at the transition to wakefulness. These
data are also consistent with the oscillation of extracellular Hcrt-
1 concentration that peak during the waking state and fall down
to about half their max levels during sleep (Yoshida et al., 2001;
Zeitzer et al., 2003). These observations suggest that Hcrt system
stabilizes wakefulness through driving the arousal system during
the arousal state (Saper et al., 2010).

Indeed, in vitro electrophysiological studies showed that Hcrt
activates the TMN histaminergic (Bayer et al., 2001; Eriksson et al.,
2001; Huang et al., 2001; Schone et al., 2012), LC noradrenergic
(Hagan et al., 1999) and DRN serotoninergic (Liu et al., 2002) neu-
rons, and in vivo experiments revealed the involvement of LC and
the Hcrt-R1 in LC (Bourgin et al., 2000), as well as the histamine
1R (H1R; Huang et al., 2001) and the Hcrt-R2 signaling in TMN
(Mochizuki et al., 2011) in Hcrt-induced arousal (Schone et al.,
2012). However, recent reports found that Hcrt-mediated sleep-
to-wake transition in mice did not depend on the histaminergic
system (Carter et al., 2009a) and the mice could display a normal
sleep/wake pattern in the condition that both H1R and Hcrt-R1 are
deficient (Hondo et al., 2010). The role of Histaminergic cells may
be more related to maintenance of the awake state, as histamine-
deficient HDC knockout mice only show decreased arousal in new
environments

Moreover, Lu and Greco (2006) demonstrated that loss of
dopaminergic neurons in vPAG, a rostral extension of the ven-
tral tegmental area (VTA), results in a reduction of wakefulness
by 20% accompanied by increase of NREM, REM sleep. This
finding is supported by a recent report (Kaur et al., 2009) that
identified the Hcrt -vPAG circuit, whose activity suppresses REM
sleep but not non- REM sleep. On the other hand, Hcrt neu-
rons receive inhibition innervation from noradrenergic (Li et al.,
2002), serotoninergic (Yamanaka et al., 2003; Kumar et al., 2007)
and dopaminergic (Yamanaka et al., 2006) inputs whereas the his-
tamine has little, if any, effect (Yamanaka et al., 2003). The role
of noradrenergic innervation to Hcrt cells remains controver-
sial, as some reports show excitatory effects in rats and others
demonstrate inhibitory action (Grivel et al., 2005).

Cholinergic neurons in pedunculopontine tegmental nucleus/
laterodorsal tegmental nucleus (PPT/LDT) fire most rapidly dur-
ing wakefulness and REM sleep but slowly during NREM sleep
(Saper et al., 2005), suggesting that they help to maintain the
cortical activation in the states of wakefulness and REM sleep.
Application of Hcrt-1 into LDT results in a significant increase
of wakefulness but a decrease of amount rather than the dura-
tion of REM sleep (Xi et al., 2001). In vitro studies have shown
that carbachol, a cholinergic agonist, excites Hcrt neurons (Bayer
et al., 2005). In addition, intracerebroventricular (ICV) admin-
istration of Hcrt -1 (Piper et al., 2000) or local application into
the LC (Bourgin et al., 2000) basal forebrain (Espana et al., 2001;

Frontiers in Pharmacology | Neuropharmacology February 2014 | Volume 5 | Article 16 | 2

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


de Lecea and Huerta Hypocretins in arousal transitions

FIGURE 1 |Time series of in silico conductance-based models of Hcrt

and LC neurons. During sleep, both Hcrt and LC neurons are relatively
quiescent. Once Hcrt neurons have integrated all of their inputs, including
metabolic, circadian, and limbic states, they initiate a train of spikes (here
mimicked by a virtual stimulation) that release glutamate and eventually
Hcrt on post-synaptic neurons. This model is made of 40 neurons using the
same conductance-based model published in (Carter et al., 2012).
Excitability of Hcrt and LC neurons in this model was modified by using the
Vt value −52 mV and is regulated by randomly selecting the Vt values
centered at −52.0 mV using a Gaussian process with standard deviation of
1 mV. HCRT neurons are stimulated during 10 s with a 5 pA current as
indicated by a blue straight line on the left hand side. Glutamate release
elicits a slow depolarization on LC neurons, and cumulative release of Hcrt
reaches a threshold that results in a train of spikes of LC neurons. Three
maximal currents elicited by HCRT receptors into the LCs are used: 20, 25,
and 30 pA. The delayed excitability of LC neurons is very sensitive by only
modifying the peak current by 10%. The dotted blue line indicates when the
HCRTs start to be stimulated. This model is a simplification because it
ignores the effect of regulatory inhibitory neurons widely present in
hypothalamic circuits. Further work should show the stabilization of the
LCs by using GABAergic circuits. Carter et al. (2010) demonstrated that
subtle stimulation of LC neurons, reaching 20 pulses in 5 s,
deterministically results in an awakening.

Thakkar et al., 2001), lateral preoptic area (Methippara et al., 2000)
increases the waking time at the expense of sleep. In summary,
Hcrt-induced arousal is modulated not only by monoaminergic
neurons, but also needs the participation of cholinergic neurons
in the PPT/LDT and basal forebrain.

Importantly, the Hcrt system may be modulated by the cir-
cadian clock and homeostatic states (Deboer et al., 2004; Carter
et al., 2009b; Appelbaum et al., 2010). Even though there is no
evidence of a direct synaptic connection between the Suprachi-
asmatic nucleus (SCN) and Hcrt cells, the circadian clock drives
Hcrt system through the output circuits of the Suprachiasmatic
nucleus (SCN) (Deurveilher and Semba, 2005). The internal clock
molecular machinery in Hcrt neurons (i.e., per, CLOCK, BMAL1,
etc.) may also influence neuronal excitability during the light/dark

cycle, effectively integrating circadian cues without direct Suprachi-
asmatic nucleus (SCN) connectivity. Additionally, local modulation
of Hcrt neurons by Hcrt release (Li et al., 2002; Yamanaka et al.,
2010), melanin-concentrating hormone (MCH; Rao et al., 2008;
Hassani et al., 2009) or LepRB neurons (Leinninger et al., 2011)
may also be important in the circadian stabilization of proper
sleep–wake cycle. Intrinsic plasticity mechanisms may regulate
the firing probability of Hcrt cells during day and night (Appel-
baum et al., 2010). During the wakefulness period, tonic excitation
of Hcrt neurons may be enhanced when the organism faces cer-
tain stressors like emotional stimulation, which involves the limbic
input (Tsujino and Sakurai, 2009). Horvath and Gao (2005) pro-
posed that plasticity mechanisms in Hcrt cells are critical players in
the connection between arousal, metabolism, and brain reward func-
tion. Adamantidis and de Lecea (2008a,b) have suggested that Hcrt
exerts different functions on different timescales: phasic activ-
ity lasting 1–10 s that would be mostly responsible for the state
transitions, and a clock-regulated oscillation that would encode
superimposed information about metabolic and circadian state.

TRANSLATIONAL CONSIDERATIONS
The Hcrt system has been involved in a myriad of pathological pro-
cesses, including Parkinson’s (PD; Drouot et al., 2003; Asai et al.,
2008; Baumann et al., 2008; Fronczek et al., 2008), Alzheimer’s
(AD; Kang et al., 2009; Scammell et al., 2012), anxiety and panic
disorders (Johnson et al., 2010) and depression (Salomon et al.,
2003; Borgland and Labouebe, 2010). The mechanisms of these
associations vary broadly, particularly in the neurodegenerative
diseases. For instance, some studies have shown that a Hcrt recep-
tor antagonist can reduce plaque formation in animal models of
AD. However, other reports have shown the same prevalence of
AD in narcoleptics and control patients. The role of Hcrt in panic
and anxiety may be mediated through several of its connections to
the paraventricular hypothalamus and brainstem nuclei. Similarly,
the projections of Hcrt cells to serotonergic dorsal raphe neurons
and periaqueductal gray suggest a possible mechanism of modu-
lation of 5HT release and mood. Hcrt R1 knockout animals and
pharmacological inhibition reduces time of immobility in the tail
suspension test (Scott et al., 2011). In contrast, Hcrt r2 knockout
animals showed increased despair. Future development of Hcrtr1
selective antagonists may thus proof useful in the treatment of
depression.

OUTPUT OF HCRT NEURONS
Peyron et al. (1998) described a broad distribution of Hcrt fibers
throughout the brain. Very few Hcrt projections have been
studied in detail. The LC receives a very dense network of Hcrt-
immunopositive axon terminals, and the connectivity between
Hcrt and LC neurons has been shown to be monosynaptic.
Recently, Carter et al. (2012) have suggested a conductance-based
computational model by which a short (> 10 s) period of phasic
Hcrt activity enhances the excitability of post-synaptic LC neurons
through conductances that elevate the concentration of intracellular
calcium (Figure 1). Hcrt action on post-synaptic targets is remark-
ably slow (Burlet et al., 2002; Kohlmeier et al., 2008), lasting several
seconds, a dynamic that is consistent with the wake latencies observed
after optogenetic stimulation of Hcrt cells in vivo (Mileykovskiy et al.,
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FIGURE 2 | An overall schematic of neuromodulators involved in

sleep/wake transitions. Hcrt neurons play a central role in integrating
information from metabolic state [as demonstrated by numerous authors,
see Yamanaka et al. (2003)], stress (Winsky-Sommerer et al., 2004) and
circadian factors. Additional neuronal groups may be involved in integrating
other physiological variables [e.g., LepRB neurons; (Louis et al., 2010)]. If
physiological variables favor sleep (i.e., appropriate circadian time, strong
sleep pressure, low energy demands), Hcrt neurons are silent, and this
would be interpreted by cortical circuits as a signal of sleep maintenance
(Morairty et al., 2013). Otherwise, Hcrt neurons send information to a
network of arousal systems, each of which has a different role in
establishing the dynamic of an awakening. For instance, increased
dopaminergic tone results in increased theta activity, which depending on
other conditions may be sufficient to induce an awakening (Vetrivelan et al.,
2010). Similarly, cholinergic neurons provide significant excitability and
gamma rhythms to cortical neurons (Simon et al., 2010). Serotonin neurons
are not particularly efficient at eliciting sleep-to-wake transitions, but are
essential gatekeepers of REM sleep (Monti, 2010a). Histamine neurons
provide pacemaking signals to sleep and wake duration (Lin et al., 2011).
Norepinephrine neurons in the LC have long been shown to provide diffuse
excitatory input to the neocortex and efficiently promote awakenings
(Carter et al., 2010, 2012). Combinatorial action of neuromodulators (e.g.,
increased cholinergic tone, decreased serotonin, etc) may predispose the
neocortex to undergo a state transition. Hcrt thus is a powerful orchestrator
of all these players in the dynamic of sleep/wake cycles.

2005). Release of Hcrt, either synaptic or extrasynaptic, increases the
excitability of LC neurons. Since optogenetic studies have showed
that only a few light pulses (∼20) to LC neurons are sufficient
to induce behavioral sleep-to-wake transitions, mild excitation of
LC neurons by other afferents within ∼10 s of Hcrt-enhanced
excitability would reach the threshold of an awakening with high
probability (Figure 1).

In addition to the LC, alternative pathways such as dopamin-
ergic, serotonergic or cholinergic systems also result in enhanced
probability of arousal (Figure 2). Slow dynamics of neuromod-
ulators (between 1 and 30 s) are consistent with a behavioral
state transition that needs time to integrate and decide the most
physiologically sensible solution. Hcrt neurons integrate multi-
ple variables from circadian, metabolic and limbic structures.
This integration is non-redundant, as Hcrt dysfunction results in
uncoordinated intrusions of sleep into wakefulness associated with
narcolepsy. However, other redundant integrators may exist (e.g.,
GABAergic systems in the lateral hypothalamus including Leptin-
sensitive neurons). Information from the integrating systems is

conveyed into an array of systems that have different roles in the
dynamics of sleep to wake transitions. For instance, high seroton-
ergic tone inhibits REM sleep (Monti, 2010b). Histamine neurons
in the TMN fire during waking and set the length of wake bouts.
Cholinergic neurons in the basal forebrain (Arrigoni et al., 2010)
and dopaminergic cells provide direct innervation to the neo-
cortex, whereas norepinephrine is a powerful arousal-promoting
factor as described above. It is noteworthy that Hcrt neurons are
silent during REM sleep, as it suggests that activation of Hcrt neu-
rons is dispensable for cortical desynchronization and cholinergic
excitation. Also, the fact that Hcrt stimulation suppresses REM
sleep suggests several possible mechanisms: (i) direct excitation of
serotoninergic neurons in the raphe; (ii) a state-dependent modu-
lation of cholinergic activity; (iii) reciprocal excitation/inhibition
of MCH neurons recently shown to be involved in REM sleep
maintenance. Thus, we underscore the relevance of Hcrt neurons
in coordinating arousal centers as key elements of a switch-
board, not master switches as has been proposed elsewhere in
the literature. Future use of optogenetic and other state-of-the
art methods to interrogate combinations of neuromodulators
will provide a much more detailed mechanistic description of
the role of Hcrt and effectors in the modulation of sleep/wake
cycles.
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