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Mitochondrial ferritin (FtMt) is a novel iron-storage protein in mitochondria. Evidences
have shown that FtMt is structurally and functionally similar to the cytosolic H-chain
ferritin. It protects mitochondria from iron-induced oxidative damage presumably through
sequestration of potentially harmful excess free iron. It also participates in the regulation
of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously
expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its
tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its
increased expression has been observed in Alzheimer’s disease, restless legs syndrome
and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease,
FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other
hand increased significantly when FtMt expression was knocked down. It is also found that,
by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine
induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt
regarding its functions in regulation of brain iron homeostasis and its protective role in
pathogenesis of neurodegenerative diseases are summarized and reviewed.
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INTRODUCTION
Iron is an essential trace element for human health. In the brain,
iron homeostasis is stringently regulated at three levels: organ,
cellular, and subcellular, with different key regulatory molecules
involved in each level. Dysregulation of brain iron homeosta-
sis can lead to severe pathological changes in the neural system.
For example, iron deficiency can slow down the development of
neural system and cause language and motion disorders (Lozoff
et al., 2000; Siddappa et al., 2004), while iron overload is closely
related to neurodegenerative diseases (Zecca et al., 2004; Berg
and Hochstrasser, 2006; Lee et al., 2006). The newly reported
iron-storage protein, mitochondrial ferritin (FtMt) that locates
in the mitochondria, possesses high homology to H-ferritin
(Levi et al., 2001). It was reported that FtMt plays an impor-
tant role in the regulation of cellular iron homeostasis (Corsi
et al., 2002; Drysdale et al., 2002; Cazzola et al., 2003). Over-
expression of FtMt affects iron homostasis and changes iron
distribution between cytosol and mitochondria contents, and
leads to cytosolic iron depletion (Corsi et al., 2002; Nie et al.,
2005). In some neurodegenerative diseases characterized by iron
overload, including Alzheimer’s disease and Parkinson’s disease
(PD), increased expression of FtMt was observed (Shi et al., 2010;
Wu et al., 2013). FtMt has a tissue-specific expression pattern
and is rich in tissues with high metabolic activity, which is
regarded as functionally important (Drysdale et al., 2002; Levi
and Arosio, 2004). Evidences have shown that FtMt acts as a
protective agent of neurons that maintains their normal func-
tions and controls their apoptosis (Shi et al., 2010; Wang et al.,
2011; Wu et al., 2013). Some of the molecular mechanisms under-
lying these protective functions were revealed recently, which

provided insights into the pathogenesis of neurodegenerative
diseases and may help the development of new therapeutic
strategies.

BRAIN IRON HOMEOSTASIS
Human bodies contain 3–5 g of iron in average. Dietary iron is
absorbed predominately in duodenum and enters blood circula-
tion in small intestine. Once in blood circulation, iron binds to
apotransferrin and forms transferrin (Tf). Tf is the major vehi-
cle for iron transport in the body, and carries iron to other cells
and tissues through the circulation. At the target cell, Tf binds to
transferrin receptors (TfR) on the cell membrane, and the TfR-
Tf-Fe complex is then endocytosed into the cell, where the iron
is released. Free iron either enters mitochondrion for utilization
in metabolic processes, such as synthesis of hemoglobin and Fe-S
cluster, or is incorporated into the cytosolic iron-storage protein,
ferritin, and serves as a cellular store of iron.

Iron needs to pass the blood-brain barrier in order to enter
the brain. Tf-Fe in the blood circulation is uptaken at the sur-
face of cerebral capillary endothelia, mainly through the classic
TfR-mediated endocytosis (Bradbury, 1997). In addition, TfR-
independent Tf-Fe uptake may also exist. As shown by Ueda
et al. (1993), non-TfR bound iron was transported into the brain
when the TfR-mediated iron transport was maximally inhibited
by anti-TfR antibodies. Free iron can also enter the brain bar-
riers by divalent metal transport-1 (DMT1), a proton driven
transporter (Siddappa et al., 2002; Skjorringe et al., 2012). In
endothelia, iron is released and transported across the ablumi-
nal membrane of the barriers into the cerebral compartment.
This process likely involves iron exporter ferroportin (FPN) and
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DMT1 on the abluminal membrane, but the exact mechanism
remains for further exploration (Moos et al., 2007; Mills et al.,
2010; Zheng and Monnot, 2012). The elemental iron released
into the brain interstitial fluid binds to brain Tf and becomes
available for neurons and neuroglia expressing TfR (Han et al.,
2003). The excess iron in neurons and neuroglia can be exported
back to the brain interstitial fluid, and can be released into
the cerebrospinal fluid in the brain ventricles through bulk
flow (Bradbury, 1997; Zheng and Monnot, 2012). The apical
microvilli of choroidal epithelia then capture the free iron by
TfR or DMT1 and transport it back to the blood circulation
(Mills et al., 2010).

Iron homeostasis in brain is precisely regulated. At the cellular
level, iron homeostasis is mainly regulated by iron transporters
TfR, DMT1, and FPN. It has been reported that the uneven
distribution of TfR in cerebral endothelia is responsible for the dif-
ferences of iron concentrations in different brain regions (Deane
et al., 2004). Iron concentrations are high in the striatum and the
hippocampus where higher TfR density and iron uptake rate are
also observed (Deane et al., 2004), but are low in the cortex and
the brain stem (Morris et al., 1992; Sugawara et al., 1992). Sim-
ilar to the iron regulation at the peripheral, iron homeostasis
in brain is tightly regulated by iron regulatory proteins (IRPs)
IRP1 and IRP2 (Rouault, 2006). When the brain cellular iron
concentration is low, the active center of IRPs binds to the stem-
loop structure of the iron-responsive element (IRE) located at
the 3′-untranslated region (UTR) of TfR mRNA. This binding
stabilizes TfR mRNA and increases its cellular expression level,
thereby increasing iron uptake. When the iron concentration is
high, the active center of IRP is occupied by four Fe-S, which
blocks the binding of IRP to the IRE of TfR, resulting in low
TfR translation level and reduced iron uptake (Leipuviene and
Theil, 2007). The IRP/IRE system also regulates the stability of
DMT1 with IRE (+IRE), FPN, and ferritin. However, binding of
IRP to the IRE of FPN and ferritin decreases their stabilities, and
causes lower protein expression (Rouault, 2006; Leipuviene and
Theil, 2007). Thus, IRPs play a key role in the maintenance of
cellular iron homeostasis. Studies of our laboratory and others
have found that the IRP2−/− mice had significant misregulation
of iron metabolism and developed neurodegeneration (Meyron-
Holtz, 2004). Inside the cells, the iron storage level and the cellular
liable iron level (LIP) are largely dependent upon the availabil-
ity of the iron-storage protein, ferritin. Ferritin is a ubiquitous
protein with an iron core that can accommodate up to 4500 iron
atoms (Theil, 1987; Harrison and Arosio, 1996). It is a 24-mer
globular protein complex that is made up of heart (H) and liver
(L) subunits, the H-ferritin (21 kDa) and the L-ferritin (19 kDa),
respectively (Ford et al., 1984; Theil, 1987). The ability of ferritin
to sequester iron provides its dual functions, iron segregation in
a non-toxic form and iron storage (Harrison and Arosio, 1996;
Torti and Torti, 2002).

At the systematic level, brain iron homeostasis may involve
the regulation of an peptide “hormone” hepcidin (Crichton et al.,
2011). Hepcidin is mainly produced by hepatocytes in response to
high iron concentration, inflammatory stimuli or hypoxia (Park
et al., 2001; Nicolas et al., 2002). It binds to the extracellular
loop of FPN and causes its internalization and degradation, and

thereby reduces cellular iron efflux (Ramey et al., 2010; Anderson
and Wang, 2012). Several recent studies reported the identifica-
tion of hepcidin producing cells in the brain and investigated
hepcidin’s functions under normal and pathological conditions
(Zechel et al., 2006; Marques et al., 2009; Wang et al., 2010; Crich-
ton et al., 2011). Zechel et al. (2006) showed that hepcidin is
widely expressed in different brain areas, including the cortex,
hippocampus, thalamus, cerebellum, spinal cord, and so on, in
both neurons and in GFAP-positive glia cells. Increased hep-
cidin expression was detected in choroid plexus of the brain
in response to peripheral inflammation (Marques et al., 2009).
Studies in our lab also found that hepcidin mRNA levels in
different brain regions increased with aging, and injection of hep-
cidin into the lateral cerebral ventricle decreased FPN levels and
resulted in brain iron overload (Wang et al., 2010). These find-
ings implied the important regulatory role of hepcidin on brain
iron metabolism, though the cellular mechanisms remain to be
elucidated.

MITOCHONDRIAL IRON HOMEOSTASIS AND
MITOCHONDRIAL FERRITIN
MITOCHONDRIAL IRON METABOLISM
Although most iron is stored in the cytosol, the major flux of
iron in many cells occurs in the mitochondria, where various
metabolic activities occur. Fe-S clusters and heme biogenesis are
the main events in which iron is utilized (Ponka, 1997). Iron trans-
port into mitochondria is directly coupled with its uptake at the
cell membrane (Pandolfo, 2002; Levi and Rovida, 2009). Several
mechanisms have been proposed on the pathway of iron entry into
mitochondria. One hypothesis proposed by Ponka (1997) suggests
that iron is directly delivered to mitochondria by endosomes in a
“kiss and run” paradigm. Another theory proposed by Shvartsman
et al. (2007) suggests that no endosomal vesicle is involved in the
transport of non-Tf-bound iron to mitochondria. This was sup-
ported by the observation that mitochondrial iron uptake was not
hampered by the use of cellular compartment-specific iron chela-
tors, and chaperones were bound to the incoming iron prior to its
delivery to micochondria (Shvartsman et al., 2007). Researchers
also investigated the involvement of iron transport proteins on the
mitochondrial membrane, such as MRS3 and MRS4 identified in
yeast (Foury and Roganti, 2002) and Mitoferrin 1 and Mitoferrin 2
found in zebra fish (Paradkar et al., 2009). Iron transport out from
mitochondria may depend on adequate Fe-S synthesis (Pandolfo,
2002).

Iron flux in mitochondria must be precisely regulated because
excess free iron can result in the production of damaging
free reactive oxygen species (ROS) during electron transport
(Eaton and Qian, 2002). Dysregulation of mitochondrial iron
metabolism can severely affect the intracellular iron homeosta-
sis, resulting in mitochondrial iron metabolism diseases, such as
Friedreich ataxia (FRDA; Schmucker and Puccio, 2010). How-
ever, little is known about the regulatory mechanisms of iron
trafficking and communication between cytosol and mitochon-
dria. It has been reported that ferritins, under the influence
of iron and oxygen metabolism, exert cellular protective roles
against iron-mediated free radical damage (Arosio and Levi, 2002;
Arosio et al., 2009). The newly identified H-ferritin-like protein
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in mitochondria, FtMt, has been shown to modulate cellular
iron metabolism and influence ROS level dramatically (Levi et al.,
2001; Corsi et al., 2002; Nie et al., 2005). Studying the role of
FtMt in mitochondria iron homeostasis may provide new insights
into the treatment of diseases associated with abnormal iron
homeostasis.

FtMt SYNTHESIS AND DISTRIBUTION
Mitochondrial ferritin was first identified in 2001 as a new human
ferritin type that specifically locates in mitochondria (Levi et al.,
2001). Other primates, mice, and rats also express this gene,
which is highly homologous to human FtMt. The human FtMt
gene is intronless and locates at chromosome 5q23.1. It encodes
a ∼1 kb mRNA that translates to a 242 amino-acid FtMt pre-
cursor protein with a ∼60 amino-acid mitochondrial targeting
signal sequence at the N-terminus. The sequence of the mature
human FtMt has a 79% identity to the H-chain ferritin. The
ferroxidase centers of FtMt and H-ferritin share a completely con-
served sequence and a fully overlapped crystallographic structure
(Langlois d′Estaintot et al., 2004), indicating their similar func-
tions. Recombinant FtMt was proven to have iron incorporation
activity in vitro that was as efficient as H-ferritin (Bou-Abdallah
et al., 2005). However, unlike the cytosolic ferritins, FtMt mRNAs
lack the IRE consensus sequences for iron-dependent translational
regulation.

The ∼30 KDa human FtMt precursor protein is translocated
to the mitochondria after synthesis, and is processed to become
the ∼22 KDa mature protein as the subunit to form typical fer-
ritin shells (Corsi et al., 2002). Unlike the ubiquitously expressed
cytosolic H-ferritin, the expression of FtMt is tissue-specific,
showing a high level of transcription in testis and brain. Immuno-
histochemistry analyses of mouse FtMt showed its expression in
spermatids and interstitial cells, neuronal cells of brain and spinal
cord, and some other tissues. But surprisingly no expression was
detected in hepatocytes, splenocytes, or myocytes (Drysdale et al.,
2002; Levi and Arosio, 2004; Santambrogio et al., 2007). This fur-
ther suggests that FtMt expression is not related to the cellular iron
level, and the expression pattern may reflect its tissue-related roles.
It was also found that, in the pathological conditions associated
with mitochondrial iron overload, such as Alzheimer’s disease, PD,
and sideroblastic anemia, the FtMt expression was largely induced
(Cazzola et al., 2003; Shi et al., 2010; Wang et al., 2011; Wu et al.,
2013; Yang et al., 2013).

ROLE OF FtMt IN MITOCHONDRIAL AND CYTOSOLIC IRON
DISTRIBUTION
As mentioned above, FtMt is structurally and functional similar to
H-ferritin. The main biological function of FtMt is to incorporate
excess free iron. It had a reduced ferroxidase activity as compared
to H-ferritin, but the iron sequestering efficiency is as high (Corsi
et al., 2002; Levi and Arosio, 2004). In addition to iron sequestra-
tion, FtMt was extensively studied on its function of maintaining
intracellular iron homeostasis by modulating the traffick of iron
in cytoplasm (Levi et al., 2001; Corsi et al., 2002; Nie et al., 2005).
Corsi et al. (2002) found that overexpression of human FtMt in
Hela cells resulted in decreased cytosolic ferritin and increased
TfR levels and cytosolic iron deficiency. Using a stable cell line

transfected with mouse FtMt gene, Nie et al. (2005) also observed
that FtMt dramatically affected intracellular iron metabolism.
Overexpression of FtMt caused an increase in cellular iron uptake
but a decreased cytosolic iron level associated with decreased
cytosolic ferritin, suggesting that the increased iron influx was
preferentially transferred into mitochondria and incorporated into
FtMt rather than into cytosol (Nie et al., 2005). They also found
that the expression of FtMt was associated with decreased mito-
chondrial and cytosolic aconitase activities, which was consistent
with the increase in IRP-IRE mRNA binding activity (Nie et al.,
2005). In addition, increased expression of FtMt was found in
some genetic diseases associated with cellular iron deficiency and
mitochondrial iron overload, such as the restless legs syndrome
(RLS; Ondo, 2005; Snyder et al., 2009). Many detailed advances
in the research of FtMt and related diseases are summarized
below.

MITOCHONDRIAL FERRITIN IN THE PATHOPHYSIOLOGY OF
NEURODEGENERATIVE DISEASES
IRON, ROS AND CELL APOPTOSIS
Excess iron in brain is known to cause neurodegeneration in adults
(Zecca et al., 2004). Increased ferrous iron (Fe2+) levels can lead to
the production of highly reactive hydroxyl radical via the Fenton
reaction. Increased iron levels can also generate peroxyl/alkoxyl
radicals due to Fe2+-dependent lipid peroxidation (Pollitt, 1999).
These ROS can damage cellular macromolecules including pro-
teins, lipids and DNA, and finally the oxidative stress will trigger
apoptosis. Iron-induced oxidative stress can be very destructive
because a positive-feedback loop can develop from the release of
more free iron from the iron-containing proteins, such as ferritin,
heme proteins, and Fe-S clusters. As a result, the toxic effect of
brain iron overload is exacerbated.

FtMt IN THE PATHOPHYSIOLOGY OF PARKINSON’S DISEASE
Parkinson’s disease is a common neurodegenerative disease char-
acterized by the loss of dopaminergic neurons in the substantial
nigra (SN) of the brain and the formation of filamentous intra-
neuronal inclusions (Parkinson, 2002). The pathogenesis of PD
involves accumulation of non-heme iron in the SN and nigra,
oxidative damages and dysfunctions of mitochondria (Halliwell,
1992; Zhang et al., 2000; Zecca et al., 2004; Lin and Beal, 2006).
Studies in our lab have shown that FtMt maintains iron home-
ostasis and prevents neuronal damage in a 6-Hydroxydopamine
(6-OHDA)-induced parkinsonian phenotype (Shi et al., 2010). In
our studies, the neuroblastoma SH-SY5Y cells were stably trans-
fected with FtMt gene, and the PD model was established by
induction with the neurotoxin 6-OHDA. We found that overex-
pression of FtMt significantly protected neuronal cells from the
6-OHDA-induced cell death. A possible mechanism of this pro-
tection was proposed which involves the regulation of Bcl-2, Bax,
and caspase-3 apoptotic pathways (Figure 1). FtMt attenuated
ROS accumulation and lipid peroxidation, and inhibited mito-
chondrial damage induced by neurotoxin 6-OHDA. Moreover,
FtMt strongly inhibited the elevation of iron levels and prevented
the alteration of iron redistribution induced by 6-OHDA. These
findings suggest that FtMt plays a neuroprotective role in PD by
affecting the iron metabolism.
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FIGURE 1 | A schematic representation of the proposed

neuroprotective mechanism of FtMt in PD (adapted from Shi et al.,

2010; Antioxid Redox Signal). In the 6-OHDA-induced PD model, the
overexpression of FtMt protects neuronal cells from programmed cell
death. FtMt inhibits iron release from cytosolic ferritin, attenuates ROS
accumulation and lipid peroxidation, and rescues LIP elevation induced by
6-OHDA, which in turn affects the Bcl-2, Bax and caspase-3 apoptotic
signals, and prevents cell death.

FtMt IN THE PATHOPHYSIOLOGY OF ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is a common neurodegenerative disease
in aged people. The brains of AD patients are characterized by
extracellular plaques of amyloid-β (Aβ) and neurofibrillary tan-
gles of tau protein (Selkoe, 1996). Aβ plays an important role in
the pathophysiological mechanisms of AD, as it accumulates to
abnormally high levels in the brains of AD patients and directly
induces neuronal cell death (Selkoe, 2000, 2001). Although abnor-
mal iron metabolism and impaired mitochondrial function have
been reported in AD, little information is available about the role
of FtMt in the pathogenesis of AD.

A recent study by Wang et al. (2011) investigated the expression
and localization of FtMt in the temporal cortex and cerebellum
of AD patients. By using RT-PCR, they found that the FtMt
mRNA levels in the temporal cortex of AD patients were evidently
increased as compared to the controls, but no significant differ-
ences of mRNA levels was found in the cerebellum. By in situ
hybridization histochemistry, FtMt mRNAs were localized mainly
in the neurons of the AD cortex. They also found that in human
neuroblastoma cell IMR-32, FtMt expression was significantly
induced by H2O2 treatment, and the increase in FtMt expres-
sion was dramatically accelerated when cells were treated with the
combination of H2O2 and Aβ neurotoxin. Overexpression of FtMt
in the IMR-32 cells also rescued the cell death induced by H2O2.
These results indicated a neuroprotection effect of FtMt against
oxidative stress and the involvement of FtMt in the pathological
process of AD. However, the underlying molecular mechanisms of
FtMt’s action in AD and AD-like syndromes have not been fully
elucidated.

To explore these mechanisms, our previous study by Wu et al.
(2013) investigated the role of FtMt in Aβ25–35 treated rats.

After the siRNA of FtMt was transfected into the hippocampus
of the rats, we found that the FtMt down-regulated group released
more cytochrome C, a sign of mitochondrial-dependent apopto-
sis, into the cytoplasm as compared to that of the control group.
Increased number of apoptotic cells, decreased Bcl-2/Bax ratio
and enhanced caspase-3 activation were observed, indicating a
clear neuroprotectiove role FtMt plays in vivo. After treatment
with Aβ25–35, knockdown of FtMt aggravated apoptosis in the
hippocampus and oxidative damage to the tissue, as evidenced by
increased levels of malonyl dialdehyde (MDA), protein carbonyls,
and hydroxynonenal–histidine. The activities of the mitochon-
drial complex enzymes I–IV were also significantly decreased. To
verify that the increased apoptosis was related to the low level
of FtMt, we carried out further studies using SH-SY5Y cells
that stably overexpressing FtMt. The results showed that FtMt
overexpression reduced apoptosis in response to Aβ25–35 treat-
ment and reduced the production of ROS as well. When FtMt
was overexpressed in SH-SY5Y cells, the increase in caspase-3
protein and the reduction in the Bcl-2/Bax protein ratio follow-
ing the Aβ25–35 treatment were largely neutralized. We further
proposed that the direct neuroprotective effects of FtMt against
Aβ25–35 toxicity could signal through the activation of the MAPK
pathway in neurons, as the increase of extracellular signal regu-
lated kinase (ErK) expression and the decrease of P38 level were
observed.

Evidences accumulated thus far have shown that iron
metabolism is closely related to the production of oxidative stress
and the pathogenesis of neurodegenerative diseases. We further
determined the correlation of iron with the mechanism in which
FtMt reduces ROS levels in the Aβ25–35-treated cells. In our
study, FtMt overexpression dramatically inhibited the elevation
of LIP levels resulted by the Aβ25–35 treatment. To verify that
the change of LIP is involved in the protective function of FtMt,
we measured the levels of iron related proteins. We observed that
overexpression of FtMt increased the TfR level and decreased the
H-ferritin level in Aβ25–35-treated cells (Shi et al., 2010; Wu et al.,
2013). Without FtMt overexpression, these levels were measured
to go the reverse way. These findings suggested that FtMt redis-
tributed iron from the cytosol to the mitochondria, resulting in a
reduction of cytosolic iron levels. This in turn attenuated Aβ25–
35-induced neurotoxicity and reduced oxidative damage through
the Erk/P38 kinase signaling. Our data also suggested that these
effects were coordinately regulated by the intracellular LIP levels.
Based on all these results, we proposed a possible neuroprotective
mechanism of FtMt following the Aβ25–35 treatment, as shown in
Figure 2.

FtMt IN THE PATHOPHYSIOLOGY OF FRIEDREICH ATAXIA
Friedreich’s ataxia is the most common genetic ataxia that caused
by the deficiency of mitochondrial iron-binding protein frataxin
(Schmucker and Puccio, 2010). The FRDA patients have severe
mitochondrial iron overload, disruption of iron-sulfur clus-
ter biosynthesis, and increased sensitivity to oxidative stress
(Schmucker and Puccio, 2010). The protective role of FtMt
in FRDA was first suggested by Campanella et al. (2004) in a
study on frataxin-deficient yeast cells. FtMt expression rescued
the respiratory deficiency caused by the loss of frataxin and
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FIGURE 2 | A schematic representation of the proposed

neuroprotective mechanism of FtMt in AD (adapted from Wu et al.,

2013; Antioxid Redox Signal). In the Aβ25–35-induced AD model, the
overexpression of FtMt withdraws iron from the cytoplasmic pool,
decreases LIP level, reduces oxidative damage through Erk/P38 kinase
signaling, and prevents the release of cytochrome C into the cytoplasm.
This in turn attenuates Aβ25–35-induced neurotoxicity and decreases the
cell apoptosis through the MAPK pathway.

protected the activity of iron–sulfur enzymes in yeast. It also
prevented yeast cells from developing mitochondrial iron over-
load, preserved the mitochondrial DNA integrity and increased
resistance to H2O2. These data implied that FtMt could sub-
stitute most functions of frataxin in yeast, thus might play a
protective role in FRDA. A follow-up study by Campanella et al.
(2009) showed a similar function of FtMt in mammalian cells,
including HeLa cells, and fibroblasts from FRDA patients. FtMt
reduced the ROS level, increased the activity of mitochondrial
Fe-S enzymes and the cell viability. Furthermore, FtMt expres-
sion reduced the LIP levels in both cytosol and mitochondria
(Campanella et al., 2009). These results indicate that FtMt is
involved in the regulation of iron distribution and availability
in mitochondria and cytosol, thus controls ROS formation and
protects cells characterized as defective in iron homeostasis and
respiration.

FtMt IN RESTLESS LEGS SYNDROME
Restless legs syndrome is a sensorimotor disorder. RLS patients
are usually characterized as to have an urge to move the legs and
to have abnormal sensations in the legs, especially in evenings
and nights (Ondo, 2005). Unlike other neurodegenerative diseases,
RLS was reported to have decreased cellular iron concentration in
the brain and altered expression of iron metabolism-related pro-
teins. Significant iron deficiency was observed in the neurons of
SN in RLS patients (Connor et al., 2003; Schmidauer et al., 2005;
Godau et al., 2007), and decreased ferritin and TfR and increased
Tf were also observed, attesting the cellular iron deficient status
(Connor et al., 2004). Considering the important role of iron in
the redox reactions in mitochondria, Snyder et al. (2009) studied

the expression pattern of FtMt in the brain of RLS patients. The
results showed that the staining of FtMt increased significantly
in the RLS cases, and the neuromelanin-containing neurons in
the SN were found to be the predominant cell type expressing
FtMt. Since the numbers of mitochondria were also increased in
the neurons, whether the increase of FtMt was a result of higher
FtMt expression or from mitochondrial proliferation with normal
amounts of FtMt could not be concluded. However, less cytoso-
lic H-ferritin were observed in neurons of RLS cases, suggesting
that the increased FtMt levels might contribute to the insufficient
cytosolic iron levels in the SN neurons, thereby accelerating the
pathogenesis of RLS (Snyder et al., 2009). Still, very little is known
about the metabolic activity of SN and the role of FtMt in RLS,
and further investigations are needed to understand more on the
mechanisms.

SUMMARY
Mitochondrial ferritin is a novel ferritin type that specifically
locates in mitochondria. It is highly expressed in tissues with high
metabolic activity and oxygen consumption, such as testis, brain,
heart, and so on. This tissue specificity may correlate with its
function. Studies so far suggest that FtMt plays a role in the pro-
tection of mitochondria from iron-dependent oxidative damage
by sequestering the free excess iron. Current findings suggested
important roles of FtMt in the pathogenesis of neurodegenera-
tive diseases. The increased expression of FtMt in AD, PD, and
other neurological disorders may relate to its neuroprotective role
against iron overload and oxidative stress. But in RLS, its increased
expression may link to the onset of disease rather than neuropro-
tection. Since FtMt lacks the IRE in its mRNA, which is different
from other ferritins, it should not be regulated by iron directly. Fur-
ther studies regarding the detailed mechanisms of the regulation
of FtMt expression and the role FtMt plays in neurological dis-
orders associated with abnormal iron metabolism are important
topics that need to be explored in the future.
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