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Animal and clinical studies of gene-environment interactions have helped elucidate the
mechanisms involved in the pathophysiology of several mental illnesses including anxiety,
depression, and schizophrenia; and have led to the discovery of improved treatments. The
study of neuropeptides and their receptors is a parallel frontier of neuropsychopharma-
cology research and has revealed the involvement of several peptide systems in mental
illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered
neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing
anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which
is highly responsive to environmental stimuli, particularly neurogenic stressors, and in
turn modulates behavioral responses to these stressors and alters key neural processes,
including hippocampal theta rhythm and associated learning and memory. Here, we
review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt
to highlight aspects that are relevant and/or potentially translatable to the etiology and
treatment of major depression and anxiety. Evidence pertinent to autism spectrum and
metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also
nominate some key experimental studies required to better establish the therapeutic
potential of this intriguing neuromodulatory signaling system, including an examination of
the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common
neural substrates and circuitry that are identified as dysfunctional in these debilitating brain
diseases.
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INTRODUCTION
It has now become widely accepted by neuroscientists and the
clinical community that mental illness can arise from multiple
sources and causes, including genetic mutations or epigenetic
effects, and key environmental impacts during early develop-
ment, and adolescence. A need for an ongoing reappraisal of
how best to study and classify mental illness is also acknowl-
edged, including the development of circuit-level frameworks
for understanding different modality deficits in depression (e.g.,
Nestler, 1998; Willner et al., 2013), autism spectrum disorders
(ASD; e.g., Haznedar et al., 2000; Markram and Markram, 2010;
Yizhar et al., 2011b; Fan et al., 2012), and schizophrenia (e.g.,
Spencer et al., 2003; O’Donnell, 2011; Millan et al., 2012; Jiang
et al., 2013).

Similarly, novel structural and molecular targets in brain that
might underpin better treatments for the debilitating conditions
encompassed by the clinical spectrum of anxiety, major depres-
sion, and related psychiatric illnesses need to be identified and
explored. In this regard, it is clear that neuromodulatory sys-
tems that utilize monoamine and peptide transmitters play a

key role in the neurophysiology of circuits associated with affec-
tive behavior and cognition (Hoyer and Bartfai, 2012; Marder,
2012; van den Pol, 2012), and they can be both aberrant in
psychiatric pathology and targets for novel treatments (e.g., Dom-
schke et al., 2011; Hoyer and Bartfai, 2012; Lin and Sibille,
2013).

Relaxin-3 is a highly conserved neuropeptide that is abun-
dantly expressed in four small groups of largely γ-aminobutyric
acid (GABA) projection neurons in mammalian brain (Bath-
gate et al., 2002; Burazin et al., 2002; Tanaka et al., 2005), and
is involved in regulating aspects of physiological and behav-
ioral stress responses and the integration of sensory inputs (see
Smith et al., 2011). Recent reviews have highlighted the putative
role of relaxin-3 in the control of feeding and the neuroen-
docrine axis (Tanaka, 2010; Ganella et al., 2012, 2013b). However,
existing neuroanatomical and functional evidence also suggests
the GABA/relaxin-3 system acts as a broad “arousal” network
which is highly responsive to environmental stimuli (neurogenic
stressors) and modulates stress responses and other key behav-
iors/neural processes. These effects are mediated via a variety
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of mechanisms, such as influencing hippocampal theta rhythm
and associated learning and memory, and via putative actions
throughout the limbic system (Tanaka et al., 2005; Ma et al.,
2009a, 2013; Banerjee et al., 2010). Here, in the broader context
of the potential for neuropeptide-receptor systems as therapeu-
tic drug targets (Hoyer and Bartfai, 2012), we review existing
experimental data on relaxin-3 and modulation of its receptor,
relaxin family peptide 3 receptor (RXFP3), in rodents and high-
light its relevance to the etiology of various neuropsychiatric
disorders.

NEUROPEPTIDE-RECEPTOR SYSTEMS AS TARGETS FOR
TREATMENT OF NEUROPSYCHIATRIC DISORDERS
Since the early discovery of “substance P” (von Euler and Gaddum,
1931), a plethora of neuropeptide-receptor systems have been
identified and characterized (see Hoyer and Bartfai, 2012). Neu-
ropeptides are commonly co-released with GABA/glutamate and
monoamine transmitters, and generally signal through G-protein
coupled receptors to modulate a broad range of neural processes
and behaviors. The potential attractiveness of neuropeptide-
receptor systems as therapeutic drug targets is enhanced by their
high level of signaling specificity. For example, expression of neu-
ropeptides is often restricted to small populations of neurons
within a small number of brain nuclei (e.g., orexin, MCH, and
neuropeptide S; Xu et al., 2004; Sakurai, 2007; Saito and Nagasaki,
2008), and neuropeptides frequently bind to their receptors with
high affinity and specificity due to their generally large allosteric
binding sites (Hoyer and Bartfai, 2012). Neuropeptides are also
often preferentially released under states of high neuronal firing
frequency in response to the nervous system being challenged, as
can occur during acute or chronic environmental stress and/or in
association with neuropsychiatric disorders (Hökfelt et al., 2000,
2003; Holmes et al., 2003).

These characteristics suggest that therapeutic drugs which
target neuropeptide systems may be less prone to unwanted “non-
specific” side-effects compared to current drug treatments. For
example, although tricyclic antidepressants are relatively effec-
tive at increasing 5-hydroxytrypamine (5-HT) and noradrenaline
signaling to reduce the symptoms of major depression, they are
hampered by cross-reactivity with other transmitter systems and
reduce histamine and cholinergic signaling, which contributes to
unwanted side effects (Westenberg, 1999). Even their “replace-
ment” drugs (selective serotonin reuptake inhibitors, SSRIs) are
associated with shortcomings such as slow onset of action and
patient resistance, and side effects including sexual dysfunc-
tion, and weight gain (Nestler, 1998). Similar problems have
been encountered in the development of antipsychotics to treat
schizophrenia (Tandon, 2011), suggesting that more selective
drugs that target relevant peptide receptors could have broad
therapeutic applications (Hökfelt et al., 2003; Holmes et al., 2003;
Hoyer and Bartfai, 2012).

Interest in the therapeutic potential of neuropeptide-receptor
systems has further increased following a number of studies
which implicate their dysregulation as contributing to disease sus-
ceptibility. For example, narcolepsy is strongly associated with
reduced orexin signaling (Burgess and Scammell, 2012); post-
traumatic stress syndrome (PTSD) susceptibility and panic has

been linked to pituitary adenylate cyclase-activating polypeptide
(PACAP) receptor-1 and corticotrophin-releasing factor (CRF)
receptor-2 signaling (Ressler et al., 2011; Lebow et al., 2012; see
also Dore et al., 2013); and neuropeptide Y (NPY) and CRF
appear to play a role not only in the underlying pathophysiol-
ogy of schizophrenia and depression, but as likely downstream
mediators of the therapeutic effects following treatment with
monoamine-targeting drugs (Arborelius et al., 1999; Ishida et al.,
2007; Zorrilla and Koob, 2010; Nikisch et al., 2011). Not sur-
prisingly, the antidepressant potential of drugs which directly
target NPY and CRF signaling is currently under investiga-
tion (Paez-Pereda et al., 2011), while drugs that target recep-
tors for neurotrophic factors and other neuropeptides, such as
brain-derived neurotrophic factor (BDNF; Vithlani et al., 2013)
and neuropeptide S (NPS; Pape et al., 2010), offer consider-
able promise as antidepressants and anxiolytics (Schmidt and
Duman, 2010; McGonigle, 2011), in light of the effects of the
native peptides in relevant animal models of neurogenesis, and
neural structure and activity (Rotzinger et al., 2010; Pulga et al.,
2012).

However, from a translational viewpoint, over the last two
decades pharmaceutical and biotechnology groups have been
attempting to target neuropeptide systems to treat various CNS
disorders and despite encouraging pre-clinical data, clinical stud-
ies investigating the antidepressant potential of neuropeptide
receptor-targeting drugs have yielded mixed findings. For exam-
ple, the neurokinin 1 (NK1) antagonist “aprepitant,” which is
effective at treating nausea during chemotherapy (de Wit et al.,
2004), was unsuccessful in the treatment of major depression
(Keller et al., 2006). CRF receptor-1 antagonists are also yet
to demonstrate clear antidepressant properties (Binneman et al.,
2008), although anxiolytic effects are promising (Bailey et al.,
2011); and trials of these compounds against alcohol abuse
and relapse are being undertaken (Zorrilla et al., 2013). NPY
agonists were initially observed to inhibit circulating stress hor-
mones during sleep in healthy controls (Antonijevic et al., 2000),
while subsequent testing in depressed patients failed to con-
fer therapeutic effects (Held et al., 2006). Although frustrating
for industry and clinical and basic researchers, in regard to
depression, these findings are more likely to reflect the complex
underlying nature of the targeted disorder and its symptoms,
rather than inherent flaws with neuropeptide-receptor systems
as drug targets. Indeed, more recently, drugs that target orexin
receptors have demonstrated promise in the treatment of sleep
disorders (Hoyer and Jacobson, 2013; Winrow and Renger,
2014).

THE NEUROPEPTIDE RELAXIN-3 AND ITS RECEPTOR, RXFP3
Relaxin-3 is a two chain, 51 amino acid neuropeptide discov-
ered by our laboratory in 2001 (Bathgate et al., 2002; Burazin
et al., 2002; Rosengren et al., 2006). Relaxin-3 is the ancestral gene
of the relaxin family of peptides (Wilkinson et al., 2005), which
includes the namesake peptide “relaxin” (H2 relaxin or relaxin-
2 in humans) that was observed to relax the pelvic ligament in
guinea pigs almost a century ago (Hisaw, 1926). In contrast to the
many and varied peripheral actions of relaxin (Sherwood, 2004;
Bathgate et al., 2013a), relaxin-3 is abundantly expressed within
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the mammalian brain (Bathgate et al., 2002; Burazin et al., 2002)
and acts as a neurotransmitter by activating its cognate G-protein
coupled receptor, RXFP3 [also known as GPCR135, SALPR, and
GPR100; Matsumoto et al., 2000; Liu et al., 2003; Boels et al., 2004;
see Bathgate et al., 2006, 2013a]. Although research in this area is
still in its relative infancy (Smith et al., 2011), several key features
have highlighted relaxin-3/RXFP3 systems as an attractive putative
target for the treatment of cognitive deficits, and neuropsychiatric
disorders, including depression.

Neuroanatomical studies conducted in the rat (Burazin et al.,
2002; Tanaka et al., 2005; Ma et al., 2007), mouse (Smith et al.,
2010) and macaque (Ma et al., 2009b,c) have revealed that relaxin-
3 is mainly expressed within neurons of the pontine nucleus
incertus (NI; Goto et al., 2001; Olucha-Bordonau et al., 2003; Ryan
et al., 2011), while smaller populations are present in the pontine
raphé, periaqueductal gray, and a region dorsal to the substan-
tia nigra (see Figure 1). Relaxin-3 containing neurons in these
areas innervate a broad range of target forebrain regions rich in
RXFP3. NI relaxin-3 neurons are predominately GABAergic (Ma
et al., 2007; Cervera-Ferri et al., 2012), and it is likely relaxin-3
signaling confers complimentary inhibitory effects to the primary
transmitter, as in cell-based studies RXFP3 activation is linked
to Gi/o and reduces cAMP accumulation (van der Westhuizen
et al., 2007). In recent electrophysiological experiments, how-
ever, RXFP3 activation was able to hyperpolarize or depolarize
presumed RXFP3-positive neurons within the rat intergenicu-
late leaflet (Blasiak et al., 2013), suggesting the effect of receptor
activation or inhibition may vary with the neurochemical phe-
notype and connectivity of the target neuron, as described for
other peptides. RXFP3 activation also stimulates ERK1/2 MAP
kinase and other pathways in vitro (van der Westhuizen et al.,
2010), although related changes in gene expression or precise roles
of RXFP3 signaling within distinct neuronal populations in vivo
remain unknown.

The distribution of relaxin-3-positive axons and RXFP3
mRNA/binding sites within key midbrain, hypothalamic, lim-
bic, and septohippocampal circuits of the rodent and primate
brain (Ma et al., 2007, 2009b; Smith et al., 2010) suggests relaxin-
3/RXFP3 neural networks represent an “arousal” system that
modulates behavioral outputs such as feeding and the responses
to stress; and associated neuronal processes including spatial and
emotional memory and hippocampal theta rhythm (see Figure 1).
These actions have been investigated in a number of functional
studies in rodents (see Ma et al., 2009a; Smith et al., 2011; Ganella
et al., 2012 for review). As numerous neuropsychiatric disor-
ders are either associated with alterations in these processes and
behaviors, and/or can be therapeutically treated by drugs which
modulate these processes and behaviors (Mazure, 1998; Anand
et al., 2005; McGonigle, 2011; Tandon, 2011; Millan et al., 2012),
the relaxin-3/RXFP3 system has considerable potential as a novel
therapeutic target and warrants further investigation.

RELAXIN-3/RXFP3 SIGNALING: A NOVEL TARGET FOR THE
TREATMENT OF DEPRESSION?
IS RELAXIN-3 IS AN “AROUSAL” TRANSMITTER?
Wakefulness, along with highly aroused behavioral states such
as when an animal is alert, attentive, active, or engaged in

exploratory behavior, are mediated by the interactive signaling of
a range of “arousal” neurotransmitters (Saper et al., 2005). Sev-
eral arousal transmitters and their associated neural networks
and single or multiple target receptors have been identified,
including the monoamines 5-HT, acetylcholine, noradrenaline,
and dopamine (Nestler, 1998; Saper et al., 2005; Berridge et al.,
2012), and the peptides orexin, melanin-concentrating hor-
mone (MCH) NPY, CRF, and NPS (Hökfelt et al., 2003; Xu
et al., 2004; Ishida et al., 2007; Sakurai, 2007; Zee and Man-
thena, 2007; Bittencourt, 2011). Indeed, it is now widely thought,
based particularly on studies using optogenetic control of neural
pathways, that selective spatiotemporal recruitment and coor-
dinated activity of various cell type-specific brain circuits may
underlie the neural integration of reward, learning, arousal, and
feeding.

As mentioned, considerable neuroanatomical evidence suggests
relaxin-3 should be thought of as an arousal neurotransmit-
ter. For example, relaxin-3 neurons project to several areas that
regulate arousal, such as the midbrain, cortex, thalamus, and
limbic and septohippocampal regions, in a similar way as the
monoamine and other peptide arousal systems (Ma et al., 2007;
Smith et al., 2010, 2011). In fact, the “restricted” localization of
relaxin-3 (GABA) neurons and the broadly distributed relaxin-
3 projections throughout the brain are remarkably similar to
those of the raphé/5-HT (Steinbusch, 1981; Monti and Jantos,
2008; Lesch and Waider, 2012) and locus coeruleus/noradrenaline
(Jones et al., 1977; Takagi et al., 1980; Berridge et al., 2012)
pathways/networks.

Arousal neurotransmitter systems are extensively intercon-
nected, and relaxin-3 fibers, and RXFP3 are enriched within the
pedunculopontine/laterodorsal tegmentum and basal forebrain,
periaqueductal gray and lateral hypothalamus; which contain
interconnected populations of neurons which produce acetyl-
choline, dopamine and orexin/MCH, respectively (Saper et al.,
2005). Furthermore, along with 5-HT and orexin fibers and recep-
tors (Meyer-Bernstein and Morin, 1996; Marchant et al., 1997;
Peyron et al., 1998; Thankachan and Rusak, 2005; Pekala et al.,
2011), relaxin-3 fibers/RXFP3 are enriched within the sensory
and photic integrative thalamic center, known as the intergenic-
ulate leaflet (Harrington, 1997; Morin, 2013), and application of
an RXFP3 agonist can excite (depolarize) NPY neurons within
this region (Blasiak et al., 2013), which project to the suprachias-
matic nucleus and promote wakefulness (Shinohara et al., 1993;
Thankachan and Rusak, 2005; Zee and Manthena, 2007). Fur-
thermore, rat NI relaxin-3 neurons express the 5-HT1A receptor
(and possibly other 5-HT receptors), and chronic 5-HT deple-
tion increased relaxin-3 mRNA in the NI (Miyamoto et al., 2008);
while in preliminary electrophysiological studies, bath applica-
tion of orexin activated rat NI relaxin-3 neurons in a brain slice
preparation (Blasiak et al., 2010).

Indeed, arousal and stress transmitter systems, including CRF
and orexin peptides and their receptors, have long been impli-
cated in reward and drug seeking behavior (Koob, 2010; Kim et al.,
2012) and we recently demonstrated that antagonism of RXFP3
in brain – specifically within the bed nucleus of the stria termi-
nalis – reduced self-administration of alcohol and cue- and stress
(yohimbine)-induced relapse in alcohol-preferring iP rats (Ryan

www.frontiersin.org March 2014 | Volume 5 | Article 46 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

FIGURE 1 | (A,B) Low and high magnification micrographs of a coronal
section through the mouse NI, displaying neurons positive for relaxin-3-like
fluorescent immunoreactivity. The region displayed in (B) is outlined in
(A). The location of the midline (m/l) is indicated with a dotted line.
Anterior-posterior coordinates from bregma, −5.38 mm. Scale bars A,
100 μm; B, 250 μm. (C) Schematic parasagittal representation of the rodent
brain, illustrating the ascending relaxin-3 system and the distribution of
RXFP3 in regions grouped by function. Amyg, amygdala; Arc, arcuate
nucleus; BST, bed nucleus of stria terminalis; Cb, cerebellum; CgC,
cingulate cortex; Cx, cerebral cortex; DBB, diagonal band of Broca; DG,

dentate gyrus; DMH, dorsomedial nucleus of hypothalamus; DR, dorsal
raphé nucleus; dSN, region dorsal to the substantia nigra; DTg, dorsal
tegmental nucleus; Hi, hippocampus; Hypo, hypothalamus; IC, inferior
colliculus; IGL, intergeniculate leaflet; IPN, interpeduncular nucleus; LH,
lateral hypothalamus; LPO, lateral preoptic area; MLF, medial longitudinal
fasciculus; MR, median raphé; NI, nucleus incertus; OB, olfactory bulb;
PAG, periaqueductal gray; PnR, pontine raphé; PVA, paraventricular thalamic
area; PVN, paraventricular hypothalamic nucleus; RSC, retrosplenial cortex;
S, septum; SC, super colliculus; SuM, supramammillary nucleus; Thal,
thalamus.

et al., 2013b). As monoamines (Nutt et al., 1999; Berridge et al.,
2012) and peptides (Nemeroff, 1992; Brundin et al., 2007; McGo-
nigle, 2011) are established or putative targets for the development
of antidepressant drugs (Willner et al., 2013), the status of relaxin-
3/RXFP3 as a similar and likely interconnected arousal system
suggests a similar therapeutic potential.

Abnormal sleep and the disruption of circadian rhythm are
common symptoms of the major neurodegenerative diseases
(Hastings and Goedert, 2013) and neurological disorders such as
depression (Berger et al., 2003), schizophrenia (Van Cauter et al.,
1991), and anxiety (Monti and Monti, 2000), and the success
of current pharmacological treatments for these diseases appears
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to be mediated in part through normalizing these symptoms
(McClung, 2007). In line with neuroanatomical features, a num-
ber of functional studies suggest that relaxin-3 signaling promotes
wakefulness. In rats, relaxin-3 mRNA displays a circadian pattern
of expression which peaks during the dark/active phase (Baner-
jee et al., 2005), and intracerebroventricular (icv) infusion of an
RXFP3 agonist during the light/inactive phase has been reported
to increase locomotor activity (Sutton et al., 2009). These data
were partly replicated in mice, in which chronic virally medi-
ated delivery of an RXFP3 agonist into the cerebroventricular
system slowed the decline in locomotor activity associated with
habituation to a novel environment (Smith et al., 2013a). Mixed
background (129S5:B6) relaxin-3 knockout (KO) mice were also
hypoactive compared to wildtype littermate controls when placed
in novel environments (Smith et al., 2009), and although this phe-
notype was not reproduced in C57BL/6J backcrossed colonies;
during the dark/active phase backcrossed relaxin-3 KO mice trav-
eled less distance on voluntary home-cage running wheels and
appeared to spend more time sleeping than wildtype controls
(Smith et al., 2012). These data are consistent with a possible
regulation of circadian activity by relaxin-3/RXFP3 signaling in
the IGL and network-induced changes in SCN activity (Blasiak
et al., 2013), a possibility that is currently being explored in
both wildtype and gene deletion mouse strains (Hosken et al.,
2013).

RELAXIN-3 NEURONS ARE INVOLVED IN THE RESPONSE TO STRESS
A current view of the stress response is the behavioral and phys-
iological changes generated in the face of, or in anticipation of,
a perceived threat. The stress response involves activation of the
sympathetic nervous system and recruitment of the hypothalamic-
pituitary-adrenal (HPA) axis. When an animal encounters a social,
physical or other stressor, these endogenous systems are stimulated
and generate a “fight-or-flight” response to manage the “stressful”
situation. Acutely, these changes are considered advantageous, but
when an organism is subjected to prolonged or chronic stres-
sors, the continuous irregularity in homeostasis is considered
detrimental and leads to metabolic and behavioral disturbances
(McEwen, 2007). Chronic stress is a well-known trigger for depres-
sion in humans, which often involves prolonged over-activation
of the HPA axis, resulting in increased circulating glucocorticoids
(Mazure, 1998; McEwen, 2007). Since its discovery in 1982 by the
late WylieVale and others (Bittencourt,2013), CRF has been shown
to play a key role in the stress response and in major depression
(Nemeroff, 1992; Arborelius et al., 1999; Paez-Pereda et al., 2011).
A major source of CRF expression is the parvocellular neurons of
the paraventricular hypothalamic nucleus (PVN) that project to
the portal circulatory system. In response to stress, CRF is released
which triggers the HPA axis by stimulating the release of adreno-
corticotropic hormone (ACTH) by the pituitary gland. ACTH
binds to receptors in the adrenal gland, which responds by secret-
ing cortisol (corticosterone in rodents). CRF is also expressed
within a number of other brain regions including the extended
amygdala and the raphé nuclei (Cummings et al., 1983; Morin
et al., 1999) and produces a range of extra-pituitary effects via
CRF1 and CRF2 receptors that are broadly expressed throughout
the brain (Chalmers et al., 1995; Van Pett et al., 2000).

Relaxin-3 neurons within the rat NI express high levels of CRF1

receptor (Bittencourt and Sawchenko, 2000; Tanaka et al., 2005;
Ma et al., 2013), and the majority of these neurons are activated
(i.e., display increased relaxin-3 mRNA, Fos immunoreactivity
and/or depolarization) following a restraint stress or icv injec-
tion of CRF (Tanaka et al., 2005; Lenglos et al., 2013; Ma et al.,
2013). Relaxin-3 expression in the NI was also increased fol-
lowing a repeated swim stress, and this effect was blocked via
pre-administration of the CRF1 antagonist, antalarmin (Baner-
jee et al., 2010). NI neurons are also activated by a range of other
stressors, including foot shock, treadmill running, and food depri-
vation (Ryan et al., 2011), although their impact on relaxin-3
expression has not been assessed. Similarly, the responsiveness
of the other relaxin-3 neuron populations has not yet been inves-
tigated. The stress-responsiveness of relaxin-3 neurons appears
highly conserved, as gene microarray analysis of three-spine stick-
leback fish revealed that exposure to a predator markedly increased
relaxin-3 expression in the brain compared to controls (Sanogo
et al., 2011).

Although the precise location and identity of the CRF neu-
rons that innervate relaxin-3 neurons is unknown, the NI receives
strong afferent inputs from the CRF-rich lateral and medial pre-
optic area (Lenglos et al., 2013; Ma et al., 2013), while the close
proximity of the NI to the fourth ventricle suggests that vol-
ume transfer is also possible (Bittencourt and Sawchenko, 2000).
Current data (Lenglos et al., 2013; Ma et al., 2013) and the plas-
ticity of CRF and CRF receptor expression (see Dabrowska et al.,
2013) suggest the level of CRF innervation and activation of the
NI/(relaxin-3) cells may be altered under different physiological
and pathological conditions, along with other aspects of their
overall phenotype.

In addition to responding to stress, relaxin-3/RXFP3 signal-
ing is able to modulate a variety of stress-related responses. In
a recent report, C57B/6J backcrossed relaxin-3 KO mice were
reported to display a “subtle decrease” in anxiety-like behavior
compared to WT controls (Watanabe et al., 2011b), although a
similar phenotype was not observed in a largely parallel study
(Smith et al., 2012). In a more relevant set of experiments which
highlight the anti-depressant potential of relaxin-3/RXFP3 sig-
naling, icv infusion of a specific RXFP3 agonist reduced anxiety-
and depressive-like behavior in rats (Ryan et al., 2013a). These
findings have been partly corroborated by an independent study,
which observed similar reductions in anxiety-like behavior fol-
lowing icv infusion of relaxin-3 in rats (Nakazawa et al., 2013).
These pharmacological effects might be mediated, at least in
part, by actions in the amygdala, which is largely responsi-
ble for conferring anxiety-related symptoms that are commonly
experienced during depression (Holmes et al., 2012). The cen-
tral and medial amygdala displays some of the highest densities
of RXFP3 expression within the rodent brain (Ma et al., 2007;
Smith et al., 2010), and injection of a specific RXFP3 agonist
into the central amygdala reduced the characteristic freezing
fear response displayed by rats when anticipating a foot shock
following conventional auditory fear conditioning (Ma et al.,
2010).

Relaxin family peptide 3 receptor expression is also highly
enriched within the PVN (Ma et al., 2007; Smith et al., 2010),
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and icv injection of relaxin-3 in rats increased CRF and c-fos
mRNA within the PVN and increased plasma ACTH, indicative
of HPA axis activation (Watanabe et al., 2011a). These findings
suggest that although the net sum of behavioral responses fol-
lowing “global” (or intra-amygdala) RXFP3 activation appears
to be anxiolytic/antidepressant in nature (Nakazawa et al., 2013;
Ryan et al., 2013a), RXFP3 signaling can in fact either promote
or attenuate different aspects of the stress response, depend-
ing on the brain region modulated. This feature is shared
with several other neuropeptides. For example, rodent studies
have demonstrated that orexin and galanin signaling can either
increase or decrease anxiety-like behavior, depending on the brain
region(s) targeted (Bing et al., 1993; Möller et al., 1999; Lung-
witz et al., 2012), while icv administration of NPS has been
shown to decrease anxiety while increasing HPA axis activity (Xu
et al., 2004; Smith et al., 2006). NPY (possibly from the arcu-
ate nucleus) can activate the HPA axis via NPY Y1 receptors
expressed on PVN CRF neurons (Albers et al., 1990; Dimitrov
et al., 2007); but icv administration of NPY and a specific Y1
agonist inhibits fear behavior during contextual fear conditioning
(Lach and de Lima, 2013).

High densities of relaxin-3-positive fibers and RXFP3
mRNA/binding sites are also present within several other brain
structures that contribute to the central stress response and
have been implicated in the etiology of anxiety and depression
(Ma et al., 2007; Smith et al., 2010), including the: (i) dorsal
raphé, which contains stress-responsive 5-HT neurons that are
critical for determining depression susceptibility and recovery
(Zhang et al., 2012; Challis et al., 2013); (ii) hippocampus, which
expresses high densities of glucocorticoid receptors and often dis-
plays reduced volume and neurogenesis and impaired function in
depressed patients (Manji et al., 2003; Videbech and Ravnkilde,
2004; Willner et al., 2013); (iii) periaqueductal gray, which is
involved in fear behavior and associated autonomic responses
(Vianna et al., 2001), and which contains relaxin-3 neurons posi-
tive for CRF1/2 immunoreactivity (Blasiak et al., 2013); (iv) bed
nucleus of the stria terminalis, which constitutes a stress inte-
gration center that contains CRF-expressing and other peptide
containing GABA/glutamate neurons, which strongly influence
the PVN and are reportedly dysfunctional in several psychiatric
disorders, including depression, anxiety-disorders, and addiction
(Dunn, 1987; Walker et al., 2009; Koob, 2010; Lebow et al., 2012;
Crestani et al., 2013; Zheng and Rinaman, 2013); (v) medial pre-
optic area, in which neurons also express high levels of CRF and
strongly project to and influence the PVN (Marson and Foley,
2004; Lenglos et al., 2013); (vi) lateral habenula, a key structure
mediating the response to emotionally negative states (Willner
et al., 2013), in which neuron activity was shown recently to be
regulated by levels of β-CaMK II expression and to be suffi-
cient to either induce or alleviate depressive-like symptoms in
rodents, depending on whether these neurons were activated or
inhibited, respectively (Li et al., 2013); (vii) anterior cingulate cor-
tex, which acts to stabilize emotional responses via inhibitory
projections to the amygdala that are often reduced in depressed
patients (Anand et al., 2005; Willner et al., 2013) and; (viii) medial
prefrontal cortex, which is dysfunctional in depressed patients
and strongly projects to the PVN and amygdala to suppress

behavioral responses to stress (Espejo and Minano, 1999). The
medial prefrontal cortex is of additional interest, as it forms a
main source of afferent input into the NI (Goto et al., 2001).
A recent study has also demonstrated that stimulation of CRF1

positive NI neurons that project to the medial prefrontal cortex
(either electrophysiologically or via administration of CRF) act
to inhibit this region, while electrical or CRF-mediated stimu-
lation of the whole NI impaired long term potentiation within
the hippocampo-prelimbic medial prefrontal cortical pathway
(Farooq et al., 2013).

RELAXIN-3 NEURONS MODULATE HIPPOCAMPAL ACTIVITY
A key feature of hippocampal function is a state of synchronous
neuronal firing at theta rhythm (4–10 Hz in humans), which
is required for the hippocampus to mediate its important roles
in memory formation and retrieval, spatial navigation, and
rapid eye movement (REM) sleep (Vertes and Kocsis, 1997).
Hippocampal function is disrupted by elevated circulating glu-
cocorticoids during chronic stress, which can contribute to the
cognitive deficits seen in depression (Murphy et al., 2001; Clark
et al., 2009). Furthermore, a common hallmark of depression
is stress-related increases in REM sleep (Kimura et al., 2010),
which is robustly reduced to normal levels following antide-
pressant treatment (Argyropoulos and Wilson, 2005), an effect
partly mediated by 5-HT signaling (Adrien, 2002). In light of
the critical role that hippocampal theta rhythm plays in nor-
mal neurological function and its propensity for disruption
in disease states, it is not surprising that almost all currently
available anxiolytic and pro-cognitive drugs alter hippocampal
theta rhythm (McNaughton and Gray, 2000). It has in fact
been suggested that this feature can be used as an “output” for
screening the potential effectiveness of new psychoactive drugs
(McNaughton et al., 2007).

The ability of ascending brainstem nuclei such as the reticularis
pontis oralis (RPO) and median raphé to modulate hippocampal
theta rhythm is well established. These functions are mediated
not only by projections to the hippocampus, but also via inner-
vation of several “nodes” of the septohippocampal system such
as the interpeduncular nucleus (IPN), supramammillary nucleus,
posterior hypothalamus, and medial septum (Vertes and Koc-
sis, 1997). In particular, the medial septum has been termed
the hippocampal theta rhythm “pace-maker” and contains pop-
ulations of cholinergic and GABAergic neurons which provide
alternating synchronous excitatory/inhibitory input to recipro-
cally connected hippocampal neurons (Vertes and Kocsis, 1997;
Wang, 2002; Hangya et al., 2009). The NI sits adjacent to, and
is strongly interconnected with, the RPO, median raphé and
IPN, and efferent relaxin-3-positive projections innervate the
hippocampus and the major nodes of the septohippocampal
pathway (Ma et al., 2007; Teruel-Marti et al., 2008; Smith et al.,
2010; Cervera-Ferri et al., 2012), including the medial septum
which displays a high density of relaxin-3 immunoreactive fibers
and terminals which make synaptic contacts with hippocampal-
projecting cholinergic and GABAergic neurons in the rat
(Olucha-Bordonau et al., 2012).

Functional studies have confirmed the regulation of hip-
pocampal theta rhythm by the NI. In anesthetized rats, electrical
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stimulation of the NI induced hippocampal theta rhythm, whereas
electrolytic lesion of the NI blocked the ability of the RPO to
generate hippocampal theta rhythm (Nunez et al., 2006; Teruel-
Marti et al., 2008). In conscious rats with electrolytic lesions of the
NI, theta-dependent behaviors are impaired such as the acqui-
sition of fear extinction in a contextual auditory conditioned
fear paradigm (Pereira et al., 2013). Simultaneous recording of
hippocampal and NI field potentials (Cervera-Ferri et al., 2011)
and electrophysiological recording of NI neurons (Ma et al.,
2013) have also revealed that these two structures are “theta-
synchronized” and individual neurons display coherent firing.
Although it is likely that these actions are primarily conferred
by GABA (or to a much lesser extent, glutamate) transmission of
these septohippocampal-projecting NI neurons (Ma et al., 2007;
Cervera-Ferri et al., 2012), relaxin-3/RXFP3 signaling nonetheless
appears capable of contributing to this functional effect. Our lab-
oratory has shown that local infusion of an RXFP3 agonist into the
medial septum of anesthetized rats promotes hippocampal theta
rhythm, while medial septum infusion of an RXFP3 antagonist in
conscious rats inhibits hippocampal theta and theta-dependent
spatial memory measured in a spontaneous alternation task
(Ma et al., 2009a).

RELEVANCE OF RELAXIN-3/RXFP3 SIGNALING TO SOCIAL
BEHAVIOR AND AUTISM?
In rodents, social behavior is highly dependent upon three aspects
of brain function: (i) arousal, which is required for motiva-
tion to engage in social contact, and mediates appropriate mood
responses (Crawley et al., 1981); (ii) stress responses, which reg-
ulate levels of social withdrawal/anxiety (File and Seth, 2003)
and; (iii) exploration and social recognition, which is associated
with hippocampal theta rhythm activity (Maaswinkel et al., 1997).
Notably, relaxin-3 has been demonstrated to modulate all of these
behavioral aspects.

Abnormal social behavior is associated with depression and is
a key symptom of ASD (Millan et al., 2012; Bishop-Fitzpatrick
et al., 2013). Human imaging studies indicate that autism is often
characterized by structural abnormalities in limbic structures such
as the hippocampus (Haznedar et al., 2000; Ohnishi et al., 2000),
which according to post-mortem studies consists of principal
neurons that are smaller in size and are more densely packed
(Bauman and Kemper, 2005). The amygdala is another major
limbic structure that has been the focus of many human (van
Elst et al., 2000) and animal (Amaral et al., 2003) studies of social
aggression, and in rodent models of autism, hyperexcitability and
enhanced long term potentiation in lateral amygdala neurons has
been reported (Lin et al., 2013). Reduced activity of the anterior
cingulate cortex has been observed in human autistic patients,
which is correlated with deficits in attention and executive con-
trol (Fan et al., 2012). The PVN is another major limbic structure
relevant to autism partly due to the presence of oxytocin neu-
rons, which are crucial for mother-infant bonding (Mogi et al.,
2010) and promote social interaction (Lukas et al., 2011). Autism
is associated with loss of PVN oxytocin neurons (McNamara et al.,
2008), and oxytocin is displaying considerable promise in clin-
ical treatment of this disorder (Yamasue et al., 2012). The PVN
also contains neurons that express vasopressin, which reciprocally

interact with oxytocin neurons and strongly influence social
behaviors such as aggression (Caldwell et al., 2008), suggesting
similar therapeutic potential (Ring, 2011; Lukas and Neumann,
2013).

Relaxin-3/RXFP3 systems are well placed to modulate social
behavior and other symptoms of ASD due to their presence
throughout the limbic hippocampus, amygdala, anterior cingu-
late cortex, and PVN. Particularly intriguing, however, is the
strong link between relaxin-3 and oxytocin. Oxytocin receptors are
expressed within the rat and mouse NI (Vaccari et al., 1998; Yoshida
et al., 2009), and microarray/peptidomics analysis revealed that
the most striking neurochemical change that occurred within the
rat hypothalamus following acute icv infusion of relaxin-3 and
resultant activation of RXFP3 (and RXFP1) was a large (>10-
fold) upregulation of oxytocin (Nakazawa et al., 2013). In contrast,
chronic hypothalamic RXFP3 signaling resulted in an opposite
effect, as viral-mediated hypothalamic delivery of an RXFP3 ago-
nist for 3 months reduced hypothalamic oxytocin mRNA by ∼50%
(Ganella et al., 2013a). Whether some or all oxytocin neurons
express RXFP3 or whether these effects are mediated in part or
in full by indirect actions, remains to be determined experimen-
tally. Similarly, vasopressin neurons may also be targeted by RXFP3
signaling (Ganella et al., 2013a).

Despite the potential for a role of relaxin-3/RXFP3 signaling
in aspects of social behavior, only a single functional study has
thus far been reported, which observed that compared to wildtype
littermate controls, female 129S5:B6 mixed background relaxin-3
KO mice engaged in fewer encounters with a novel mouse in a
social interaction test (Smith et al., 2009). Therefore, further stud-
ies including those that test the therapeutic potential of RXFP3
agonists in validated rodent models of major ASD symptoms are
required. These might also include assessment of aggressive behav-
ior, with the presence of RXFP3 in brain“defensive centers”such as
the amygdala, PAG, and ventromedial hypothalamus (see Future
Studies of Relaxin-3/RXFP3 System).

RELAXIN-3/RXFP3 CONTROL OF FEEDING AND RELEVANCE
FOR EATING DISORDERS?
It is generally accepted that obesity has rapidly reached epi-
demic proportions, but is also one of the leading preventable
causes of death worldwide. Notably, there is evidence that obe-
sity associated metabolic signals markedly increase the odds of
developing depression; and depressed mood not only impairs
motivation, quality of life and overall functioning, but also fur-
ther increases the risks of complications associated with obesity
(Hryhorczuk et al., 2013). Therefore, curbing the global growth
in obesity and associated health problems, and demands on pub-
lic healthcare, is a major challenge which offers huge economic
reward for agencies that develop effective treatments (Kopel-
man, 2000; Carter et al., 2012; Roux and Donaldson, 2012;
Adan, 2013). Conversely, a smaller but important niche exists
for the development of orexigenic agents to treat symptoms
of decreased appetite and/or cachexia associated with cancer
and its treatment, immune deficiency, and anorexia nervosa
(Sodersten et al., 2006).

RXFP3 is present in several hypothalamic feeding centers in
rat brain (Kishi and Elmquist, 2005) including the PVN (Liu
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et al., 2003), lateral hypothalamus, arcuate, and dorsomedial
nuclei (Sutton et al., 2004; Ma et al., 2007). These data prompted
a series of pharmacological studies which consistently demon-
strated that relaxin-3 and selective RXFP3 agonist peptides are
potently orexigenic in rats following acute delivery into the lat-
eral cerebral ventricle (Liu et al., 2005, 2009; McGowan et al.,
2005; Sutton et al., 2009; Shabanpoor et al., 2012; Hossain et al.,
2013) or various hypothalamic regions (McGowan et al., 2007).
Chronic delivery of RXFP3 agonists via repeated intra-PVN injec-
tion (McGowan et al., 2006), osmotic minipump (icv) infusion
(Hida et al., 2006; Sutton et al., 2009), or viral constructs injected
into the PVN (Ganella et al., 2013a) also reliably increase food
consumption and bodyweight, and result in metabolic changes
such as increased plasma levels of leptin, insulin, and adiponectin,
and decreased plasma levels of growth hormone and thyroid
stimulating hormone. Co-administration of RXFP3 antagonists
are able to prevent the increases in feeding induced by acute
RXFP3 agonist injections (Kuei et al., 2007; Haugaard-Jonsson
et al., 2008), but a significant reduction in feeding behavior pro-
duced by acute blockade of endogenous relaxin-3/RXFP3 signaling
in satiated and food restricted rats is yet to be reported; suggesting
a graded impact on this heavily regulated homeostatic behav-
ior. Furthermore, relaxin-3 KO mice (C57BL/6J background) do
not display any overt differences in feeding or bodyweight under
normal housing and dietary conditions (Watanabe et al., 2011b;
Smith et al., 2012), despite an earlier report that mixed (129S5:B6)
background relaxin-3 KO mice fed on a diet with higher than nor-
mal (moderate) fat content were largely resistant to the obesity
observed in WT controls (Sutton et al., 2009). Clearly this is an
important area for further research in normal and other suitable
transgenic mice. A recent study suggested that relaxin-3/RXFP3
signaling may be more important under specific physiological
conditions, as in stressed female rats with intermittent access to
palatable liquid food, relaxin-3 expression in the NI was increased
in food restricted versus ad libitum fed animals (Lenglos et al.,
2013).

Increased feeding is a common side effect of antipsychotic med-
ications (Theisen et al., 2003), and acute atypical (clozapine) and
typical (chlorpromazine and fluphenazine) antipsychotic treat-
ments increased the number of Fos-positive cells in the rat NI
(Rajkumar et al., 2013). On this basis, it was hypothesized that
increased NI activation may be partly responsible for the antipsy-
chotic drug induced increase in feeding behavior, which if correct,
would suggest that relaxin-3/RXFP3 signaling might also play a
role. Further evidence supporting this theory comes from a gene
association study, in which >400 schizophrenia patients undergo-
ing treatment with antipsychotic medications were assessed, many
of whom displayed co-morbid metabolic syndromes (Munro et al.,
2012). Interestingly, a polymorphism within the RXFP3 gene was
significantly associated with obesity, while one polymorphism in
the relaxin-3 gene and two in the RXFP3 gene were significantly
associated with hypercholesterolemia.

In another gene association study, members of a Puerto Rican
family with schizophrenia had a mutation within a chromosome
5p locus, which had earlier been identified in similar studies
of familial schizophrenia-like symptoms (Bespalova et al., 2005).
This locus contains the RXFP3 gene, and although sequencing

of the coding region and proximal promoter did not reveal func-
tionally significant variants, further upstream or downstream pro-
moter regions were not assessed. Antipsychotics block dopamine
D2 receptors and are the primary therapy for psychotic, positive
symptoms (hallucinations/delusions) of schizophrenia (Tandon,
2011; Castle et al., 2013). It is possible, however, that modula-
tion of endogenous relaxin-3/RXFP3 signaling might reduce the
severity of the negative affective symptoms and cognitive deficits
displayed in schizophrenic patients. These putative roles might
be mediated via actions within limbic structures to modulate
relevant neural circuits that regulate theta and other frequency
brain oscillations, to enhance attention, working, and episodic
memory (Ma et al., 2009a; Millan et al., 2012). However, exper-
imental evidence in support of this speculation is yet to be
gathered.

Overall, given the enormity of the obesity epidemic and asso-
ciated health problems and the lack of understanding of, and
effective pharmacological therapies for, eating disorders such as
anorexia nervosa, there is a strong justification for further studies
that involve chronic manipulation of RXFP3 signaling to assess
feeding, metabolism, and body weight.

FUTURE STUDIES OF THE RELAXIN-3/RXFP3 SYSTEM
Considerable experimental evidence obtained over the last decade
suggests that endogenous relaxin-3/RXFP3 signaling promotes
arousal and contributes to the central response to stress, and
the highly conserved nature of this peptide/receptor system sug-
gests it plays important biological roles. Current data suggest
that drugs which act to increase relaxin-3/RXFP3 signaling are
likely to have therapeutic/beneficial effects in a range of clinical
conditions. Like many other complex neuromodulatory (pep-
tide) systems, however, receptor modulation in different brain
regions may confer differential effects; and in a therapeutic context,
increased brain RXFP3 activation may produce both beneficial
and “undesirable” effects. With RXFP3 agonists, in some disorders
these may include increased HPA axis activity (Watanabe et al.,
2011a) and bodyweight gain (McGowan et al., 2005; Ganella et al.,
2012; Lenglos et al., 2013); while with RXFP3 antagonists these
may include decreased arousal and motivation. Therefore, char-
acterizing precise direct and indirect actions of relaxin-3/RXFP3
signaling within the major RXFP3-rich regions of the rodent brain
remains an important long term goal. Similarly, neurons in the
relaxin-3 rich NI express a large array of receptors for transmit-
ters, and monoamine and peptide modulators (Blasiak et al., 2010;
Ryan et al., 2011; Ma et al., 2013), and it will be important to care-
fully assess how these signals are integrated by the NI relaxin-3
system.

Studies which have centrally administered RXFP3 agonists
have mainly employed the icv route, and although it is often
assumed that peptides are able to access receptors throughout
the whole brain (Bittencourt and Sawchenko, 2000), recent stud-
ies in our laboratory using fluorophore-conjugated relaxin family
peptides suggest that periventricular regions such as the PVN
may be exposed to higher concentrations of peptide (Chan et al.,
2013). Although RXFP3 agonists or antagonists have been locally
infused into the bed nucleus of the stria terminalis (Ryan et al.,
2013b), central amygdala (Ma et al., 2010), medial septum (Ma
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et al., 2009a), and hypothalamic nuclei (McGowan et al., 2007)
of rodents, in connection with actions on reward, fear, spa-
tial memory, and feeding, respectively; many other RXFP3-rich
brain regions including those distal to the ventricular system
remain to be targeted, including the median raphé, superior
and inferior colliculus, intergeniculate leaflet, IPN, supramam-
millary nucleus, diagonal band of Broca, fields within the dorsal
and ventral hippocampus, and the retrosplenial and cingulate
cortices (see Figure 1). Intranasal delivery may be a viable alter-
nate route of peptide administration based on recent studies
with insulin, oxytocin/vasopressin and NPS (e.g., Ionescu et al.,
2012), but ultimately, characterization of the net effects of acti-
vating RXFP3 throughout the brain is required, using highly
stable peptides or small synthetic molecules that cross the blood–
brain barrier (Bathgate et al., 2013b) and can be administered
systemically.

In addition to characterizing the function of relaxin-3/RXFP3
at a regional level, it is crucial to characterize the populations
of neurons that express RXFP3 within each nucleus/region, and
whether they are stimulated or inhibited following RXFP3 activa-
tion. Such functional data will provide valuable insights into the
mechanisms of relaxin-3 action, but to date, this has only been par-
tially achieved in the intergeniculate leaflet (Blasiak et al., 2013).
Based on equivalent studies of similar systems such as the orexins,
such features may be complicated, despite the relative simplicity
of the one ligand/one receptor, relaxin-3/RXFP3 system.

In the context of arousal, an RXFP3-rich area of particular
interest is the lateral hypothalamus (Ma et al., 2007; Smith et al.,
2010). If it is assumed that RXFP3 activation inhibits receptor-
positive neurons, then it is possible that relaxin-3/RXFP3 may pro-
mote arousal by directly inhibiting neurons which express MCH,
which act to inhibit arousal (Saito and Nagasaki, 2008). Alterna-
tively, activation of RXFP3 expressed on GABAergic interneurons
which project to and inhibit orexin/dynorphin/(neurotensin) neu-
rons in the area (Alam et al., 2005; Burt et al., 2011; Furutani
et al., 2013), may indirectly disinhibit these neurons, increasing
the activity of these arousal-promoting networks. If, however,
RXFP3 signaling directly stimulates specific target neurons, these
scenarios could be reversed. Similar hypothetical circuits can be
conceived involving sleep active neurons that express galanin in
the ventrolateral preoptic area (Gaus et al., 2002), 5-HT and non
5-HT neurons in the dorsal and median raphé (Morin and Meyer-
Bernstein, 1999; Kirby et al., 2000; Kocsis et al., 2006), and a
host of other systems throughout the brain (Smith et al., 2013b).
Traditional immunohistochemical approaches to achieving this
goal have been hampered, however, as sufficiently sensitive and
specific antisera for RXFP3 are currently unavailable. An alter-
native approach has observed relaxin-3-positive fibers in the rat
medial septum terminating on neurons expressing choline acetyl-
transferase, parvalbumin, and glutamate decarboxylase (Olucha-
Bordonau et al., 2012); but this“indirect”method is labor intensive
and future studies would benefit from the development of an
RXFP3 antibody, or transgenic mice which express a reporter
gene under the control of the RXFP3 promoter (e.g., Chee et al.,
2013).

Acute icv infusion of an RXFP3 agonist decreased the time rats
spent immobile in the Porsolt forced swim test (Ryan et al., 2013a),

which is used to test for putative antidepressant drug action. How-
ever, more recently this measure of “depressive-like” behavior has
been described as having poor predictive, face, and construct valid-
ity (Nestler and Hyman, 2010), particularly as such changes in
behavior are evident in rodents following acute administration
of SSRIs, while these drugs require chronic administration over
weeks in humans before therapeutic effects are observed. It is also
possible that the Porsolt paradigm, which was developed to test
drugs that target monoamine systems, may not be optimal for
assessing drugs that target neuropeptide receptors. Therefore, it
will be important to test the antidepressant potential of acute and
chronic delivery of RXFP3 agonists against behavioral measures
such as anhedonia and aberrant reward-associated perception, and
memory in additional validated rodent models of depression, such
as the chronic unpredictable mild stress, chronic social defeat,
and chronic methamphetamine withdrawal models (Nestler and
Hyman, 2010; Russo and Nestler, 2013) and/or assess effects on
brain activity patterns (McNaughton and Gray, 2000).

Similarly, it will be of interest to assess whether RXFP3 agonists
(or antagonists) can improve social behavior in one or more of the
rodent models of ASD, such as the commonly used BTBR (Silver-
man et al., 2010) and transgenic mouse strains (Peca et al., 2011).
Determining whether RXFP3 antagonists are protective against
the obesity and metabolic syndromes induced by high fat diets in
rodents is also a logical and important goal (Panchal and Brown,
2011; Ganella et al., 2012).

These studies would benefit greatly from the development
of small molecule RXFP3 agonists and antagonists with a sta-
ble in vivo half-life that can cross the blood–brain barrier, and
hence could be administered peripherally. Such compounds would
penetrate the brain more evenly and in a manner more closely
resembling the method that would eventually be adopted in
humans, rather than preferentially accessing regions near the ven-
tricular system, which occurs following icv infusions. Peripheral
delivery methods also circumvent the need for surgical implan-
tation of indwelling guide cannulae in experimental studies. The
development of such compounds has not been reported, however,
despite initial efforts by some groups (e.g., Alvarez-Jaimes et al.,
2012).

In the meantime, further experimental studies are likely to ben-
efit from recently developed and novel methods to manipulate the
relaxin-3/RXFP3 system. For example, the RXFP3 agonist “R3/I5”
has been successfully delivered chronically into the PVN of rats
using an adeno-associated viral construct (Ganella et al., 2013a),
which improves upon previous studies which relied on repeated
injections (McGowan et al., 2006) or osmotic minipump infu-
sions of exogenous peptide (Hida et al., 2006; Sutton et al., 2009),
which are stressful and invasive techniques that can potentially
alter behavior. The development and study of conditional rxfp3
KO mice in which RXFP3 protein could be deleted either glob-
ally or within specific brain regions in adult mice would not only
help characterize the regional role of endogenous relaxin-3/RXFP3
signaling, but should also prevent the “masking” of phenotypes
which may occur due to developmental compensation in life-long
relaxin-3 KO mice (Smith et al., 2012).

The clustered/restricted distribution of relaxin-3 neurons
within the NI readily enables targeting of these neurons with
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injected viral constructs (Callander et al., 2012), which could be
used to drive the expression of virally encoded genes of inter-
est under the control of the relaxin-3 promoter (Tanaka et al.,
2009). Cell type-specific expression of light-gated ion chan-
nels has become a powerful resource for the anatomical and
functional deconstruction of neuronal networks and allows the
structural dynamics and electrical activity of genetically defined
neurons to be manipulated and analyzed on the millisecond
timescale (Zhang et al., 2010; Yizhar et al., 2011a; Kalmbach et al.,
2012). The overall function of relaxin-3 NI neurons could be
similarly assessed via targeted expression of channelrhodopsins
and related functional measures. Similarly, the expression in NI
GABA/relaxin-3 expressing neurons of excitatory and inhibitory
“Designer Receptors Exclusively Activated by Designer Drugs”
(DREADDs; Nawaratne et al., 2008; Sasaki et al., 2011; Farrella
and Roth, 2013; Wess et al., 2013) will allow the effects of acute
and chronic activation/inhibition of these neurons on brain cir-
cuit activity and behavior to be conveniently studied in freely
moving animals. These studies will be important in delineating
whether in the NI, it is relaxin-3 or GABA signaling or GABA
signaling specifically associated with the relaxin-3-expressing neu-
rons that is primarily linked to effects on brain network activity
and changes in behavior (see e.g., GABA/AgRP neurons in
the arcuate nucleus in control of feeding (Atasoy et al., 2012;
Liu et al., 2013).

For effective drug development in the future, the definition and
characterization of depression and antidepressant drug treatment
effects, currently based heavily on symptomatic criteria, needs to
be improved, so that greater emphasis is placed on the underly-
ing dysfunction at the circuit, neuron, and transmitter level (see
Millan et al., 2012; Willner et al., 2013). In this regard, charac-
terizing the potential involvement of novel transmitter systems
such as relaxin-3 in the etiology of depression will be of interest.
Although relaxin-3 and RXFP3 are genetically highly conserved
between rodents and humans, more experiments are needed to
demonstrate conserved functions of these signaling networks. The
anatomical distribution of relaxin-3 and RXFP3 in non-human
primate brain is very similar to that observed in rat and mouse
(Ma et al., 2009b,c); and so “select” studies in non-human pri-
mates should be informative (Willard and Shively, 2012). Further
studies of any potential involvement of relaxin-3 in the etiology
of neurological or psychiatric diseases are also warranted (c.f. Lin
and Sibille, 2013). For example, in addition to comprehensive
searches for polymorphisms in the relaxin-3 or RXFP3 genes that
might result in altered neurotransmission and affective behav-
ior; once suitably validated assays for human relaxin-3 peptide
and/or RXFP3 protein levels are available, studies to determine
whether these are altered in patients who suffer from depression
and other mental disorders could be completed, as potential mark-
ers for dysregulation of relaxin-3/RXFP3 related signaling. Any
such findings would, based on prior experience with other peptide-
receptor systems such as NPS and PACAP (Pape et al., 2010; Ressler
et al., 2011), provide a significant stimulus to this relatively new
area of research.

Finally, there are clear signs in the academic literature and
emerging from government agencies and Pharma that the field
of psychiatric disease research is entering a new era in relation

to better understanding and improved drug and environmental-
based treatments. This involves an emphasis on analyzing the
neural circuitry that causes these brain diseases, rather than a
reliance on more “isolated” conventional neurotransmitter and
receptor based studies or isolated gene-based studies (Millan et al.,
2012; Abbott, 2013; Insel et al., 2013a,b). Thus, newly iden-
tified signaling systems like relaxin-3/RXFP3 will need to be
studied in the context of regulatory impacts on key neural cir-
cuits under physiological and pathological conditions in human
(patient-relevant) and industry-validated experimental models,
and demonstrate genuine efficacy to restore the required balance
of excitatory/inhibitory transmission in one or more diseases.

However, given the relative paucity of new therapeutic drug
discoveries in the field over the last several decades using “older
style” techniques, this recent realization and redirection in psy-
chiatric disease research in some way removes any disadvantage a
“new, little investigated” system such as this might have over other
more exhaustively explored systems. Certainly, based on what is
known regarding the anatomical distribution of relaxin-3/RXFP3
networks and the prominent effects they can demonstrate on
fundamental processes (such as coherent neural firing in the “sep-
tohippocampal system” and associated limbic circuits (Farooq
et al., 2013; Ma et al., 2013) and effects on circadian activity related
circuits (Smith et al., 2012; Blasiak et al., 2013), there is reason for
optimism regarding its ability to be relevant therapeutically and to
attract the attention of major Pharma.

CONCLUSION
The study of neuropeptide-receptor systems is a key area of neu-
ropsychopharmacology research and has revealed the involvement
of several peptide systems in mental illnesses, in addition to iden-
tifying novel targets for their treatment. Relaxin-3 is a highly
conserved neuropeptide in mammalian brain. Relaxin-3 neu-
rons located in the midbrain and pons, innervate a broad range
of RXFP3-rich circuits (hypothalamic, septohippocampal, and
limbic) to modify stress, arousal, and other modalities that are
often dysfunctional in neuropsychiatric diseases. Therefore, fur-
ther elucidating the full array of relaxin-3/RXFP3 network effects
under normal and pathological conditions represents an impor-
tant and promising research goal, which may eventually help
meet the challenges and opportunities for improving the symp-
tomatic treatment of sufferers of conditions such as anxiety and
major depression, and the social and cognitive deficits in neu-
rodevelopmental, and degenerative disorders, by restoring the
required balance of excitatory/inhibitory transmission within the
appropriate neural circuits.
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