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The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial
portion of the temporal lobe, is composed of deep, superficial, and “remaining” nuclei.
This structure is involved in the generation of emotional behavior, in the formation of
emotional memories and in the modulation of the consolidation of explicit memories for
emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial
raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine,
5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family,
which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and
the functional activity of the 5-HT2 receptor family has been studied more extensively than
that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the
5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could
play a critical role in the formation of emotional memories. However, the exact role of the
5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes,
in the modulation of the amygdalar microcircuits requires additional study. The present
review reports data concerning the distribution and the functional roles of the 5-HT2
receptor family in the amygdala.
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INTRODUCTION
The amygdaloid complex (or amygdala), a heterogeneous struc-
ture located in the medial portion of the temporal lobe, is involved
in multiple tasks, such as the generation of emotional behavior,
formation of emotional memories related to fear and anxiety and
modulation of the consolidation of explicit memories for emo-
tionally arousing events (Aggleton, 2000; Whalen and Phelps,
2009). Several neuromodulators, including serotonin, are criti-
cal for amygdalar functions. Many neurological and psychiatric
diseases, especially affective disorders, are characterized by a
dysfunction of the amygdaloid complex and the serotoninergic
system (Sanders and Shekhar, 1995; Jasnow and Huhman, 2001;
Manji et al., 2001; Amaral, 2002; Braga et al., 2002; Hariri et al.,
2002; Pralong et al., 2002; Rainnie et al., 2004; Canli et al., 2005;
Keele, 2005; Kim et al., 2005; Rodrigues Manzanares et al., 2005;
Hariri and Holmes, 2006; Shin et al., 2006; Van Nobelen and
Kokkinidis, 2006). Selective serotonin reuptake inhibitors (SSRIs)
are effective in the treatment of a variety of psychiatric diseases,
such as anxiety disorders, in which the amygdaloid complex may
play a role. Accordingly, it has been shown that the acquisition
of auditory fear conditioning in the rat was enhanced by the SSRI
citalopram when administered in acute cases and reduced when as
administered in chronic cases; indeed, fear conditioning is known
to be a model of emotional learning in which amygdaloid circuits
play an important role (Burghardt et al., 2004). Selective sero-
tonin reuptake inhibitors also reduce conditioned fear through
its effect on the amygdala (Inoue et al., 2004). Moreover, co-
administration of serotonin receptor agonists with paroxetine and

venlafaxine could enhance the therapeutic effects of these drugs
(Dhonnchadha et al., 2005).

ANATOMICAL ORGANIZATION AND MAJOR CELL TYPES OF
THE AMYGDALA
The amygdala is composed of numerous nuclei and areas with dif-
ferent cytoarchitectonic, chemoarchitectonic, and connectional
characteristics. In particular, this structure is composed of deep,
superficial, and “remaining” nuclei (or areas) (Pitkänen, 2000;
Pitkänen and Kemppainen, 2002). The deep nuclei include the
lateral nucleus, the basal nucleus, the accessory basal nucleus,
and the paralaminar nucleus (especially in primates). The lateral,
basal, and accessory basal nuclei constitute the basolateral amyg-
dala. The superficial nuclei include the anterior cortical nucleus,
the nucleus of the lateral olfactory tract, the bed nucleus of the
accessory olfactory tract, the medial nucleus and the posterior
cortical nucleus. The remaining nuclei consist of the anterior
amygdaloid area, the central nucleus, the intercalated nuclei and
the amygdalohippocampal area (Pitkänen, 2000; Pitkänen and
Kemppainen, 2002). Each nucleus can be partitioned into differ-
ent subdivisions, as reported in Table 1 and Figure 1.

The deep nuclei consist of two types of neurons: excita-
tory (glutamatergic) pyramidal cells and inhibitory (GABA[γ-
aminobutiric acid]ergic) non-pyramidal neurons (McDonald,
1992, 1998; Sah et al., 2003; Spampanato et al., 2011). Pyramidal
cells have spiny dendrites, form nearly 80% of the total cell popu-
lation, and act as projection neurons (McDonald, 1992, 1998; Sah
et al., 2003). Non-pyramidal neurons are spine-sparse or aspiny

www.frontiersin.org April 2014 | Volume 5 | Article 68 | 1

http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/journal/10.3389/fphar.2014.00068/abstract
http://community.frontiersin.org/people/u/137012
mailto:cristiano.bombardi@unibo.it
http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Bombardi 5-HT2 receptor family in the amygdaloid complex

Table 1 | Nuclei and nuclear subdivisions of the rat, the monkey and the human amygdala (modified from Pitkänen and Kemppainen, 2002).

Nuclei Rat subdivisions Monkey subdivisions Human

subdivisions

Lateral nucleus (L) Dorsolateral (Ldl)
Medial (Lm)
Ventrolateral (Lvl)

Dorsal
Dorsal intermediate
Ventral intermediate
Ventral

Lateral
Medial

Basal nucleus (B) Magnocellular (Bmc)
Intermediate (Bi)
Parvicellular (Bpc)

Magnocellular
Intermediate
Parvicellular

Magnocellular
Intermediate
Parvicellular

Accessory basal nucleus
(AB)

Magnocellular (ABmc)
Parvicellular (ABpc)

Magnocellular
Parvicellular
Ventromedial

Magnocellular
Parvicellular
Ventromedial

Paralaminar nucleus Absent No subdivisions Lateral
Medial

Bed nucleus of the
accessory olfactory tract

No subdivisions Absent Absent

Medial nucleus (M) Rostral (Mr)
Central dorsal (Mcd)
Central ventral (Mcv)
Caudal (Mc)

No subdivisions No subdivisions

Nucleus of the lateral
olfactory tract (NLOT)

No subdivisions No subdivisions No subdivisions

Anterior cortical nucleus
(COa)

No subdivisions No subdivisions No subdivisions

Periamygdaloid cortex
(PAC)

Periamygdaloid cortex
(PAC)
PAC medial (PACm)
PAC sulcal (PACs)

PAC oral
PAC1
PAC2
PAC3
PAC sulcal

PAC oral
PAC1
PAC3
PAC sulcal

Posterior cortical nucleus
(COp)

No subdivisions No subdivisions No subdivisions

Anterior amygdaloid area
(AAA)

No subdivisions No subdivisions No subdivisions

Central nucleus (CE) Capsular (CEc)
Lateral (CEl)
Intermediate (CEi)
Medial (CEm)

Lateral
Medial

Lateral
Medial

Intercalated nuclei (I) No subdivisions No subdivisions No subdivisions

Amygdalohippocampal
area (AHA)

Lateral (AHAl)
Medial (AHAm)

Dorsal
Ventral

Lateral
Medial

cells, represent approximately 20% of all neurons, and consti-
tute local circuits. These cells have axon collaterals restricted to
the deep nuclei, acting as interneurons (McDonald, 1992, 1998;
Sah et al., 2003; Spampanato et al., 2011). However, recent trac-
ing studies combined with immunohistochemistry have demon-
strated that some GABAergic neurons in the deep nuclei originate

long projections directed to the prefrontal cortex (McDonald,
1987), basal forebrain (McDonald et al., 2012) and mediodor-
sal thalamic nucleus (McDonald, 1987; McDonald and Mascagni,
2007). As in the neocortex and hippocampal region, interneurons
in the deep nuclei can be classified into distinct subpopula-
tions on the basis of their content of calcium binding proteins
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FIGURE 1 | Photomicrographs from thionin-stained coronal sections of

the rat amygdala showing the various nuclei and nuclear subdivision.

Scale bar = 500 μm in (F) (applied to A–F). For abbreviations see Table 1.
The numbers in the lower left corner correspond to the distance from
bregma according to rat brain atlas of Paxinos and Watson (1998).

(calbindin-D28k [CB], parvalbumin [PV] and calretinin [CR]),
and peptides (somatostatin [SOM], cholecystokinin [CCK], neu-
ropeptide Y [NPY], and vasoactive intestinal peptides [VIP]).
The CB- and CR-immunoreactive (IR) interneurons are the
predominant interneuronal subpopulations in the deep nuclei
(Kemppainen and Pitkänen, 2000; McDonald and Mascagni,
2001). The CB-IR neurons can express PV (CB+/PV+) or CCK
(CB+/CCK+) or SOM (CB+/SOM+) (McDonald and Betette,
2001; McDonald and Mascagni, 2002; Mascagni and McDonald,
2003). Similarly, the CR-IR interneurons can be immunopos-
itive for CCK and/or VIP (Mascagni and McDonald, 2003;
Muller et al., 2003). Microcircuits located in the deep nuclei are
tightly regulated through the activity of the interneurons, which
can innervate pyramidal cells as well as other interneurons. In
particular PV-IR interneurons form symmetrical synapses with
perisomatic (cell body, axon initial segment and thick proxi-
mal dendrites) and distal dendritic (small-caliber dendrites and
dendritic spines) domains of pyramidal cells (Muller et al.,
2006). Interestingly, pyramidal cells constitute synapse-like con-
tacts with the perisomatic and distal dendritic domains of the
PV-IR interneurons, in this way constituting a reciprocal con-
nection (McDonald et al., 2005). The PV-IR interneurons also
form interneuronal networks interconnected by electrical (gap
junctions) and chemical synapses (Muller et al., 2005; Woodruff
and Sah, 2007). PV-interneurons of the basolateral amygdala

can be subdivided into four functionally distinct subpopulations.
Fast spiking cells are the most common PV-IR functional cell
type. Interestingly, these cells innervate the perisomatic domain
of pyramidal neurons (Woodruff and Sah, 2007). The CCK-IR
interneurons form synapses with the somata and the proximal
dendrites of the pyramidal cells. The SOM-IR neurons provide
an inhibitory innervation (symmetrical synapses), especially of
the distal dendritic domain (small-caliber dendrites and den-
dritic spines) of pyramidal cells (Muller et al., 2007a). In addition,
SOM-IR axon terminals also contact SOM-, VIP- and PV-IR
interneurons (Muller et al., 2007a). The VIP-IR interneurons
do not innervate pyramidal cells, but form synapses with other
interneurons, especially CCK-positive interneurons (Mascagni
and McDonald, 2003; Muller et al., 2003).

The superficial nuclei exhibit two major cell classes: spiny
pyramidal cells and spine-sparse or aspiny non-pyramidal neu-
rons (McDonald, 1992, 1998; Sah et al., 2003). Pyramidal cells are
glutamatergic projection neurons whereas non-pyramidal neu-
rons represent local inhibitory GABAergic interneurons. These
cells are not randomly organized, as in the deep nuclei, but exhibit
a laminar organization (layers I, II and III) (McDonald, 1992,
1998; Sah et al., 2003). Interestingly, GABAergic projection neu-
rons are also distributed in the superficial nuclei (McDonald et al.,
2012). The medial nucleus does not contain pyramidal and non-
pyramidal neurons but small- to medium-sized ovoid neurons
which possess spiny dendrites (McDonald, 1992, 1998; Sah et al.,
2003).

In the amygdalohippocampal area, pyramidal and non-
pyramidal neurons similar to those located in the deep nuclei
are the two main cell types (McDonald, 1992, 1998). Similarly,
the anterior amygdaloid area contains spiny projection neu-
rons and aspiny interneurons (McDonald, 1992, 1998). Central
nucleus and intercalated masses exhibits striatal-like GABAergic
neurons (McDonald, 1992, 1998; Sah et al., 2003). Moreover,
neurons located in the central nucleus can be subdivided into dis-
tinct subpopulations based on their expression of neuropeptides
(neurotensin, corticotropin-releasing factor, enkephalin, galanin,
SOM, substance P, CCK, and VIP) (Cassell et al., 1986; Cassell and
Gray, 1989).

SEROTONINERGIC INNERVATION OF THE AMYGDALA AND
SEROTONIN RECEPTOR
Serotonin (5-hydroxytryptamine, 5-HT) is a molecule located in
the central nervous system which has the role of a neurotrans-
mitter/neuromodulator. Serotoninergic somata are located along
the midline of the brainstem in cell body groups designated raphe
nuclei. The amygdala receives substantial serotoninergic innerva-
tion originating mainly from the dorsal raphe nucleus and, to
a lesser extent, from the median raphe nucleus (Pralong et al.,
2002; Hensler, 2006; Asan et al., 2013). Within the rat amygdala,
serotoninergic fibers are directed especially in the lateral nucleus,
basal nucleus (magnocellular division) and amygdalohippocam-
pal area (Steinbusch, 1981). On the contrary, in the monkey
amygdala, the highest density of serotoninergic fibers is located
in the central nucleus, the nucleus of the lateral olfactory tract,
the paralaminar nucleus, the anterior amygdaloid area, and the
amygdalohippocampal area (Bauman and Amaral, 2005). In the
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rat basal nucleus (magnocellular and intermediate divisions), an
ultrastructure study has demonstrated that serotonin terminals
contact pyramidal as well as non-pyramidal (PV-IR and VIP-IR)
neurons (Muller et al., 2007b).

The different physiological effects of serotonin are mediated by
seven families of receptors (5-HT1–5-HT7). With the exception of
the 5-HT3A/3B receptors, which are a ligand-gated ion channel,
the serotonin receptors are metabotropic receptors and belong
to the G-protein coupled receptor (GPCR) superfamily (Barnes
and Sharp, 1999; Hoyer et al., 2002). The 5-HT2 receptor fam-
ily contains three receptor subtypes, 5-HT2A (471 amino acids),
5-HT2B (479–504 amino acids) and 5-HT2C (458–460 amino
acids), which exhibit a 46–50% overall sequence identity and
couple preferentially to Gq/11 to increase the hydrolysis of inosi-
tol phosphates and elevate intracellular calcium. 5-HT2 receptors
may also couple to G12/13 which are known to mediate long term
structural changes in cells (Barnes and Sharp, 1999; Hoyer et al.,
2002; Hannon and Hoyer, 2008).

The 5-HT2A receptor is coupled to G-protein and stimulates
phosphoinositide-specific phospholipase C with a consequent
increment of inositol triphosphate (Raymond et al., 2001; Hoyer
et al., 2002; Hannon and Hoyer, 2008). This serotonin receptor
also activates phospholipase D and phospholipase A2 by interact-
ing with additional G-proteins. The 5-HT2A receptor activation
also closes potassium channels, producing neuronal depolariza-
tion (Aghajanian, 1995; Barnes and Sharp, 1999). In addition,
the activations of this receptor subtype increases also cGMP
levels by means of a mechanism dependent on N-methyl-D-
aspartate (NMDA) receptor activation (Regina et al., 2003, 2004).
Interestingly, the 5-HT2A and 5-HT2C receptors are paradoxi-
cally regulated by agonists and antagonists (Gray and Roth, 2001;
Van Oekelen et al., 2003).

EXPRESSION OF 5-HT2 RECEPTOR SUBTYPES IN THE
AMYGDALOID COMPLEX
The amygdaloid complex expresses moderate to high density of
serotonergic receptors including 5-HT1A, 5-HT2, 5-HT3, 5-HT4,
and 5-HT6 (Pralong et al., 2002).

Using autoradiography, in situ hybridization and immunohis-
tochemistry, it has been demonstrated that 5-HT2 receptor family
mRNA and protein are present in the amygdala. Interestingly, the
expression of the 5-HT2A and 5-HT2C receptors varied during
postnatal development in the rat amygdaloid complex (Li et al.,
2004).

DEEP NUCLEI
An autoradiographic study has demonstrated a 5-HT2 receptor
binding site in rat deep nuclei, especially in the lateral nucleus
(Pazos et al., 1985). In rodents, the presence of the 5-HT2 receptor
in the lateral, basal and accessory basal nuclei was also veri-
fied with in situ hybridization experiments (Wright et al., 1995).
Autoradiography and in situ hybridization studies have reported
that binding sites and 5-HT2A receptor mRNA are present in the
lateral (dorsomedial division) and basal (magnocellular division)
nuclei (Lopez-Gimenez et al., 2001). Pompeiano et al. (1994)
have reported the presence of the 5-HT2C receptor mRNA in
rat deep nuclei, with the highest levels in the lateral nucleus.

Interestingly, these Authors failed to find 5-HT2A receptor mRNA
in the same nuclei. Radioactive in situ hybridization studies on
the rat (Greenwood et al., 2012) and the mouse (Li et al., 2003)
amygdala have shown that the 5-HT2C receptor mRNA is located
in the lateral nucleus and, to a lesser extent, in the basal nucleus.
Using non-radioactive in situ hybridization procedures, the high-
est number of cells containing 5-HT2C receptor mRNA in the rat
amygdala has been observed in the lateral and accessory basal
nuclei. On the contrary, only a few 5-HT2C receptor mRNA-
reactive cells have been reported in the rat basal nucleus (Bonn
et al., 2012, 2013). 5-HT2C receptor mRNA has been reported in
the deep nuclei of the human amygdala (Pasqualetti et al., 1999).

In rat deep nuclei, immunoreactivity for the 5-HT2A recep-
tor is located in pyramidal and non-pyramidal neurons (Morilak
et al., 1993; Cornea-Hébert et al., 1999; Xu and Pandey, 2000;
McDonald and Mascagni, 2007; Jiang et al., 2008; Bombardi,
2011; Bombardi and Di Giovanni, 2013). In the rat, 100% of
the pyramidal cells express the 5-HT2A receptor (McDonald
and Mascagni, 2007; Bombardi, 2011). The 5-HT2A receptor is
abundant in the apical dendrites of pyramidal cells (McDonald
and Mascagni, 2007; Bombardi, 2011) where it may amplify the
impact of excitatory synaptic currents.

In rat deep nuclei, 5-HT2A receptor immunoreactivity has
been observed in GABAergic interneurons (in somata and
dendrites) and GABAergic projection neurons (Morilak et al.,
1993; McDonald and Mascagni, 2007; Bombardi, 2011). The
GABAergic interneurons are present in the lateral, basal and
accessory basal nuclei where the 5-HT2A receptor is expressed by
66.3, 70.6, and 66.4% of interneurons, respectively (Bombardi,
2011). These interneurons are particularly abundant in the
medial subdivision of the lateral nucleus (74.7% of interneu-
rons) and in the parvicellular and magnocellular subdivisions of
the basal nucleus (73.8 and 71.9% of interneurons, respectively)
(Bombardi, 2011). In the rat amygdala, 59.8% of PV-IR neu-
rons in the medial subdivision of the lateral nucleus, and 75.6%
of PV-IR neurons in the magnocellular subdivision of the basal
nucleus exhibit the 5-HT2A receptor (McDonald and Mascagni,
2007). On the contrary, only 33.1% of SOM-IR neurons in
the lateral nucleus (medial subdivision), and 32.6% of SOM-
IR neurons in the basal nucleus (magnocellular subdivision),
express the 5-HT2A receptor (McDonald and Mascagni, 2007).
The GABAergic/5-HT2A receptor-IR projection neurons are espe-
cially distributed near the external and internuclear borders of the
rat basolateral amygdala and project to the mediodorsal thalamus
(McDonald and Mascagni, 2007).

5-HT2C receptor-IR neurons, possibly pyramidal cells, have
been observed in rat lateral and basal nuclei (Clemett et al., 2000).

Superficial nuclei
In the rat, 5-HT2 receptor mRNA levels are moderate in every
superficial nuclei (Wright et al., 1995). In rat superficial nuclei,
5-HT2A receptor mRNA is detectable only in the bed nucleus
of the accessory olfactory tract where it is strongly expressed
(Pompeiano et al., 1994). On the contrary, 5-HT2C receptor
mRNA is located in different superficial nuclei, such as the ante-
rior cortical nucleus, the bed nucleus of the accessory olfactory
tract and the medial nucleus. In particular, 5-HT2C receptor
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mRNA levels are high in the bed nucleus of the accessory olfactory
tract, intermediate in the medial nucleus and low in the ante-
rior cortical nucleus (Pompeiano et al., 1994). Autoradiographic
analyses of the rat brain have demonstrated the presence of the
5-HT2 receptor binding sites especially in the anterior cortical
nucleus, but also in other superficial nuclei (Pazos et al., 1985).
Immunoreactivity for the 5-HT2A receptor has been observed in
every superficial nucleus of the rat amygdala. However, a high
density of immunopositive neurons is present, especially in the
nucleus of the lateral olfactory tract and in the bed nucleus of
the accessory olfactory tract (Morilak et al., 1993; Cornea-Hébert
et al., 1999; Bombardi, 2011). Using in situ hybridization proce-
dures, high levels of 5-HT2C receptor mRNA have been observed
in the medial nucleus and in the anterior cortical nucleus of
the rodent amygdala (Li et al., 2003; Bonn et al., 2012, 2013;
Greenwood et al., 2012). Accordingly, many 5-HT2C receptor-
IR neurons are located in the rat medial nucleus (Clemett et al.,
2000). A moderate level of 5-HT2C receptor-IR neurons has
also been observed in the posterior cortical nucleus of the rat
amygdala (Clemett et al., 2000).

As in the deep nuclei, the 5-HT2A receptor is also expressed
in pyramidal and non-pyramidal neurons in the rat superfi-
cial nuclei (Bombardi, 2011). Pyramidal cells are especially dis-
tributed in the nucleus of the lateral olfactory tract (layer II),
the anterior cortical nucleus (layers II and III), the periamyg-
daloid cortex (layers II and III) and the posterior cortical nucleus
(layers II and III) (Bombardi, 2011). In these cells, the 5-HT2A

receptor is strongly expressed in the apical dendrites where it
may induce excitatory synaptic currents. The 5-HT2A receptor-
IR non-pyramidal neurons are distributed in the nucleus of the
lateral olfactory tract, the anterior cortical nucleus, the periamyg-
daloid cortex and the posterior cortical nucleus. These cells are
heterogeneous in shape (multipolar and fusiform) and size (from
small to large), and are particularly abundant in layers II and III
(Bombardi, 2011). Since the cell types in the medial nucleus are
not cortex-like as in the other superficial nuclei, 5-HT2A receptor-
IR pyramidal and non-pyramidal neurons are not present in this
nucleus (McDonald, 1992, 1998; Sah et al., 2003). Accordingly,
the rat medial nucleus contains 5-HT2AR-IR principal neurons
with ovoid cell bodies (Bombardi, 2011). The rat medial nucleus
is the only amygdaloid area containing 5-HT2B receptor-IR neu-
rons. These cells are numerous and show a multipolar and bipolar
morphology (Duxon et al., 1997a).

Remaining nuclei
In the rat amygdalohippocampal area, the presence of the 5-HT2A

receptor has been demonstrated only with immunohistochem-
ical procedures which have revealed many 5-HT2A receptor-IR
neurons with angular- and ovoid-shaped cell bodies (Bombardi,
2011). The rat amygdalohippocampal area also contains a high
density of 5-HT2C receptor-IR neurons (Clemett et al., 2000).
A moderate level of 5-HT2A receptor mRNA has been revealed
in the rat central nucleus (Wright et al., 1995). Accordingly,
immunohistochemical procedures have demonstrated the pres-
ence of many 5-HT2A receptor-IR ovoid somata in the different
subdivisions of the rat central neurons (Cornea-Hébert et al.,
1999; Bombardi, 2011). These cells could be GABAergic local

neurons as well as GABAergic projecting neurons (Bombardi,
2011). Cells containing 5-HT2C receptor mRNA have been
observed in the rat central nucleus where they are particularly
numerous in the lateral capsular subdivision (Bonn et al., 2012,
2013). Both 5-HT2A and 5-HT2C receptor mRNA are present at
low density in the rat amygdalohippocampal area. Accordingly,
pyramidal and non-pyramidal neurons of the rat amygdalohip-
pocampal area contain the 5-HT2A receptor (Bombardi, 2011).
In the rat intercalated nuclei, 5-HT2C receptor mRNA is present
at a low density while 5-HT2A receptor mRNA has not been
detected (Pompeiano et al., 1994). A different distribution of the
5-HT2A receptor has been observed using immunohistochemi-
cal procedures. In fact, Xu and Pandey (2000), and Bombardi
(2011) have observed that small and large neurons in the rat inter-
calated nuclei express the 5-HT2A receptor. The rat intercalated
nuclei contain only weak 5-HT2C receptor mRNA-reactive cells
(Bonn et al., 2012, 2013). These data are in disagreement with
immunohistochemical studies showing that intercalated nuclei
contain a high density of 5-HT2C receptor-IR neurons (Clemett
et al., 2000).

EFFECT OF 5-HT2 RECEPTOR FAMILY ACTIVATION ON
AMYGDALAR NEURONS AND MICROCIRCUITS
Serotonin influences amygdalar information processing by acti-
vating multiple 5-HT2 receptor subtypes. Inasmuch as the amyg-
daloid microcircuits are complex and the expression patterns
of the 5-HT2 receptor subtypes are not fully characterized, the
mechanisms by which 5-HT2 receptor subtypes modulate amyg-
dalar neurotransmission remains poorly understood. This modu-
lation is complex and has been studied especially for 5-HT2A and
5-HT2C receptors.

Electrophysiological studies have demonstrated that the 5-
HT2A receptor activates the pyramidal cells of the deep nuclei.
In fact, the local injection of 1-(2,5-dimethoxy-4-iodophenyl)-
2-aminopropane (DOI), a 5-HT2A/5-HT2C receptors agonist,
increases the discharge rate (Stein et al., 2000) and facilitates
synaptic plasticity via an NMDA-mediated mechanism (Chen
et al., 2003) in presumptive pyramidal neurons of the rat baso-
lateral amygdala.

The 5-HT2 receptor family also modulates the excitability
of GABAergic interneurons in the deep nuclei. In fact, electro-
physiological studies have demonstrated that the application of
α-methyl-5-hydroxytryptamine (a 5-HT2 receptor agonist) and
DOI (a 5-HT2A/5-HT2C receptor agonist), induces the activa-
tion of GABAergic interneurons of the rat basolateral amygdala
(Rainnie, 1999; Stein et al., 2000; Sokal et al., 2005). In addition,
the stimulation of the 5-HT2A receptor increases the frequency
and amplitude of spontaneous inhibitory postsynaptic currents
(sIPSCs) recorded from the pyramidal neurons of the juvenile
rat basolateral amygdala (Jiang et al., 2008). Accordingly, the
inhibition of pyramidal cell firing in the lateral nucleus of the
rat amygdala obtained after the local application of serotonin is
blocked by the simultaneous application of bicuculline methio-
dide, a GABA antagonist (Stutzmann and LeDoux, 1999). The
activation of GABAergic interneurons of the corticomedial amyg-
dala has been demonstrated by iontophoretic injections of DOI
(Stein et al., 2000).
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Amygdala microcircuitry has not been studied as extensively
as that of the neocortex and hippocampal region. However,
numerous studies report that the amygdala circuit organization
combines cortex-like (deep nuclei, the majority of the superfi-
cial nuclei and the amygdalohippocampal area) and striatum-like
structures (central nucleus and intercalated nuclei) (McDonald,
1992, 1998; Sah et al., 2003). Since these amygdaloid areas provide
numerous intra-amygdaloid and extra-amygdaloid connections,
the amygdala is considered to be the interface of the informa-
tion exchange between the various functional systems of the brain
(Pitkänen, 2000). Traditionally, the extra-amygdaloid afferents
(all the modalities of sensory inputs and polymodal inputs) tar-
get the input side of the amygdala (deep and superficial nuclei)
where they are processed locally and then directed, by intra-
amygdaloid connections, to the medial and central nuclei which
act as an output station. The medial nucleus especially projects
to the hypothalamic neuroendocrine zone whereas outputs from
the central nucleus especially innervate the hypotalamic and

brainstem nuclei which regulate autonomic functions (Pitkänen,
2000; Figure 2).

The distribution of the 5-HT2 receptor previously reported
indicates that this receptor could modulate amygdala activity
acting on projection neurons (pyramidal neurons of cortex-like
structures and GABAergic projection neurons of the basolateral
amygdala and striatum-like structures) as well as on inhibitory
interneurons (in particular, GABAergic interneurons of the
cortex-like structures). The distribution of the 5-HT2 receptor
family has been studied more extensively for 5-HT2A receptor
subtype, especially in the rat basolateral amygdala (Figure 3). In
the microcircuits of the rat deep nuclei, the 5-HT2A receptor is
located on both pyramidal and non-pyramidal neurons. The non-
pyramidal neurons containing this receptor express PV and SOM
(McDonald and Mascagni, 2007). As previously reported, the
PV–IR interneurons innervate the perisomatic domain (cell body
and proximal dendrites) of pyramidal cells (Muller et al., 2006).
Moreover, these interneurons are connected by gap junctions and

FIGURE 2 | Summary of the main extra-amygdaloid and intra-amygdaloid connections in the rat. For abbreviations see Table 1.
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FIGURE 3 | Schematic drawing of a neuronal microcircuit

expressing the 5-HT2A receptor in the rat basolateral amygdala.

The 5-HT2A receptor is located in excitatory (pyramidal cells) as well
as inhibitory neurons. In particular, this receptor is expressed by
GABAergic interneurons which innervate the initial axonal segment
(parvalbumin-immunoreactive [IR] chandelier cells), the cell body and
proximal dendrites (parvalbumin-IR basket cells), and the distal
dendrites (somatostatin-IR cells; parvalbumin-IR interneurons) of the
pyramidal cells. Note the reciprocal perisomatic connection between
pyramidal cells and parvalbumin-IR interneurons (chandelier and basket
cells).

constitute an inhibitory network which synchronizes the firing of
pyramidal cells (Woodruff and Sah, 2007). Interestingly, most of
the pyramidal neurons form intimate synapse-like contacts with
the somata and dendrites (especially proximal dendrites) of the
PV–IR interneurons (McDonald et al., 2005), in this way, consti-
tuting a reciprocal perisomatic connection which may be impor-
tant in modulating the synchronized rhythmic activity associated
with the formation of emotional memories (Paré and Collins,
2000; Paré et al., 2002; Rainnie et al., 2006). In the rat basolateral
amygdala, SOM–IR interneurons innervate the distal dendritic
domain of pyramidal cells and could modulate synaptic mech-
anisms related to emotional learning, including fear conditioning
(Paré et al., 2002; Muller et al., 2007a). Since the 5-HT2A receptor
is located on PV-IR and SOM-IR interneurons, this receptor sub-
type could play an important role in the formation of emotional
memories.

5-HT2 RECEPTOR FAMILY AND AMYGDALA-MEDIATED
BEHAVIOR
The involvement of the 5-HT2 receptor family in numerous
amygdala-mediated behavioral and physiological effects has been
described in several reports. This receptor family plays a crucial
role, especially in fear and anxiety. Local infusion of ketanserin
(a 5-HT2 receptor family antagonist) induces an anxiolytic effect

in the conflict test (Hodges et al., 1987). Microinjections of
nefazodone (a 5-HT2 receptors antagonist) into the basolateral
nucleus of the rat amygdala enhances the aversive responses
induced by NMDA activation of the neural substrates of aversion
in the inferior colliculus (Maisonnette et al., 2000). In different
mouse models of anxiety, the 5-HT2A receptor mediates different
anxiolytic-like effects (Dhonnchadha et al., 2003a,b). Moreover,
bilateral injections of ketanserin (a 5-HT2A and 5-HT2C receptors
antagonist) into the rat basolateral/medial amygdala produces
an anxiogenic profile in an elevated plus-maze (Zangrossi and
Graeff, 1994).

The 5-HT2A receptor is also implicated in kindling develop-
ment from the rat amygdala since the subcutaneous injection
of DOI, an agonist of 5-HT2A/2C receptors, facilitates kindling
development and reduces the number of amygdaloid stimulations
necessary to obtain generalized seizures (Wada et al., 1997).

It is known that direct or indirect projections from the cen-
tral nucleus of the amygdala to the paraventricular nucleus of
the hypothalamus mediate a stress response. In vivo microdialysis
studies have demonstrated that there is an increase in serotonin
release in the amygdala during stress (Kawahara et al., 1993).
Accordingly, the 5-HT2A receptor located in the central nucleus
of the rat amygdala is able to activate the hypothalamo-pituitary-
adrenocortical axis (Feldman et al., 1998). Finally, in the rat
basolateral amygdala, the 5-HT2A receptor-mediated serotonin-
ergic facilitation of GABAergic synaptic transmission is impaired
by stress (Jiang et al., 2008).

The 5-HT2B receptor is also involved in amygdala-mediated
behavior. In fact, the activation of this receptor subtype causes
anxiolysis in social interaction tests in the rat (Duxon et al.,
1997b).

CONCLUSIONS
The present review reported that the 5-HT2 receptor fam-
ily plays a crucial role in regulating the activity of amygdalar
microcircuits and projections. In fact, as in the cerebral cor-
tex and the hippocampal regions (Willins et al., 1997; Hamada
et al., 1998; Jakab and Goldman-Rakic, 1998, 2000; Cornea-
Hébert et al., 1999; Clemett et al., 2000; Xu and Pandey, 2000;
Jansson et al., 2001; Miner et al., 2003; Lüttgen et al., 2004;
Bombardi, 2012), excitatory as well as inhibitory neurons in the
rat amygdala express the 5-HT2 receptor family. Nevertheless,
the exact role of the 5-HT2 receptor family in the modula-
tion of amygdala activity is still poorly understood and requires
additional study. In this way, detailed knowledge of the cellu-
lar mechanism underlying the modulation of amygdalar activity
mediated by the 5-HT2 receptor family could provide valuable
information for better understanding the pathogenesis of affec-
tive disorders and for utilizing a more specific pharmacological
treatment.
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