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A ubiquitous post-translational modification observed in proteins is isomerization of
aspartic acid to isoaspartic acid (isoAsp).This non-enzymatic post-translational modification
occurs spontaneously in proteins and plays a role in aging, autoimmune response,
cancer, neurodegeneration, and other diseases. Formation of isoAsp is also a significant
issue for recombinant monoclonal antibody based protein therapeutics particularly when
isomerization occurs in a complementarity-determining region due to potential impact to
the clinical efficacy. Here, we present and compare three analytical methods to monitor
and/or quantify isoAsp formation in a monoclonal antibody. The methods include two
peptide map based technologies with quantitation from either UV integration or total ion
peak areas, as well as an alternative approach using IdeS digestion to generate Fc/2 and
Fab’2 regions, followed by hydrophobic interaction chromatography (HIC) to separate the
population of Fab’2 containing an isoAsp. The level of isoAsp detected by the peptide
map and the digested-HIC methods presented here show similar trends although sample
throughput varies by method.
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INTRODUCTION
There is an increasing number of monoclonal antibody (IgG)
based protein therapeutics undergoing clinical trials, or under
development making them one of the fastest growing classes of
protein therapeutics (Beck et al., 2008). To ensure safety and effi-
cacy all protein therapeutics are required to be well characterized
to demonstrate both process control and molecule stability. A sig-
nificant concern impacting molecule stability is post-translational
modifications, such as protein oxidation of methionines and/or
tryptophans, deamidation of asparagines, and isomerization of
aspartic acid (Asp), all of which can result in alterations to protein
structure and function (Walsh and Jefferis, 2006; Schneider and
Kalinke, 2008; Jefferis, 2009).

Isomerization of Asp to isoaspartic acid (isoAsp) is a non-
enzymatic post-translational modification that occurs sponta-
neously in proteins. The isomerization process occurs via a cyclic
succinimide intermediate, which undergoes hydrolysis to isoAsp
and Asp typically in a 3:1 ratio. Formation of isoAsp inserts an
extra methylene group into the protein backbone with a cor-
responding shortening of the Asp side chain by one methylene
group (Geiger and Clarke, 1987; Johnson et al., 1989; Oliyai and
Borchardt, 1994; Reissner and Aswad, 2003). This results in defor-
mation in the protein structure which can impact protein function.
For example, isoAsp has been postulated to play a central role
in β-amyloid aggregation and neurodegenerative disorders such
as Alzheimer’s disease (Roher et al., 1993a,b). Conversion of Asp
to isoAsp in the complementary-determining regions (CDRs) of
therapeutic antibodies has also been shown to decrease recep-
tor binding and therefore efficacy (Cacia et al., 1996; Harris et al.,
2001).

Antibody CDRs are responsible for antigen binding and are
highly variable regions located in both the antibody heavy chains
(HCs) and light chains (LCs). As a result of their function in
antigen binding, CDR residues are located on loops that are acces-
sible to the environment, making them susceptible to degradations
including isomerization of Asp. Not surprisingly, incorporation
of the extra methylene group into the antibody CDR back-
bone and subsequent reorientation of the side chains has been
observed to impact receptor binding (Cacia et al., 1996; Har-
ris et al., 2001; Wakankar et al., 2007a,b). Extensive studies have
been performed on the kinetics of Asp isomerization and have
shown that structural location in a loop as well as a glycine or
a serine in the n+1 position are the most favorable for isomer-
ization, presumably from the increased conformational flexibility
afforded by the loop structure and the smaller side chain at n+1
(Geiger and Clarke, 1987; Stephenson and Clarke, 1989; Oliyai and
Borchardt, 1994; Brennan and Clarke, 1995; Aswad et al., 2000;
Robinson and Robinson, 2001). Although parameters including
temperature and pH have been investigated and shown Asp iso-
merization increases in mildly acidic buffers, these buffers are the
favored formulation for antibodies because other modifications
including aggregation, oxidation and deamidation tend to be min-
imized at pH 4-6 (Shire et al., 2004; Wakankar and Borchardt,
2006).

Analytical techniques to detect and quantify isoAsp are chal-
lenging primarily because isomerization of Asp to isoAsp does
not change the net charge or mass of the molecule. Despite this
challenge several methods have taken advantage of the structural
change associated with isomerization to separate intact antibodies
with isoAsp residues from those without isomerizations including
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ion exchange and hydrophobic interaction chromatography (HIC;
Harris et al., 2001; Wakankar et al., 2007a; Valliere-Douglass et al.,
2008). However, these methods do not always provide good
separation and quantitation of isoAsp particularly at low levels.
Therefore, the method most frequently used to detect iosAsp in
proteins is peptide mapping involving enzymatic digestion fol-
lowed by reversed-phase liquid chromatography coupled to mass
spectrometry. In a peptide map depending on chromatography
conditions, peptides with isoAsp will often elute earlier than the
unmodified peptide (Sadakane et al., 2003; Rehder et al., 2008;
Ni et al., 2010). In addition, recent advances in electron transfer
dissociation (ETD) mass spectrometry can be used to generate a
single pair of reporter ions that are unique to isoAsp, providing
an unambiguous identification of the isoAsp containing peptide
(Ni et al., 2010). Although peptide mapping is the most power-
ful tool in isoAsp analysis it can be very time consuming and
may itself actually cause sample degradations during preparation
and analysis (Chelius et al., 2005). Therefore, peptide mapping
may not always be practical when a large number of samples
are needed for analysis. In this study, we compare three ana-
lytical methods to detect and quantify isoAsp formation. The
methods include a product specific 30 min focused peptide map
with UV detection, a non-product specific longer peptide map
with quantitation by total ion peak area, and a new method
utilizing IdeS enzyme. IdeS is an endoproteinase highly specific
for a single peptide bond just below the antibody hinge region
resulting in the generation of Fc/2 and the Fab’2 regions that
can then be separated by HIC (Chavreux et al., 2011). Trending
between the levels of isoAsp detected by these three characteri-
zation methods indicates that based on the desired throughput
and accuracy analysts have multiple viable options for isoAsp
quantitation.

EXPERIMENTAL PROCEDURES
RECOMBINANT ANTIBODIES
The monoclonal antibody used in this study was stably expressed
in Chinese hamster ovary (CHO) cells and purified using con-
ventional techniques (Shukla et al., 2007). Purified antibody was
formulated in sodium acetate buffer at pH 5.2 with sorbitol.

PROTEASE DIGESTION AND PEPTIDE MAP
Antibody was reduced and alkylated prior to peptide map anal-
ysis as described previously and digested at 37◦C for 30 min in
the presence of 1 M urea and a 1:10 (w/w) ratio of recombinant
trypsin (Roche, Basel, Switzerland) to antibody (Valliere-Douglass
et al., 2009). Peptides were separated using a Waters BEH C18
1.7 μm, 2.1 × 150 mm column at 50◦C on a Waters UHPLC
(Waters, Milford, MA, USA). For the focused isoAsp method
the flow rate was 0.2 ml/min and the mobile phases were 0.1%
TFA in water (A) and 0.1% TFA in acetonitrile (B). Peptides were
eluted from the column in a linear gradient from 20 to 30% B
over 15 min and were identified using a Thermo LTQ XL mass
spectrometer (Thermo Scientific, Waltham, MA, USA) acquiring
MS/MS spectra with collision-induced dissociation (CID) using
data dependent acquisition. Quantitation of isoAsp was based
on UV integration and reported as percent area of the modi-
fied peptide divided by the sum of the modified and unmodified

peptides. Sample preparation and chromatography column for the
non-product specific longer peptide map was as described above.
Peptides were separated at a flow rate of 0.15 ml/min with 0.1%
formic acid in water (A) and 0.1% formic acid in acetonitrile (B).
Peptides were eluted from the column in a linear gradient from 10
to 45% B over 44 min and were identified using a Thermo Exac-
tive Plus mass spectrometer (Thermo Scientific, Waltham, MA,
USA). Quantitation of isoAsp was based on the total ion peak
areas from extracted ion chromatograms of the dominant isotopic
peaks from multiple charge states using commercially available
software (PinPoint software, Thermo Scientific, Waltham, MA,
USA). Percent isoAsp was calculated as a relative percent of the
total ion area of the modified peptide divided by the sum of the
total ion area from the modified plus unmodified peptides. All
mass spectrometers were calibrated with commercially available
calibration mix (Thermo Scientific, Waltham, MA, USA). Method
robustness was evaluated using a design of experiment (DOE)
based approach to determine the impact of changes to reduc-
tion, alkylation and digestion time and temperature, enzyme to
substrate ratio, enzyme lot, and column lot. The method demon-
strated robustness as analyzed by ANOVA using standard statistical
software to ±10% of the nominal conditions. In addition, the
method demonstrated specificity, linearity, repeatability, interme-
diate precision. The limit of detection (LOD) was calculated at
0.5 μV and the limit of quantitation (LOQ) was calculated as
0.4%.

isoAsp IDENTIFICATION
Sample preparation and peptide map separation were carried out
as described above, except the eluted peptides were split using an
Advion Nanomate fraction collection robot (Advion Biosciences,
Ithica, NY, USA). Briefly, the flow was split and 150 nL was ana-
lyzed on-line with a Thermo LTQ XL mass spectrometer with ETD
capability (Thermo Scientific, Waltham, MA, USA). The remain-
ing volume was collected in a 96-well plate for off-line analysis.
The peptide containing isoAsp and the non-isomerized peptide
were analyzed by MS using the Nanomate in static-nanospray
infusion mode using ETD fragmentation with supplemental
activation.

HYDROPHOBIC INTERACTION CHROMATOGRAPHY
Isolation of stressed antibody containing ∼40% isoAsp was per-
formed using two Dionex ProPac HIC-10 7.8 × 75 mm HIC
columns in series (Dionex, Sunnyvalem, CA, USA). Samples were
separated at a flow rate of 0.5 ml/min on an Agilent 1100 HPLC
(Agilent Technologies, Santa Clara, CA, USA). The mobile phases
for separation were 1 M ammonium sulfate 10 mM acetate pH
5.2 (A) and 10 mM acetate pH 5.2 (B). 50 μg of sample mixed
1:1 with mobile phase A was bound to the column equilibrated
in 100% mobile phase A. Samples were eluted in a linear gradi-
ent of 40–60% B over 40 min. The separation was monitored by
absorbance at 280 nm. Peaks fractionated from HIC for subse-
quent analysis were immediately buffer exchanged into sodium
acetate buffer at pH 5.2 with sucrose. Analytical HIC separation
was performed using two Dionex ProPac HIC-10 4.6 × 100 mm
HIC columns in series (Dionex, Sunnyvalem, CA, USA). Samples
were separated on a Waters Alliance HPLC (Waters, Milford, MA,
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USA) using the mobile phases, flow rate and gradient described
above.

PROTEASE DIGESTION AND HIC
Sixty micrograms of antibody was digested into the Fc/2 and Fab’2
by 60 U of IdeS (Genovis, Lund, Sweden) at 37◦C for 30 min
(Chavreux et al., 2011). Digestions were carried out in 50 mM
sodium phosphate, 150 mM sodium chloride pH 6.6. Following
digestion samples were analyzed by HIC as above. Method robust-
ness was evaluated using a DOE based approach to determine the
impact of changes to digestion buffer pH, digestion time, digestion
temperature, reduction buffer concentration, reduction tempera-
ture, and reduction time. The method demonstrated robustness as
analyzed by ANOVA using standard statistical software to ±10% of
the nominal conditions for all parameters except digestion temper-
ature. At 5◦C under the nominal digestion temperature the level of
undigested material increased by 2.5% indicating control of diges-
tion temperature is needed for digestion efficiency. In addition,
the method demonstrated specificity, retention time repeatability
and accuracy. The LOD was calculated at 0.6 μV and the LOQ was
calculated as 0.2%.

INTACT MASS
Hydrophobic interaction chromatography fractions were desalted
prior to mass analysis by analytical size exclusion chromatog-
raphy (SEC) coupled to an electrospray ionization (ESI) source
TOF/MS (Brady et al., 2008). Briefly, 10 μg of sample was injected
onto a BEH 1.7 μm, 4.6 × 150 mm SEC column (Waters,
Milford, MA, USA). Samples were eluted isocraticly in 15% ace-
tonitrile, 0.1% formic acid at a flow rate of 0.4 mL/min directly
into an Agilent TOF/MS (Agilent, Santa Clara, CA, USA). Raw
MS data was deconvoluted with MassHunter Qualitative Analysis
software.

RECEPTOR BINDING
The antibody used in this study was developed to target a cell
surface receptor; therefore, a cell based binding assay was used
to report on antibody receptor binding and potency. CHO cells
were stably integrated with the antibody receptor in-house and
the stable clone expressing high levels of the receptor was pro-
duced. A clone demonstrating both a high level of receptor
expression and a strong binding to the native ligand were used
for all receptor binding experiments. The cells were maintained in
DMEM media with Glutamax (Invitrogen, Carlsbad, CA, USA)
containing 10% FBS, non-essential amino acids, Pen-Strep-L-
Glut, and Hygromycin B at 37◦C with 5% CO2 in a humidified
incubator. 24 h prior to the experiment cells were transferred
into DMEM described above without Hygromycin B. To measure
receptor binding cells are incubated with a fixed concentration
of biotin-labeled native ligand and a varying concentration of
antibody reference standard and test samples. Binding of the
biotin-labeled ligand to the receptor expressed on the cells is
detected by the addition of phycoerythrin conjugated to strepta-
vidin. After washing of unbound ligand the fluorescence response
of phycoerythrin is measured and plotted as a function of log dose
for both reference standard and test samples. Effective competi-
tion of the test samples for receptor binding produced a decrease

in fluorescence signal. Test sample activity is determined by com-
paring the response of the test samples to that of the reference
standard.

RESULTS
CHARACTERIZATION OF isoAsp IN STABILITY SAMPLES
During stability studies of this monoclonal antibody, few chemical
modifications were observed. However, tryptic peptide map anal-
ysis after long-term storage at elevated temperature in a mildly
acidic formulation buffer revealed the increase of a new peak
eluting ∼1 min before the H6 peptide (Figure 1). This peak was
determined by mass measurements and MS/MS sequencing using
CID to have the same molecular weight and sequence as the H6
peptide. Isomerization of Asp to isoAsp is known to cause a shift
in peptide retention time without changing the molecular mass.
In addition, the residue after Asp in the H6 peptide is a glycine,
which kinetic studies have consistently shown to be favorable for
Asp isomerization (Oliyai and Borchardt, 1994; Aswad et al., 2000).
Therefore, isomerization of Asp to isoAsp in the H6 peptide is the
suspected chemical modification for the new species eluting prior
to the H6 peptide.

The identity of the new species was confirmed to be isoAsp in
the H6 peptide by ETD fragmentation mass spectrometry with
supplemental activation. Although isoAsp formation results in
incorporation of an extra methylene group in the protein back-
bone the fragmentation pattern and masses observed during CID
are the same for isoAsp and Asp due to the corresponding loss of a
methylene from the Asp side chain. Recent advances in ETD mass
spectrometry have shown that ETD can generate a single pair of
reporter ions (c + 57 and z − 57) that are unique to isoAsp allow-
ing unambiguous assignment of isoAsp containing peptides (Chan
et al., 2010; Ni et al., 2010). The ETD fragmentation pattern of the
peptide eluting prior to H6 clearly produced ions corresponding
to c11 + 57 Da (1292.5 Da) and z9–57 Da (951.5 Da) which indi-
cated the presence of isoAsp at Asp 55 in the HC. These ions were
not detected in ETD fragmentation of the H6 peptide (Figure 2).
The peptide map elution profile coupled with the accurate mass
measurement and the ETD fragmentation pattern confirmed the

FIGURE 1 | Peptide map analysis of stability samples. Selected region
of tryptic peptide maps of a stability sample held at 40◦C for 0 weeks
(black), 12 weeks (blue), or 24 weeks (red). The peptide corresponding to
isoAsp H6 and unmodified H6 are labeled.
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FIGURE 2 | Identification of isoAsp55 in stability samples.

(A) Observed masses for ETD fragmentation of isomerized and
unisomerized H6 peptide. (B) ETD fragmentation pattern for the isoAsp H6
peptide. The inset is a zoomed view showing the reporter ions at 951.5
(z·9–57 Da) and 1292.5 Da (c11 + 57 Da). (C) ETD fragmentation pattern for
the H6 peptide. The inset is a zoomed view showing the lack of reporter
ions at 951.5 Da and 1292.5 Da.

chemical modification on the species eluting prior to the H6
peptide is indeed the H6 peptide with an isoAsp at position 55.
Asp55 is located on the HC CDR2, therefore, isomerization to
isoAsp may have an impact on receptor binding and molecule
potency.

Potency evaluation in an in vitro cell based receptor binding
assay found that isomerization of Asp55 decreased receptor bind-
ing compared to unisomerized antibody. HIC fractionation of a
stability sample stressed for 24 weeks at 40◦C was used to sepa-
rate unisomerized from isoAsp containing antibody (Figure 3A).
Peptide map analysis of the two distinct HIC fractions found that
the earlier eluting peak had 40% isoAsp H6 peptide, while the
main peak contained 7% isoAsp. The presence of 40% isoAsp

H6 in the earlier eluting HIC peak suggested that this species con-
tained an isoAsp in only one of the two antibody HCs (Figure 3B).
Potency testing of the two HIC fractions found that relative to
the reference standard, the HIC fraction containing one isoAsp55
had a 22% decrease in potency, while the main peak fraction iso-
lated under the same conditions had a 31% increase (Figure 3C).
The apparent increase in potency of the main peak relative to the
reference standard could be from the removal of other covalent
modifications or high molecular weight material during fraction-
ation. Cell based assays inherently have higher variability than
other analytical assays. With the typical precision in the potency
assay being about ±10%, the decrease in potency of the isoAsp
containing material may therefore be at the edge of a signifi-
cant change in potency. However, the 53% delta between the
isoAsp containing species and main peaks may suggest that the
chemical modification of Asp55 to isoAsp in the CDR2 has an
impact on receptor binding and could potentially impact molecule
efficacy.

HIC ANALYSIS OF STABILITY SAMPLES
The potential impact of isoAsp to potency indicated that the
conversion of Asp55 to isoAsp should be monitored during
development and potentially during long term storage. As a
higher throughput alternative to peptide mapping intact HIC was
explored as a characterization method to monitor isoAsp content.
HIC has previously been used to separate populations of antibody
which are covalently modified during stability programs, including
separation of succinimide intermediates from unmodified anti-
bodies (Valliere-Douglass et al., 2008). Separation of isoAsp from
non-isomerized antibody can be achieved by HIC, however, the
separation between the two species is not baseline resolved mak-
ing quantitation difficult. In addition, samples held at 25◦C for
12 weeks and 24 weeks have 6.8 and 12.3% isoAsp antibody,
as determined by peptide mapping; however, at these levels the
isoAsp species appears as an early eluting shoulder off of the main
HIC peak which cannot be integrated (Figure 4). Conversion to
isoAsp at 4◦C is much slower than at elevated temperatures with
samples increasing by 0.5% after 6 months of storage. This indi-
cates that although formation of isoAsp is slower at 4◦C the level
is increasing at recommended storage and the HIC method does
not provide sufficient resolution to monitor thisc

¯
hange.

DIGESTED-HIC ANALYSIS OF STABILITY SAMPLES AND CORRELATION
TO PEPTIDE MAPS
Better chromatographic separation between isoAsp and unisomer-
ized antibody was achieved by digested-HIC, where proteolysis
is carried out under native conditions followed by HIC separa-
tion. The IdeS endoproteinase cleaves IgG2 antibodies between
the alanine and the glycine of the PPVAG sequence in the HC
CH2 domain near the hinge region generating two fragments, a
Fc/2 and a Fab’2 (Figure 5A). Digestion with IdeS occurs under
native conditions allowing HIC separation to take advantage of
the structural changes associated with isoAsp to separate Fc/2,
isoAsp-Fab’2 and Fab’2. Digested-HIC analysis of stability sam-
ples revealed four peaks, one of which increased and two of which
decreased with time (Figures 5B,C). To further characterize these
four peaks they were fractionated from the HIC and identified
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FIGURE 3 | Isolation and potency evaluation of isoAsp containing

antibody. (A) HIC separation of isoAsp from main peak in stressed (dashed)
material. Unstressed material is shown for reference (solid). Stressed
material was collected in two fractions indicated by the vertical black lines.
The x-axis has been normalized to the main peak to account for normal

chromatographic drift. (B) Selected region of the peptide maps of HIC
fractionated material. The isoAsp peak is shown in black and the main peak
from stressed material in red. (C) Percent relative potency of isoAsp antibody
and main peak fractions collected from HIC of stressed antibody. Potency
levels are set relative to the reference standard control.

FIGURE 4 | Detection of isoAsp by intact HIC separation and focused

peptide map. HIC of stability samples held at 40◦C (A) or at 25◦C (B).
A214 nm trace from the focused peptide map of stability samples held at

40◦C (C) or at 25◦C (D). T = 0 weeks (black), T = 4 weeks (blue),
T = 12 weeks (red), T = 24 weeks (green). The x-axis has been
normalized to the main peak to account for normal chromatographic drift.

by intact mass. The molecular masses of the Fc/2 and Fab’2 were
25234.8 Da and 95970.0 Da, respectively. These values are within
20 and 13 ppm of the theoretical masses for Fc/2 (25234.3 Da)
and Fab’2 (95971.2 Da). The N-terminal residue is a glutamine
(Q), which cyclizes to pyroglutamic acid (pE) during produc-
tion; however, it is not uncommon to have incomplete cyclization.
The peak eluting immediately before the Fab’2 that decreases with
time has a mass of 95988.6 Da. This matches within 11 ppm the
expected mass of 95988.2 Da for Fab’2 with one Q-HC and one
pE-HC. The decrease in this peak in stability samples over time
is a result of forced cyclization under storage conditions and is
consistent with observations for other antibodies (Rehder et al.,
2008). The peak that increased with time between the Fc/2 and
partially cyclized Fab’2 was identified as Fab’2 with one isoAsp
HC. The molecular weight of this species is 95969.0 which is
23 ppm from the expected mass of 95971.2 Da for the Fab’2
(Figures 5B–E). The shift in HIC retention time but the same
molecular mass as the Fab’2, as well as an increase during storage
that correlated well with a decrease in Fab’2 signal all suggest that

this peak is iso-Asp Fab’2. In addition, peptide map analysis of
this HIC fraction confirmed this species as Fab’2 with one isoAsp
at Asp55 in the HC based on chromatographic retention time
and peptide mass (data not shown). Digestion of the antibody
into two smaller fragments prior to HIC increased the resolution
between the isoAsp and unisomerized species. With a LOQ for
this characterization assay of 0.2% this allowed for easy integra-
tion of isoAsp levels even in un-aged samples with ∼1% or less
isoAsp.

The percent of isoAsp as calculated by digested-HIC had a sim-
ilar trend to the levels calculated from a focused peptide map
using UV integration and a non-product specific peptide map
with quantitation from total ion area (Figure 6). The focused
peptide map was developed specifically for this antibody to sepa-
rate the peptides containing isomerized Asp55 and unisomerized
Asp55. The main method deliverables included baseline resolution
between the two species to allow for easy UV integration, min-
imal co-elution with other species and a total chromatography
time of 30 min or less (Figures 4C,D). The traditional peptide
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FIGURE 5 | Detection and characterization of isoAsp by digested-HIC.

(A) Shematic representation of antibody digestion by IdeS protease.
(B,C) HIC separation of stability samples held at 40◦C (B) or at 25◦C
(C) after digestion with IdeS. T = 0 weeks (black), T = 4 weeks (blue),
T = 12 weeks (red), T = 24 weeks (green). The peak labeled with * is
Fab’2 with one HC containing an unclyclized N-terminus. Inset shows full
scale view of digest-HIC method (blue) overlaid with a blank (black). The

x-axis has been normalized to the main peak to account for normal
chromatographic drift. Peak identifications shown in (B,C) were assigned by
intact mass analysis (D,E) of peaks fractionated from HIC. (D) Intact mass
of the Fc/2 fractionated from the HIC. (E) Top panel is Fab’2 with one HC
not cyclized to pyroglutamic acid and corresponds to the peak labeled with
* in (B,C). The middle panel corresponds to the Fab’2 with isoAsp in one
HC and the bottom panel is Fab’2.

map is applicable to multiple antibodies and utilizes a longer gra-
dient of 80 min plus an additional gradient to minimize carry
over between each sample for a total run time of 140 min. A
quantitation strategy for the non-product specific peptide map
utilizing total ion area rather than a UV trace still necessitates
the need for chromatographic resolution between the isomerized
and unisomerized species but not from other co-eluting species

of different mass. Peptide mapping is conducted under reduc-
ing conditions, whereas the digest-HIC method is non-reducing.
Therefore to account for the presence of two H6 peptides in
each Fab’2 the percent isoAsp calculated from the peptides maps
is doubled. The percent isoAsp calculated from digested-HIC
and total ion area are lower than the level calculated by UV
integration from the focused peptide mapping. This trend is
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FIGURE 6 | Comparison of percent isoAsp determined by digested-HIC

(�), UV integration from a focused peptide map (©), and total ion area

from a longer traditional peptide map (�). Samples were held at 4◦C
(filled symbols), 25◦C (solid line), or 40◦C (dashed line) for up to 24 weeks.
Samples at 4◦C for 4 weeks and 12 weeks were not tested due to the slow
rate of isoAsp formation at this temperature.

observed across all samples tested indicating a consistent offset
between the methods. The exact cause for these discrepancies is
unknown, but one potential explanation might be a lower than
expected recovery from either the IdeS digestion or the HIC chro-
matography or coelution of other species in the focused peptide
map. In the digested-HIC method Fab’2 with one isoAsp HC
is observed, but Fab’2 with two isoAsp HCs is not observed.
Fab’2 with two isoAsp HCs could possibly co-elute from the
HIC with the Fc/2; however, the Fc/2 percent area is unchanged
in all of the stability samples and there was no evidence by
intact mass for Fab’2 in the Fc/2 fraction. Alternatively, Fab’2
with one and two isoAsp could possibly co-elute. Regardless,
the overall trend in isoAsp content is similar between the three
methods.

DISCUSSION
Detailed characterization of protein therapeutics is central to
ensuring they are both safe and efficacious for patients. Among the
post-translational modifications that can impact protein function
is isomerization of Asp to isoAsp (Cacia et al., 1996). Here, we
evaluate three characterization methods with varying degrees of
throughput for detection and quantification of isoAsp in antibod-
ies. The methods include two peptide map based methods with
longer sample preparation times but different chromatographies
and a new method that utilizes specific digestion of the antibody
with IdeS into Fc/2 and Fab’2 fragments followed by HIC sep-
aration. A correlation between the levels of isoAsp detected in
the peptide maps and the digested-HIC method suggest that the
digested-HIC method could be routinely used to monitor Asp iso-
merization as a higher throughput alternative to peptide mapping,
particularly for monitoring trends in Asp isomerization.

Peptide mapping coupled with mass spectrometry is the single
most powerful analytical technique for detection and quanti-
tation of isoAsp species. However, owing to what can be the
time consuming nature of peptide mapping there is a need for
higher throughput methods capable of monitoring and quanti-
fying isoAsp levels, particularly for the large sample sets often
associated with antibody stability studies. As a characterization
method for analyzing isoAsp content in antibodies with shorter
sample preparation time, we have utilized the IdeS protease to
specifically cleave antibodies into Fc/2 and Fab’2 under native con-
ditions followed by HIC separation. Breaking the intact antibody
into two smaller domains affords better chromatographic sepa-
ration and therefore quantitation of isoAsp containing species
particularly at low levels. Separation by HIC is dependent on
differences in protein hydrophobicity. A central feature of the
digested-HIC method is the non-denaturing aspect of the IdeS
digestion which allows HIC separation to take advantage of the
structural changes associated with isoAsp formation. The esti-
mated time required for the digested-HIC method is less than
1.5 h, which includes 30 min for sample digestion, 40 min for
HIC chromatography and ∼5 min for data analysis. This com-
pares favorably against the approximately 2.5 h needed for sample
preparation alone in the peptide map methods (Table 1). In the
focused peptide map the total chromatography time is less than
a quarter that of the non-product specific peptide map, which
increases sample throughput significantly. However, by focusing
the map for isoAsp55 quantitation the ability to monitor other
product quality attributes within the same method is lost. One
of the greatest advantages of the traditional peptide map is the
potential to monitor more than one attribute and arguably this
might be enough to offset the increased time required for this
method.

There is a difference in the absolute percent of isoAsp deter-
mined from the digested-HIC method introduced here and the
two peptide map methods. There is also a small difference in
isoAsp quantitation between the two peptide maps based meth-
ods; however, in all cases the trend in isoAsp formation is the
same. For all samples, the level of isoAsp determined by the
digested-HIC method is lower than that determined by peptide
mapping. The discrepancy between the methods is consistent
across multiple samples suggesting method variability is not solely
accountable for the observed difference. The decrease in the
percent isoAsp detected by HIC could be the result of poor recov-
ery or other undetected modifications that offset the impact of
isoAsp to the HIC. Alternatively, the focused peptide map could
be over reporting the level of isoAsp H6. The percent isoAsp
from the peptide maps was calculated based on UV integra-
tion of only the isomerized H6 peptide and the unisomerized
H6 peptide. Therefore, co-eluting species or other modifications
in the isoAsp containing peptide could be inflating the percent
isoAsp. This is likely the case in the 40◦C stress samples where
the discrepancy between the two peptide map methods increases
with time (Figure 6). Quantitation of isoAsp from the non-
product specific peptide map and total ion area resulted in a
decrease in the percent of isoAsp relative to that calculated by
UV. However, the decrease did not account for the complete dis-
crepancy between the HIC and focused peptide map method.
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Table 1 | Evaluation of isoAsp detection methods.

Method Sample prep time (min) Chromatography time (min) Analysis of isoD only (min) Location specific information

Peptide map 150 140* 10 Yes

Focused peptide map 150 30 5 Yes

Digested-HIC 30 40 5 Domain specific

*Time includes separation gradient and a required cleaning gradient between each sample.

Even with a difference in the absolute value, the results pre-
sented here indicate that a similar trend in percent isoAsp is
observed between the methods and suggests that if needed alter-
native approaches can be utilized to monitor Asp isomerization
during characterization.

Isomerization of Asp in proteins has been observed to occur
in vivo in a variety of pathways including aging, neurodegenera-
tive disorders, regulation of apoptosis, and autoimmune responses
(Roher et al., 1993a; Robinson and Robinson, 2001; Doyle et al.,
2007; Cimmino et al., 2008). In naturally occurring antibodies the
impact of a CDR Asp isomerizing to isoAsp is most likely neg-
ligible owing to the diverse assembly of sequences with varying
affinity associated with polyclonal antibodies. Thus, there is likely
little to no evolutionary advantage to the organism to select against
CDR sequences prone to isoAsp despite the structural impact of
isomerization. In stark contrast are monoclonal antibodies used
as protein therapeutics. These antibodies have very specific targets
with commensurate impact to the binding affinity between the
antibody and target resulting in a significant consequence to drug
efficacy. Previous studies have observed that a single isomerization
event in either antibody LC or HC CDRs greatly reduces binding
activity (Cacia et al., 1996; Rehder et al., 2008; Yan et al., 2009).
Further studies have also shown that isomerization of antibodies
in in vivo animal models can trigger a spontaneous degradation
pathway for antibody clearance (Huang et al., 2005). Our in vitro
studies are in agreement with these previous results and revealed a
potency difference between material with isoAsp in the HC CDR2
and unisomerized protein, demonstrating again the significant
impact a post-translational modification at a single site can have
on protein function. Previous efforts have been undertaken to
evaluate modifications to the CDRs that would prevent isomer-
ization either by mutation of the isomerizing Asp or mutation
of the n+1 amino acid, in both cases receptor affinity was nega-
tively impacted highlighting the sensitivity of antigen recognition
to subtle CDR sequence changes (Presta et al., 1993). These stud-
ies have demonstrated that Asp residues prone to isomerization
cannot simply be engineered out of therapeutic antibodies; there-
fore, efficient methods for isoAsp detection and quantitation are
necessary.
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