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Advances in target-based drug discovery strategies have enabled drug discovery groups
in academia and industry to become very effective at generating molecules that are
potent and selective against single targets. However, it has become apparent from
disappointing results in recent clinical trials that a major challenge to the development of
successful targeted therapies for treating complex multifactorial diseases is overcoming
heterogeneity in target mechanism among patients and inherent or acquired drug
resistance. Consequently, reductionist target directed drug-discovery approaches are
not appropriately tailored toward identifying and optimizing multi-targeted therapeutics
or rational drug combinations for complex disease. In this article, we describe the
application of emerging high-content phenotypic profiling and analysis tools to support
robust evaluation of drug combination performance following dose-ratio matrix screening.
We further describe how the incorporation of high-throughput reverse phase protein
microarrays with phenotypic screening can provide rational drug combination hypotheses
but also confirm the mechanism-of-action of novel drug combinations, to facilitate future

preclinical and clinical development strategies.
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INTRODUCTION

The evolution of many complex human diseases has generated
multiple biological redundancies in the genetics, pathway signal-
ing networks and pathophysiology of disease thus counteracting
the efficacy of new therapeutics. In such complex diseases exem-
plified by cancer, neurodegeneration, cardiovascular, bacterial,
and viral infections, combination therapies represent the stan-
dard of care (Zimmermann et al., 2007; Al-Lazikani et al., 2012;
Yap et al., 2013). Examples of fixed dose and co-administration
drug combination therapies approved across multiple disease
indications are described in Table 1.

With regards to cancer it is apparent that further exploitation
of new targeted therapies including novel combinations of unap-
proved agents and targeted therapy combined with established
chemo- or radio-therapy remain to be fully explored in preclinical
and clinical settings. Numerous clinical trials are progressing that
promise to maximize the value of targeted drugs as combination
therapies in cancer (Yap et al., 2013). The challenge is to select
which of the many drug combination possibilities and adminis-
tration schedules are most suitable for clinical development across
distinct cancer patient populations.

Given the widespread use and strong track record of clinical
success of combination therapy across complex diseases, it is sur-
prising that most typical drug discovery strategies only consider
drug combinations during late-stage development or as a risk
mitigation strategy. The re-emergence of phenotypic drug dis-
covery (PDD) strategies provides a new opportunity to discover
and prioritize drug combination and polypharmacology strate-
gies objectively while appropriately tailoring their use to complex

disease during early stage drug discovery (Lee and Berg, 2013). In
this review article we highlight how new advances in high-content
screening and high throughput pathway profiling capabilities
advance phenotypic screening approaches toward a more system-
atic discovery of the next generation of multi-targeted drugs and
drug combination therapies.

PHENOTYPIC SCREENING OF DRUG COMBINATIONS

Recent advances in automated image-based high-content
microscopy provide a new opportunity to perform hypothesis-
free phenotypic screening of complex compound libraries and
drug combination sets in more sophisticated biological assays
(Bickle, 2010). To support the discovery of novel combination
therapies, experimental assay systems that maintain the integrity
of biological signaling networks in their most physiologically
relevant states are most desirable. In their simplest form,
such phenotypic assays may represent single cell-based assays,
however, more elaborate co-culture or 3-dimensional (3D)
organotypic models can be employed to explore multi-targeted
intervention of paracrine or juxtacrine signaling between distinct
cell populations (Harma et al., 2010).

A wealth of preclinical drug combination data using cell
based and in vivo models has been published that serves as
the basis for clinical proof-of-concept studies and patent claims
of novel drug combination strategies. A limitation of much of
the patented and published drug combination studies to date is
that they are often performed or presented as isolated studies
focusing on a specific combination. As such, these combinations
are not placed into context of broader combination options or
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Table 1 | Examples of drug combinations approved for clinical use across disease indications.

Indication Approved drug combinations

Melanoma
Pancreatic cancer

Trametinib (a MEK inhibitor) + Dabrafenib (a BRAF inhibitor) approved through the FDA accelerated approval program (Flaherty et al., 2012)
Gemcitabine + nanoparticle albumin-bound nab-paclitaxel (Abraxane) (Sahoo and Kumar, 2014; Saltz and Bach, 2014; Von Hoff et al., 2014);

FOLFIRINOX (5-Fluorauracil 4 leucovorin [Wellcovorin] + irinotecan [Camptosar] + oxaliplatin) (Oikonomopoulos et al., 2014)

Ovarian cancer
Breast cancer

Taxane/platinum combination therapy (carboplatinum/paclitaxel) represents standard of care
Multiple chemotherapeutic regimes include; Adriamycin + Cyclophosphamide; Adriamycin + Cyclophosphamide + Paclitaxel;

Cyclophosphamide + Adriamycin + Fluorouracil; Cyclophosphamide + Methotrexate + Fluorouracil; Fluorouracil 4+ Epirubicin
Hydrochloride + cyclophosphamide; Taxotere + Adriamycin + cyclophosphamide

Diabetes
Cardiovascular
Antiviral (HIV)

Xigduo (sodium-glucose linked transporter 2 [SGLT2] + metformin) (Jabbour et al., 2014)
Vytorin (Eztimibe + simvastatin), Caduet (Amlodipine + Atorvistatin), and Lotrel (Amlodipine + Benezapril) (Dabhadkar and Bellam, 2013)
Multi-component anti-retroviral therapies include, Atripla (efavirenz + tenofovir/femtricitabine); Complera (rilpivirine +

tenofovir/femtricitabine); and Stribild (elvitegravir + cobicistat + tenofovir/emtricitabine)

Antibacterial

Combinations targeted against antibacterial resistance include, Bactrim (Trimethprim + Sulfa mexathazole); B-Lactamase inhibitor or

carbapenem + aminoglycoside (for gram negative infection); B-Lactam + streptogramin or teicoplanin + aminoglycoside (for vancomycin
resistant gram negative infection) (Sacks and Behrman, 2009)

benchmarked against standard-of-care therapies. The reduction-
ist approaches to the study of specific combination therapies
limits the ability of drug development and clinical research groups
to objectively prioritize and iterate the most effective drug com-
bination strategies to move forward into late stage preclinical
or clinical development. Another major limitation of many pre-
clinical drug combination studies is the physiological relevance
of the findings. For example, the identification of synergistic
activity at doses that are not achievable in vivo or at time
points incompatible with the in vivo pharmacokinetic proper-
ties of the individual components of each combination are highly
unlikely to succeed. Thus, advances in high-throughput pheno-
typic screens including, increased throughput, kinetic profiling
drug response in live-cell systems, analysis of multiple phenotypic
endpoints across potentially more relevant 3D and co-culture
models facilitate a more comprehensive and transparent approach
to both hypothesis-driven and hypothesis-free exploration of
drug combinations.

The application of phenotypic drug combination screening
is exemplified by dose-ratio matrix testing multiple pairwise
combinations across cell based assays enabling analysis of syn-
ergy, additive, and antagonistic effects across diverse chemi-
cal libraries, annotated compound libraries and approved drug
sets (Zimmermann et al., 2007). Recent examples of dedi-
cated drug combination screening campaigns using a variety of
phenotypic assays and distinct endpoints have been published
(Axelrod et al., 2013; Cubitt et al., 2013; Du et al., 2013; Held
et al., 2013; Schmidt et al., 2013; Li et al., 2014). Such phe-
notypic screens have identified novel synergistic combinations
such as: Lapatanib (EGFR and Her2 inhibitor) combined with
the multi-targeted inhibitor Ro31-8220 (Axelrod et al., 2013);
Lapatanib combined with MK2206 (Akt inhibitor) (Held et al.,
2013) and Rapamycin (mTOR) combined with Sunitinib (multi-
targeted kinase inhibitor) (Li et al., 2014). For pragmatic reasons
such recent examples of dedicated combination screening has
been mostly limited to small focussed compound libraries and
2-dimensional (2D) cell based assays.

A limitation of screening large compound libraries in complex
cell based assays compared with more traditional biochemical

drug screening is throughput and cost. Both throughput and
cost are particularly limiting when considering the evaluation of
multiple drug combinations across a factorial dose-ratio matrix
where the number of individual combination dose ratios increases
quadratically with the number of agents under study. For prac-
tical reasons, medium to high-throughput phenotypic screening
across cancer cell lines have traditionally employed simple sin-
gle endpoint analysis of tumor cell viability or cell proliferation
in 2D mono-culture (Barretina et al., 2012). While such assays
can provide valuable insights into phenotypic and drug combina-
tion response across annotated cell line panels their reliance on
gross cell viability and proliferation endpoints tend to favor the
phenotypic discovery of cytotoxic agents. Furthermore, integra-
tion of basic cell viability endpoints with gene expression profiling
provide a useful source of biomarkers that predict sensitivity
to cell-cycle arrest but poorly inform on optimal combination
strategies or markers for other important cancer phenotypes
such as apoptosis and invasion. Recent advances in fully auto-
mated brightfield and fluorescent microscopic acquisition plat-
forms and associated image analysis algorithms have facilitated
the integration of quantitative microscopic imaging of multi-
ple endpoints upon both fixed and live-cells assays (Perlman
et al., 2004; Yarrow et al., 2004; Tanaka et al., 2005; Caie et al.,
2010). Screening beyond simplistic 2D monoculture assays is a
necessary aim to target more relevant pathophysiological mech-
anisms and discover novel synergistic drug combination activ-
ity. Drug combination screening in complex 3D and co-culture
assay formats is most desirable, however, throughput is limit-
ing when using standard cell culture assay methods especially
for hypothesis-free screening. The integration of high-content
microscopy platforms with sophisticated laboratory automa-
tion and optimized data-handling pipelines provide increased
throughput and overcome many of the bottlenecks associated
with screening large compound libraries across complex assay
formats (Bickle, 2008; Alcock et al., 2010). The application of val-
idated mathematical approaches, based upon the median-effect
principal and combination index theorem (Chou and Talalay,
1981, 1984) provides robust evaluation of additive, synergy, and
antagonism of drug combination effects. Further optimization of
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software tools specifically designed for the analysis and visual-
ization of large drug combination screening data sets are based
upon methods such as Lowe additivity (Zimmermann et al,
2007) and are exemplified by the combination high throughput
screening (cHTS) platform (Zalicus®) and Compound Synergy
Extension (Genedata Screener®). Such tools enable rapid drug
combination screening across phenotypic assays at scale to enable
a more transparent review of drug combination data placed into
context of multiple drug combination sets to aid benchmark-
ing and prioritization. Incorporation of genomically annotated
patient derived cell panels into high capacity drug combination
screening activity further supports pharmacogenomics and per-
sonalized healthcare approaches to drug combination strategies.
High-content single cell analysis of specific phenotypic events
over both dose and time enable a significantly more robust
evaluation of the quality of drug combination data. Such con-
siderations support the interpretation of whether synergistic and
additive drug combination data occur at physiologically relevant
doses.

A significant challenge to translating effective drug combina-
tions identified from in vitro screens to in vivo models and the
clinical setting is balancing the distinct pharmacokinetic prop-
erties of each individual component of a combination to ensure
drug uptake and retention times within the target tissue in vivo
replicates optimal synergistic dose ratios identified from in vitro
phenotypic assays. Phenotypic screening of drug combinations
across live cell kinetic assays provide further information on the
optimal duration of time each component of a drug combina-
tion needs to be present together to provide synergistic activity.
Kinetic phenotypic analysis is enhanced by image-based reporters
of functional endpoints that are compatible with live cell assays
as exemplified by the cell-permeable caspase 3 biosensor probe
NucView™ which provides a real time readout of caspase activa-
tion and induction of apoptosis (Smith et al., 2012). By corre-
lating the kinetics of apoptosis induction to drug combination
treatment observed in vitro with the in vivo pharmacokinetic
properties of the drugs, optimal in vivo scheduling of drug
combinations can be predicted. Kinetic profiling of phenotypic
response following drug combination treatment also allows selec-
tion of the most appropriate time-points to perform analysis
of synergy and antagonistic activity. Building drug combination
properties into single molecules such as a multi-targeted small
molecule, bi-specific antibody or formulated fixed-dose combi-
nation product (polypill) circumvents many of the challenges
associated with co-dosing distinct components in vivo. Thus,
application of more systematic approaches to evaluate the kinet-
ics and sensitivity of drug combinations across broad dose ranges
and multiple phenotypic parameters promise to enhance the
quality and robustness of preclinical drug combination data and
support more informed prioritization of the most appropriate
combination strategies to move forward into in vivo and clinical
settings.

Despite recent advances in automated high-content
microscopy, integrating such systematic approaches to drug
combination screening in the more advanced preclinical models
is always going to be limited by throughput. This is particularly
the case when additional considerations such as sequencing of

drug combination treatments and greater than pairwise drug
combination cocktails are under consideration. Application
of computational biology and unbiased artificial intelligence
approaches to predicting and/or guiding drug combination
selection may overcome the bottlenecks associated with empirical
testing of every possible drug combination dose-ratio in both
hypothesis-free and hypothesis-driven screening of combinations
in complex in vitro or in vivo models (Lehar et al., 2009; Azmi
et al., 2010). The application of genetic algorithms from the field
of computational artificial intelligence has been used to guide
the selection of drug combinations for empirical testing (Zinner
et al., 2009). Zinner et al. employed a genetic algorithm approach
to identify novel multi-drug cocktails effective upon cancer
cell line proliferation. Using a “fitness function” parameter,
defined by pharmacological performance in a cell proliferation
assay, the most effective combinations from first generation
testing of a small combination set was used to guide algorithmic
selection of subsequent generations of combinations representing
a sample of a larger compound library. Iterative rounds of testing
and selection of the “fittest” combinations provide a rational
sampling approach of broad areas of drug combination space.
The multi-drug cocktail, Feretinied, suberoylanide hydroxyamic
acid, and bortezomib was determined to be the fittest in the
A549 non-small cell lung carcinoma (NSCLC) proliferation
assay and enhanced efficacy and synergy was subsequently
validated in other NSCLC cell lines (Zinner et al., 2009). The
complexity of drug combinations would not be limiting if
using a genetic algorithm approach, which iteratively samples
a small proportion of the best drug combinations extracted
from large compound libraries. This approach enables intuitive
exploration of new chemical entities, multi-drug cocktails,
and alternate drug combination sequencing strategies. The
application of multiparametric high content assays that inform
on both the efficacy and toxic liability of preclinical drug
combinations may assist in defining a multiparametric fitness
function that enables a genetic algorithm to direct a guided
search of drug combination space toward efficacy and away from
toxicity.

FUNCTIONAL PROTEOMICS

A major challenge to the successful clinical application of tar-
geted therapies is the existence of complex intrinsic and adap-
tive resistance mechanisms that have evolved to maintain the
selective advantage of disease systems. While many of the
underlying causes of disease occur at the genetic level, drug
response and resistance are often governed by epigenetic and
post-translational mechanisms. Recent studies indicate that dis-
ease pathogenesis, particularly for cancer is associated with the
co-activation of multiple signaling pathways (Stommel et al,
2007; Duncan et al., 2012; Lee et al., 2012). Furthermore, tar-
geted therapies specific for these signaling pathways reprogram
signaling networks thus providing for multiple compensatory
and redundancy mechanism (Duncan et al., 2012; Lee et al,
2012). Therefore, combinations of drugs will be most effec-
tive in treating such adaptive systems if we can elucidate the
networks and pathway switching mechanisms that permit dis-
eased cells to subvert single therapeutic agents. Intracellular and
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paracrine signaling events are highly dynamic and drugs influ-
ence the temporal dynamics of signaling networks highlighting
the importance of studying signaling events temporally fol-
lowing drug exposure to provide rational for simultaneous
or sequential drug combination strategies (Lee et al., 2012).
Recent advances in the generation and interpretation of pro-
teomic data complements genomic analysis by providing addi-
tional information on pathway activation states providing new
insight into complex biochemical pathways driving disease mech-
anisms and controlling therapeutic response (Kolch and Pitt,
2010). New advances in high-throughput functional proteomics
combined with phenotypic screening in more relevant and
informative biological models may provide the necessary ratio-
nale for selecting drug combinations and for pairing biomark-
ers to inform on drug combination mechanism-of-action
studies and patient stratification strategies for combination
therapy.

REVERSE PHASE PROTEIN ARRAYS: HIGH-THROUGHPUT CHEMICAL
PROTEOMICS

Traditionally, proteomics has been dependent upon quantitative
mass-spectrometry techniques that remain the standard for de
novo identification of post-translation markers. However, lim-
itations in speed, cost, and sensitivity of mass spectrometry
approaches restrict high-throughput application across multiple
samples. The evolution in antibody based array methods com-
bined with more sophisticated automation and near infrared
optical detection provides new advances in sensitivity, through-
put and speed of proteomics (Weissenstein et al., 2006; Voshol
et al., 2009). Reverse Phase Protein Arrays (RPPAs) have pre-
viously been used to provide quantitative analysis of multiple
pathway responses at the post-translational level across large
numbers of biological samples simultaneously (Tibes et al., 20065
Weissenstein et al., 2006; Carey et al., 2010; Iadevaia et al.,
2010). RPPA is essentially a chip and antibody-based proteomics
approach to facilitate broad multiplex analysis of protein analytes,
including post-translational modifications in protein extracts iso-
lated from small samples. In Figure 1A we provide a general
schematic of the RPPA procedure and refer readers to the fol-
lowing literature for more in-depth description of the method
(Mueller etal., 2010). Pragmatic benefits of using a reverse protein
array approach over alternative mass spectrometric, immunoas-
says, and immunohistochemical proteomic methods include:

1. Increased throughput: Sample numbers are not limited by
reagent costs or instrument throughput, thereby enabling
proteomic analysis of multiple compounds evaluated across
dynamic dose and time—series in multiple assays and distinct
model systems. Such high-throughput chemical proteomics
reveal the most consistent compensatory and feedback signal-
ing mechanisms and the genomic and physiological context in
which they occur.

2. Precise and sensitive quantification of multiple pathway
responses at a post-translational level, including low-abundant
phophorylated-epitope signatures that can be mapped directly
to drug-target hypotheses including rationale combina-
tions. High-sensitivity enables application to small samples

extracted from 96-well compound screening assays and small
biopsy/Fine Needle Aspirate samples.

3. Optimal antibody multiplexing format: antibodies are phys-
ically separated on the arrays. Thus, there is no potential
for antibody cross-reactivity, enabling unlimited multiplexing
and optimization of concentrations and incubation buffers for
every antibody.

4. Application of antibody-based detection reagents that can be
readily adapted to single or small multiplex diagnostic based
assays using alternative immunoassay or IHC technology.

RPPA platforms can therefore be used to simultaneously pro-
file many pathway responses across multiple samples in high-
density array formats. Pathways covered include key signaling
axis, EGF receptor family, PI3K, RAS-MAPK, Src/FAK, Rb/cell-
cycle, and TGF and multiple DNA repair, cell-cycle, apoptosis,
and epigenetic mechanisms that have all previously been impli-
cated in drug resistant mechanisms in cancer. Ongoing interna-
tional efforts such as, NCI’s Antibody Characterization Program
(http://antibodies.cancer.gov); the Human Antibody Initiative
(http://www.immunoportal.com/); and the Human Protein Atlas
Project (www.proteinatlas.org/) to derive high quality mono-
specific antibodies are poised to further advance antibody-
based proteomics into broader areas of human pathway biology.
Correlation of basal RPPA post-translational dataset with com-
pound EC50 values from phenotypic assays performed across
cell panels has identified protein level markers of drug sensi-
tivity and resistance (Cardnell et al., 2013). Protein level mark-
ers of sensitivity may facilitate patient stratification to identify
patient populations most likely to benefit from therapy. Protein
level markers correlating with drug resistance can be mapped
to drug target databases to identify rational combination strate-
gies (Cardnell et al., 2013). In addition to monitoring the basal
expression levels of total protein and post-translational mark-
ers, the high throughput nature of RPPA is ideally suited to
profiling adaptive post-translational pathway network response
across dose and time following compound exposure upon cells.
While RPPA analysis is not compatible with live cell studies the
throughput, accuracy, cost per sample, and automated nature
of RPPA facilitates proteomic analysis of multiple experiments
representing distinct time-points. Temporal profiling of pathway
response by RPPA following drug treatment has revealed that
many-targeted compounds have a dramatic effect upon repro-
gramming of dynamic signaling pathway networks (Lee et al,
2012). RPPA analysis of multiple pathways normalized to vehi-
cle controls (e.g., DMSO) indicate that target inhibition can
switch on many pathways as well as inhibiting others (Figure 1B).
These data highlight the complexity of integrated signaling net-
works in living cell systems and the broad effects that targeted
therapy can have upon pathway signaling. By performing RPPA
studies across dose-response and time series following drug treat-
ments, EC50 values can be calculated across multiple pathway
markers over time to distinguish off-target effects from down-
stream signaling, feedback loop mechanisms and pathway cross
talk/compensatory response. By applying RPPA to monitor the
activation state of pathways, compensatory signaling response can
be directly mapped to drug-target databases to build rational drug
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FIGURE 1 | High-throughput reverse phase protein array application
to identify drug compound mechanism-of-action and compensatory
response. (A) Schematic representation of RPPA workflow: Protein
lysates are extracted from multiple samples and deposited across
multiple sub-arrays on a microarray by high-precision printing. Validated
antibodies are individually addressed to each array, followed by
incubation with labeled secondary antibody detection reagent. Antibody
binding to each sample is measured by an image-based microarray
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scanner followed by calculation of the relative abundance of each
protein and post-translational modification across the sample set.

(B) Quantification of the relative abundance of a set of 120 total
protein and post-translational pathway markers following exposure to a
small set of targeted therapies across dose-response. Un-annotated
pathway data normalized to respective DMSO controls demonstrate
significant enhancement of multiple pathway signaling events in addition
to inhibition of targeted pathways.

combination strategies that can be validated across phenotypic
assays or preclinical models.

CONCLUDING REMARKS

High-content imaging is leveraging functional phenotypic end-
points from more complex assay formats such as multicellular
co-culture and 3D models, which are ideally suited for screening
multi-targeted agents and drug combinations. An attraction of
phenotypic screening across panels of human cells derived from
patient’s disease or human induced pluripotent stem cell (IPSC)
models is correlation of phenotypic response with genomic

biomarkers. Such pharmacogenomic studies support biomarker
discovery and patient stratification hypothesis. However, as
described in this review article, adaptive resistance mechanisms
that guide combination response are often operating only at the
post-translational level. Thus, RPPA analysis applied to related
monotherapy and drug combination arms can be correlated with
additive, synergistic, or antagonist phenotypic response across
a dose matrix study to identify pharmacodynamic biomark-
ers that confirm the mechanism-of-action of the drug combi-
nation effect and provide biomarkers to guide future clinical
development.
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In 2010, the US FDA issued an updated draft guidance to
support the further development of novel drug-combination
therapies. Previous guidance recommended demonstrative evi-
dence of a positive efficacy and safety response across all
monotherapy and combination arms. The updated guidance now
supports the proposal of clinical trial designs where single or
multiple monotherapy arms can be left out on the grounds that
no efficacy benefit would be expected. This new update now
provides an opportunity to exploit synthetic lethality and multi-
drug cocktails. Phenotypic screening campaigns are particularly
suited to discovery of synthetic lethality by performing screens
on matched pairs of cell models, representing suspected natu-
ral or engineered genetic vulnerabilities or distinct sensitivities to
known agents. The latest advances in phenotypic screening tech-
nologies combined with high-throughput pathway profiling are
now well placed to provide high quality preclinical data that pro-
vide for a more robust, transparent and objective prioritization of
drug combinations.
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