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Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress
pathway, which initiates the unfolded protein response (UPR), to restore protein-folding
homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR
has been linked to different mechanisms of disease in obese and diabetic individuals,
including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration
is an initial step for angiogenesis, which is associated with remodeling of existing blood
vessels. EC migration occurs according to the leader–follower model, involving coordinated
processes of chemotaxis, haptotaxis, and mechanotaxis.Thus, a fine-tuning of EC migration
is necessary to provide the right timing to form the required vessels during angiogenesis.
ER stress modulates EC migration at different levels, usually impairing migration and
angiogenesis, although different effects may be observed depending on the tissue and/or
microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in
the offspring. Interestingly, several proteins associated with obesity-induced IR are also
involved in EC migration, providing a potential link with the ER stress-dependent alterations
observed in obese individuals. Different signaling cascades that converge on cytoskeleton
regulation directly impact EC migration, including the Akt and/or RhoA pathways. In
addition, ER is the main intracellular reservoir for Ca2+, which plays a pivotal role during EC
migration. Therefore, ER stress-related alterations in Ca2+ signaling or Ca2+ levels might
also produce distorted EC migration. However, the above findings have been studied in
the context of adult obesity, and no information has been reported regarding the effect of
MO on fetal EC migration. Here we summarize the state of knowledge about the possible
mechanisms by which ER stress and IR might impact EC migration and angiogenesis in
fetal endothelium exposed to MO during pregnancy.
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INTRODUCTION
Endoplasmic reticulum is the major subcellular membrane
organelle, playing a pivotal role in synthesis, folding and mat-
uration of proteins, and providing the main Ca2+ reservoir
inside the cell (Berridge et al., 2003; Cnop et al., 2012; Hetz

Abbreviations: 2-DG, 2-deoxy-D-glucose; ATF6, activating transcription factor 6;
BiP/GRP78, immunoglobulin binding protein; BMI, body mass index; CHOP-10,
C/EBP homologous protein-10; EC, endothelial cell; eIF2α, eukaryotic translational
initiation factor 2α; eNOS, endothelial nitric oxide synthase; ER, endoplasmic
reticulum; GSK, Akt/glycogen synthase kinase; HUVECs, human umbilical vein
endothelial cells; IFN-γ, interferon γ; IL, interleukin; IR, insulin resistance; IRE1,
inositol-requiring enzyme 1α; MCPIP, monocyte chemotactic protein-induced pro-
tein; MO, maternal obesity; PERK, PKR-like eukaryotic initiation factor 2α kinase;
PIP3, phosphatidylinositol (3,4,5)-trisphosphate; RhoA, Ras homolog family mem-
ber A; Scrib, scribbled planar cell polarity protein; SERCA, sarco/endoplasmic
reticulum Ca2+-ATPase pump; sFlt-1, soluble fms-like tyrosine kinase-1; TNF-α,
tumor necrosis factorα; UPR,unfolded protein response; VEGF,vascular endothelial
growth factor; XBP1, X-box binding protein 1.

et al., 2013). Under certain conditions, the environment induces
ER stress and further activation of the UPR, which triggers a
cascade of signaling events to restore protein-folding homeos-
tasis (Kozutsumi et al., 1988). This cellular condition, known as
ER stress, is induced by different types of stimuli, such as accu-
mulation of unfolded proteins, fatty acids, cytokines, redox state
dysregulation, and increased intracellular Ca2+ levels (Kozutsumi
et al., 1988; Hotamisligil, 2010; Cnop et al., 2012; Fu et al., 2012;
Garg et al., 2012; Hetz et al., 2013). Moreover, ER stress is linked to
different diseases, including cancer, type II diabetes, and obesity
(Hotamisligil, 2010; Cnop et al., 2012; Hetz et al., 2013). Impor-
tantly, most if not all of these pathologies are associated with
vascular pathologies such as distorted angiogenesis or endothelial
dysfunction (Minamino and Kitakaze, 2010; Basha et al., 2012).
By affecting EC physiology, ER stress contributes to the vascu-
lar dysfunction observed in diabetic retinopathy, cancer, obesity,
atherosclerosis, and ischemia (Amin et al., 2012; Hetz et al., 2013;
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Zeng et al., 2013; Paridaens et al., 2014). One of the most rele-
vant functions of EC is angiogenesis, which is the capacity to form
new capillary vessels (Lamalice et al., 2007). Interestingly, ER stress
affects two of the basic mechanisms that contribute to angiogen-
esis (Lamalice et al., 2007): VEGF signaling, and EC migration
(Iwawaki et al., 2009; Ghosh et al., 2010; Pereira et al., 2010; Baner-
jee et al., 2011; Zeng et al., 2013; Paridaens et al., 2014). However,
obesity might impact EC migration directly through ER stress
and induced IR; Westermeier et al., 2014), because several of the
involved proteins, such as RhoA and Akt (also called protein kinase
B), also modulate EC migration (Lamalice et al., 2007).

As expected, the development of obesity in adults produces
altered angiogenic responses in adipose tissue (Christiaens and
Lijnen, 2010). However, in the context of pregnancy, MO not only
affects the mother but also can permanently damage fetal tissues
[American College of Obstetricians and Gynecologists (ACOG),
2005]. Thus, the adverse intrauterine environment in MO preg-
nancies could modulate offspring physiology (Bruyndonckx et al.,
2013), leading to in utero development of IR (Catalano et al., 2009),
which ultimately might affect EC migration and angiogenesis.
In support of this notion, MO is associated with alterations in
serum levels of angiogenic markers (Zera et al., 2014) and changes
in VEGF receptor expression patterns in the placenta (Dubova
et al., 2011; Saben et al., 2014). Interestingly, very recent studies
show that MO induces ER stress in offspring in murine models
(Melo et al., 2014; Wu et al., 2014), suggesting that distortions in
EC migration and angiogenesis might occur. Since cell migra-
tion commands angiogenesis, our goal is to give an integrative
overview of how MO-induced ER stress and IR might affect the
migratory potential of EC and hence angiogenesis in the offspring,
with deleterious consequences for the offspring’s development.

ER STRESS AND THE UNFOLDED PROTEIN RESPONSE
Multiple environmental stimuli are capable of triggering ER stress
(Schroder and Kaufman, 2005). There are three major sensors
of ER stress, all of which are ER membrane-associated proteins:
ATF6 (α and β isoforms), PERK, and IRE1 (Hetz et al., 2013).
While activation of both PERK and IRE1 involves dimerization
and phosphorylation, ATF6 activation requires its cleavage and
translocation to the nucleus (Hetz et al., 2013). These three path-
ways interact and produce ER-to-nucleus signaling that reduces
protein translation and increases folding capacity (Hotamisligil,
2010). However, differential activation of ER sensors may occur
depending on the type and timing of the ER stressor signal (Wu
et al., 2007; Fu et al., 2012). The latter will produce different UPR
profiles, associated with the specific stimuli triggering the ER
stress, the affected cell type(s), and the microenvironment back-
ground. In addition, acute versus chronic ER stress may lead to
different cellular responses (Wu et al., 2007; Fu et al., 2012).

ROLE OF ER STRESS IN CELL MIGRATION
The role of ER stress on cell migration and angiogenesis has
been studied mainly in cancer cells (Hetz et al., 2013). Several
ER stress-related proteins contribute to cell migration and/or
angiogenesis in tumors (Paridaens et al., 2014). The three above-
mentioned ER stress branches usually contribute to angiogenesis
in the tumoral context (Hetz et al., 2013). Interestingly, the ER

chaperone immunoglobulin binding protein (BiP/GRP78), which
is an early signal of ER stress activation, is required to give
angiogenic potential to tumors (Dong et al., 2008), suggesting that
ER stress might impact angiogenesis from the beginning of the
response. However, in non-tumoral contexts, ER stress has been
shown to impair cell migration and angiogenesis.

Tunicamycin is an antibiotic that inhibits synthesis of
asparagine-linked glycoproteins (Takatsuki et al., 1971; Duksin
and Bornstein, 1977) and is commonly used to induce ER
stress in different in vitro and in vivo models. Promoting the
accumulation of misfolded un-glycosylated proteins at the ER
level, tunicamycin produces activation of all of the ER branches
(Schroder and Kaufman, 2005). In support of the notion that
ER stress impacts cell migration, early studies performed by
Gipson et al. (1984) showed impaired epithelial sheet migration in
the presence of tunicamycin. This study observed delayed wound
healing in tunicamycin-exposed organotypic cultures of corneas
(Gipson et al., 1984). Several years later, similar results were
obtained in vitro with human epithelial airway cells (Dorscheid
et al., 2001). In addition, recent observations in vascular smooth
muscle cells show that tunicamycin activates the IRE1 and ATF6
pathways, imparing platelet-derived growth factor-induced in
vitro migration (Yi et al., 2012). Similarly, neferine, an alkaloid
used in cancer treatment, induces ER stress activation in an
epithelial cell line, which produces concomitant inhibition of cell
migration (Yoon et al., 2013).

Therefore, ER stress activation under resting or non-tumoral
physiopathological conditions seems to impair collective cell
migration, conversely to the tumoral context in which it seems
to promote angiogenesis (Paridaens et al., 2014). This finding sug-
gests that ER stress might play different roles in EC migration
depending on the tissue environment.

ROLE OF ER STRESS IN EC MIGRATION AND ANGIOGENESIS
Collective EC migration is required as an initial event during
angiogenesis. The EC migration process combines three differ-
ent mechanisms: (1) chemotaxis, which is induced by soluble
chemoattractants, (2) haptotaxis, which is mediated by chemoat-
tractants bound to the substrate, and (3) mechanotaxis, which
provides the mechanical forces to provide directionality (Lamalice
et al., 2007). EC migrate according to the leader–follower model,
in which a leader (or pioneer) cell with more protrusive and motile
activity at the leading edge affects the signaling of the follower cells.
Thus, the leader cell exerts mechanical pulling over the follower
cells, providing the directionality of the sheet growth (Vitorino
and Meyer, 2008; Rorth, 2009). At the cellular level, this process
involves both actin and microtubule cytoskeleton rearrangements
and changes in cell polarity (Figure 1) towards the edge of the
monolayer (Etienne-Manneville, 2013).

While wound healing is commonly used to evaluate collective
EC migration, tube formation in Matrigel has been used exten-
sively to evaluate the angiogenic potential of these cells. These and
other in vitro and in vivo models are used to evaluate different
pro- or anti-angiogenic compounds (Lamalice et al., 2007; Aranda
and Owen, 2009). As expected, VEGF is a potent chemoattractant
for EC and contributes to angiogenesis (Lamalice et al., 2007).
Interestingly, signaling of VEGF and other proteins involved in
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FIGURE 1 | Possible role of ER stress on EC migration. Migrating EC
have actin (red) dynamics at the front and also polarization of the
centrosome and microtubules (green) and Golgi apparatus toward the
leading edge. Ca2+ (yellow) dynamics at the front of the cell are mainly
mediated by Ca2+ channels (i.e., Orai), and the sarco/endoplasmic
reticulum Ca2+-ATPase pump (SERCA, orange) restores the free

intracellular Ca2+ levels in the cytoplasm, allowing for sustained
oscillations. At the rear of the cell, the formation of actin stress fibers is
observed. Vascular endothelial growth factor receptor (VEGFR) activation
induces RhoA and -through phosphatidylinositol (3,4,5)-triphosphate (PIP3)
production- Akt activity, which contributes to cytoskeleton polarization and
remodeling.

EC migration and angiogenesis is affected by ER stress (Paridaens
et al., 2014).

Tunicamycin exposure is associated with impairment of both
spontaneous and VEGF-induced migration of capillary EC,
involving inhibition of VEGF signaling (Banerjee et al., 2011).
Similarly, 2-DG reduces spontaneous collective migration, show-
ing an anti-angiogenic effect on cultures of HUVEC through
activation of ER stress (Merchan et al., 2010). Moreover, this
study also shows that 2-DG has an anti-angiogenic effect in vivo
(Merchan et al., 2010). In addition, treatment with neferine,
another ER stress inducer, inhibits in vitro angiogenesis in HUVEC
(Yoon et al., 2013). Similarly, acrolein, which is an unsaturated
aldehyde known as an environmental pollutant and also found
in some foods, induces ER stress in EC (Haberzettl et al., 2009),
affecting both migration and angiogenesis (O’Toole et al., 2014).
This study shows that acrolein inhibits wound healing and tube
formation in HUVEC (O’Toole et al., 2014). Importantly, the
same study evaluated Akt signaling after insulin exposure, show-
ing that acrolein impairs insulin signaling (O’Toole et al., 2014),
supporting the hypothesis that IR might be linked to distorted EC
migration.

In contrast, MCPIP mediates cytokine-induced angio-
genesis in HUVEC by up-regulation of ER stress markers
(Roy and Kolattukudy, 2012). In addition, a recent study shows
that VEGF might induce PERK and ATF6 signaling, which con-
tribute to survival and migration of EC (Karali et al., 2014). These

data suggest that in EC cells, the induction of ER stress might affect
both migration and angiogenesis in a stimulus-dependent manner.
Moreover, in a murine model it has been shown that IRE1 activity,
which contributes to proper placental development, is required
for development of ER stress during pregnancy (Iwawaki et al.,
2009). This study shows that lack of IRE1 reduces VEGF receptor
expression and is lethal (Iwawaki et al., 2009). These data suggest
that in EC, induction of ER stress might affect both migration and
angiogenesis in a stimulus-dependent manner.

One additional explanation of the different effects of ER stress
on angiogenesis capacity could be related to the involvement of
microenvironmental factors such as inflammatory mediators. For
example, diabetic and other models of retinopathy are associ-
ated with distorted retinal angiogenesis, which has been related
to ER stress (Salminen et al., 2010; Wang et al., 2012). In a
murine model of type I diabetes, increased levels of VEGF and
TNF-α were observed in the retina, which were correlated with
increased ER stress markers of the PERK and IRE1 branches (Li
et al., 2009). In addition, oxygen-induced retinopathy was asso-
ciated with development of ER stress, in a similar way to that
induced by tunicamycin (Li et al., 2009). Importantly, resver-
atrol and some of its derivatives (Tabata et al., 2007), which
have anti-inflammatory effects and inhibit ER stress development
(Zhang and Kaufman, 2008), prevent retinal vascular degeneration
induced by tunicamycin or ischemia/reperfusion (Li et al., 2012).
Taken together, these data suggest that ER stress contributes to
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angiogenesis and neovascularization in vivo. However, the target
cells are not fully elucidated, and it is possible that the effect of ER
stress inhibition might first impact immune cells, which through
the release of inflammatory mediators might indirectly impact
EC. Interestingly, several of these inflammatory mediators show
altered levels during obesity (Snyder-Cappione and Nikolajczyk,
2013).

EFFECTS OF MATERNAL OBESITY AND INSULIN RESISTANCE
ON CELL MIGRATION
Altered nutritional state is becoming a relevant and growing pub-
lic health issue globally [World Health Organ (WHO), 2003].
The relationship between obesity-induced chronic ER stress and
IR has been well established in murine and human adipose tis-
sues (Cnop et al., 2012; Flamment et al., 2012; Jung et al., 2013;
Boden et al., 2014). Interestingly, it has been shown that the
obesity-dependent induction of ER stress markers is reduced in
human adipose tissue after weight loss, suggesting that body
weight change constitutes an important factor that modulates the
ER stress response (Gregor et al., 2009). During pregnancy, exces-
sive gestational weight gain and MO have been associated with
increased risk of maternal pathologies and detrimental long-term
effects on fetal tissues, through a process known as intrauterine
programming (McMillen and Robinson, 2005). Since HUVEC
provides a useful model to study neonatal evidence of fetal EC pro-
gramming under multiple pregnancy conditions, in this section
we focus on different IR- and migration-associated proteins that
might be distorted by MO.

MO-RELATED FETAL PROGRAMMING
Obesity and overweight during pregnancy are well-recognized
independent risk factors that contribute to the development of
metabolic syndrome and several diet-related anomalies not only
in the mother, but also in the fetus through fetal programming
[American College of Obstetricians and Gynecologists (ACOG),
2005; Flenady et al., 2011; Triunfo and Lanzone, 2014]. This
intrauterine programming can be observed as altered responses to
physiological stimuli in HUVEC isolated from pathological preg-
nancies (Cheng et al., 2013; Krause et al., 2013). Indeed, it has
been described that MO induces IR in fetuses in utero (Catalano
et al., 2009), showing the relevance of metabolic fetal program-
ming. Recently, it has been found that EC from obese adult subjects
show ER stress (Kaplon et al., 2013), but it has not been determined
whether MO induces these changes in fetal tissue. However, inter-
esting recent evidence suggests that ER stress might be induced
through fetal programming in animal models (Melo et al., 2014;
Wu et al., 2014).

Using a murine model of MO, feeding dams a high-fat diet
resulted in increased inflammation, ER stress markers, and IR
in hypothalamic tissue of the MO offspring (post-natal day 28)
compared to the control group (Melo et al., 2014). This study
shows that lactation plays a major role in the development of ER
stress (Melo et al., 2014). However, it was also noted that there was
a significant increase in phosphorylation of eIF2α, downstream
of PERK, in hypothalamic tissue at birth (day 0) of MO offspring
(Melo et al., 2014), suggesting that at least the PERK ER stress
branch is already activated during MO pregnancy.

In another study, using a similar model of diet-induced obe-
sity, it was shown that MO offspring have increased ER stress and
inflammatory markers compared to the control group (Wu et al.,
2014). This study shows increased PERK and IRE1 activation in
liver and adipose tissue of MO offspring at post-natal day 100 (Wu
et al., 2014). Interestingly, treating dams during pregnancy and
lactation with quercetin, which is an anti-inflammatory flavonoid
(Indra et al., 2013) that inhibits ER stress (Suganya et al., 2014),
prevented the development of ER stress in the offspring of MO
pregnancies (Wu et al., 2014), suggesting that the development of
ER in the offspring begins during pregnancy.

Altogether these data show that MO induces ER stress through
fetal programming in murine models. Therefore, it is conceivable
to suggest that MO in human pregnancies might produce a similar
phenomenon.

HOW MIGHT MO IMPACT HUVEC MIGRATION AND ANGIOGENESIS?
Fetal programming is known to occur during MO pregnancies;
however one remaining question is how MO might mediate
fetal EC migration and angiogenesis. First, human chorionic
gonadotropin has been shown to increase the proliferation of
HUVEC in the presence of various adipokines, such as IL 6, leptin,
adiponectin, and TNF-α (Polec et al., 2014). Moreover, there is
interesting evidence that placental tissue from women with MO
shows altered expression of VEGF receptors (Saben et al., 2014).
In fact, a very recent study showed that increased body mass index
(BMI) was associated with the presence of angiogenic markers
in placental tissue (Zera et al., 2014). This work demonstrates an
inverse correlation between BMI and serum levels of sFlt-1, which
is associated with a pro-angiogenic profile (Zera et al., 2014). The
authors propose that this might be due to excessive fetal growth,
which requires a bigger placental vascular bed (Zera et al., 2014).
This distorted angiogenic profile during MO is also supported by
evidence showing the predominance of non-branching angiogen-
esis observed in placental tissue of obese women (Dubova et al.,
2011).

Considering that: (1) MO results in distorted angiogenesis; (2)
obesity has been associated with ER stress and IR; and (3) IR-
related proteins also play a role in cell migration (RhoA, Akt), we
hypothesize the possible contribution of different IR-related and
others proteins to the modulation of EC migration capacity in the
context of MO-dependent ER stress (Table 1).

RhoA signaling
RhoA and its downstream signaling has been linked to IR
because they have targets such as Akt and eNOS (Kanda et al.,
2006; Nunes et al., 2010) but also play a relevant role in cell
migration (Jaffe and Hall, 2005). As mentioned above, in 2D
cultures, EC migrate according to the leader–follower model
(Rorth, 2009). In HUVEC, fibroblastic growth factor-induced
collective cell migration is commanded by proteins that regu-
late cell–cell interactions, cell density, individual cell migration,
and directed cell migration (Vitorino and Meyer, 2008). In the
same study, RhoA was found to contribute to collective cell
migration of HUVEC, a finding corroborated later by other
groups (Vitorino and Meyer, 2008; Povero et al., 2013). More-
over, the role of RhoA is also relevant in other cell types where
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Table 1 | Putative migration-related targets of ER stress signaling.

Target protein Cell type ER stress trigger ER stress effect on target Reference

RhoA U87, HUVEC, HUVEC ↑IRE1, VEGF, ND ↓M ↑A, ↓M? Dejeans et al. (2012), van Nieuw

Amerongen et al. (2003), Song

et al. (2012)

Spark U87 ↓IRE1 ↑M ↑RhoA activity Dejeans et al. (2012)

PI3K/Akt/GSK3β/β-

Catenin/E2F2

via

HUVEC VEGF ↑P ↑A Zeng et al. (2013)

eNOS HUVEC CHOP-10 ↓M? Loinard et al. (2012)

HO-1 VSMC Tunicamycin ↓M Yi et al. (2012)

Tsp-1 Athymic Balb/c (nu/nu),

CEC

Tunicamycin ↓A Banerjee et al. (2011)

MCPIP HUVEC TNF-α, IL-1β, IL-8 ↓A Roy and Kolattukudy (2012)

Scrib HUVEC ND ↓A? Michaelis et al. (2013)

A, angiogenesis; M, migration; ND, not determined; P, proliferation.

it seems to be a typical feature of leader cells (Omelchenko
et al., 2003; Jaffe and Hall, 2005; Rorth, 2009), because it con-
tributes importantly to the mechanotaxis process (Reffay et al.,
2014).

The contribution of RhoA to EC migration has been observed
using a dominant-negative model and by its inhibition using
ADP-ribosylation after bacterial toxin exposure. Both experi-
mental conditions were associated with reduction of HUVEC
migration (Aepfelbacher et al., 1997; Song et al., 2012) and angio-
genesis (Povero et al., 2013). Previous studies suggest that RhoA
mediates migration and VEGF-induced chemotaxis (van Nieuw
Amerongen et al., 2003). However, interesting observations using
a microfluidic device showed that RhoA contributes to HUVEC
shear stress-induced mechanotaxis, although it does not affect
VEGF-induced filopodia formation (Song et al., 2012). The expla-
nation for these differential effects may also rely on the EC culture
type studied; for example, RhoA contributes to VEGF-induced
migration and angiogenesis of human foreskin microvascular EC
(van Nieuw Amerongen et al., 2003). Thus, it is possible to sug-
gest that RhoA contributes to migration in a stimulus- and cell
type-dependent manner.

As mentioned above, ER stress is linked to cell migration. Sup-
porting this notion, ER stress is associated with IRE1, which
acts as an upstream protein of RhoA signaling (Dejeans et al.,
2012). In a RhoA-dependent manner, cancer cells expressing
a dominant-negative IRE1 protein show increased adhesion,
impaired migration, and a reduced proliferation rate, but no
change in invasive properties (Dejeans et al., 2012). As expected,
RhoA inhibition restores the phenotype in IRE1 dominant-
negative expressing cells (Dejeans et al., 2012). Therefore, as
IRE1-lacking cells show over-activation of RhoA, it is possible
to hypothesize that MO-induced ER stress, which increases IRE1
activity, might reduce RhoA activity, impairing EC migration
(Figure 2).

FIGURE 2 | Possible role of ER stress on EC migration. The effects of ER
stress signaling on different proteins that command cellular migration is
depicted, as well as the effect of tunicamycin, an ER stress inducer. Red
lines indicate inhibition or down-regulation of the target. Green arrows
indicate activation or up-regulation of the target.

Akt signaling
The Akt gene encodes three isoforms (Akt1-3). In EC, Akt acti-
vation is related to several signaling cascades, such as the insulin
pathway, eNOS activation, cell survival, and migration (Shiojima
and Walsh, 2002). In EC, it has been suggested that Akt3 con-
tributes to cell migration (Vitorino and Meyer, 2008). However,
Akt involvement in cellular migration and angiogenesis depends
on the tissue context and simultaneously activated signaling
(Somanath et al., 2006). For instance, Akt3 has defective signaling
in muscle cells from obese insulin-resistant subjects (Brozinick
et al., 2003), potentially affecting EC migration response down-
stream of the insulin receptors (Guo, 2014). In addition, extensive
evidence has shown a potential link between Akt and ER stress
signaling (Appenzeller-Herzog and Hall, 2012). Interestingly,
BiP/GRP78 suppresses the Ser473 phosphorylation of Akt by
direct interaction, which might prevent accessibility for activat-
ing kinases (Yung et al., 2011). Moreover, this study shows that
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ER stress activates or inhibits Akt signaling depending on the
magnitude or severity of this response (Yung et al., 2011). On
the other hand, VEGF has been related to induction of the IRE1
branch of ER stress in HUVEC (Zeng et al., 2013). VEGF expo-
sure was associated with IRE1-dependent splicing of XBP1 and
activation of Akt/GSK signaling, which is required for the pro-
liferation and angiogenesis induced by this growth factor (Zeng
et al., 2013).

Downstream to Akt activation, the production of NO by
eNOS has been linked in EC migration, because pharmaco-
logical inhibition of eNOS reduces in vitro migration capacity
(Murohara et al., 1999; Lamalice et al., 2007). Moreover, aortic
EC from eNOS-lacking mice have impaired in vitro and in vivo
angiogenesis (Lee et al., 1999; Lamalice et al., 2007). Tunicamycin-
induced ER stress reduces eNOS levels in mouse coronary artery
EC (Galan et al., 2014). Accordingly, homocysteine-induced ER
stress through C/EBP CHOP-10 signaling inhibits eNOS sig-
naling in HUVEC (Loinard et al., 2012). As mentioned above,
fetuses from pregnancies with MO develop IR (Catalano et al.,
2009), which is maintained through childhood (Bruyndonckx
et al., 2013). Since eNOS activation is regulated by insulin stim-
ulation in EC, eNOS signaling could be altered in HUVEC from
MO pregnancies as an outcome of fetal programming, as occurs
in other maternal pathologies (Farías et al., 2006, 2010; Leiva et al.,
2011; Westermeier et al., 2011). If the latter effectively occurs,
HUVEC derived from MO pregnancies might have impaired
Akt/eNOS signaling and migration and/or angiogenic capacity
(Figure 2).

Soluble mediators and Ca2+ signaling
Pro-inflammatory mediators such as cytokines and adipokines
are increased during MO (Catalano et al., 2009) and have detri-
mental effects on EC migration. Leptin is an adipokine with
pro-angiogenic effects that induces HUVEC migration after acti-
vation of Akt and eNOS (Goetze et al., 2002). However, leptin
exposure is not associated with significant effects on tube forma-
tion in vitro (Dubois et al., 2013). In contrast, adiponectin inhibits
HUVEC migration in a wound-healing assay and also inhibits
tube formation in vitro (Dubois et al., 2013), showing an oppo-
site effect to that of leptin. In fact, leptin signaling is impaired by
ER stress, which also contributes to leptin resistance (Hosoi et al.,
2008; Ozcan et al., 2009). Conversely, adiponectin has been linked
to inhibition of ER stress (Boddu et al., 2014).

Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-8,
have a pro-angiogenic effect (Dinarello, 2007). These cytokines
exert this effect by up-regulation of MCPIP, which is required
to induce angiogenesis in vitro by increasing ER stress (Roy and
Kolattukudy, 2012), suggesting an association between cytokines
and ER stress. Interestingly, most if not all cytokines regulate free
intracellular Ca2+ levels in cells, providing another possible link
between these soluble mediators and the development of ER stress,
as we discuss next.

Ca2+ signaling is one of the most important players during
cell migration (Wei et al., 2012). Ca2+ channel-dependent cal-
cium dynamics are observed at the leading edge in migrating
cells (Wei et al., 2009). Consequently, during HUVEC migra-
tion, a polarized generation of PIP3 is found at the front of the

migrating cells, which further increases the Ca2+ influx, allow-
ing cytoskeleton rearrangements required for motility (Tsai and
Meyer, 2012; Tsai et al., 2014). Simultaneously, an increase in the
extrusion of Ca2+ towards the extracellular milieu is observed,
hence maintaining the Ca2+ dynamics at the front (Tsai et al.,
2014), showing that a fine-tuning of Ca2+ signaling is required
for HUVEC migration. In this context, tunicamycin links ER
stress with Ca2+ signaling because this antibiotic induces dis-
torted function of Ca2+-channels (Czyz et al., 2009). In addition,
NO produced by eNOS contributes to Ca2+ dynamics (Huang
et al., 2013), suggesting that deficient eNOS signaling induced
by ER stress might affect Ca2+ signaling and hence cell migra-
tion. Interestingly, pro-inflammatory cytokines IL-1β and IFN-γ
down-regulate the SERCA and increase ER stress markers in pan-
creatic β-cells (Cardozo et al., 2005). The possibility of a similar
mechanism occurring in EC is interesting, because it would unveil
the mechanisms by which cytokines might affect EC migration
(Figure 2).

Cell polarity
During cell migration, a reorientation of several cellular struc-
tures occurs in a process called polarization (Rorth, 2009). One of
the intracellular features exhibited by migrating EC is the polar-
ization of the centrosome toward the direction of movement of
the endothelial sheet (Figure 1; Gotlieb et al., 1981; Rorth, 2009;
Etienne-Manneville, 2013). Moreover, microtubule-binding drugs
that inhibit HUVEC migration exert this blockade effect by avoid-
ing centrosome repositioning (Hotchkiss et al., 2002; Kamath et al.,
2014). Therefore, ER stress might affect cellular polarization and
hence impair cell migration.

One of the candidates potentially affected by ER stress is Scrib,
which mediates chemotaxis-dependent, but not spontaneous,
cell migration (Figure 2) and in vitro and in vivo angiogenesis
(Michaelis et al., 2013). This protein contributes to cytoskele-
tal rearrangements and Golgi apparatus polarization toward the
leading edge in wound-healing assays (Michaelis et al., 2013).
Whether a similar distortion occurs with nuclei and/or mitochon-
drial and/or lysosomal reorientation (Rorth, 2009; Friedl et al.,
2011; Etienne-Manneville, 2013; da Silva et al., 2014) has not
yet studied. Thus, cell polarity-related proteins might be affected
by ER stress and thus impair proper organelle and centrosome
polarization.

CONCLUDING REMARKS AND PERSPECTIVES
Endothelial cell migration relies on tightly regulated signaling
cascades that are activated by various stimuli. Adequate signal-
ing events are required for proper remodeling of vessels during
angiogenesis, and distorted intracellular cross-talk among the
involved pathways would result in vascular dysfunction. We
focus on the potential involvement of two main mechanisms
of disease observed in obesity, ER stress, and IR. Interestingly,
ER stress might impact EC migration and hence angiogenesis
in different ways. Here, we summarize the current knowledge
about how ER stress might provoke alterations in EC migra-
tion capacity and propose new targets (Figure 1). Specifically,
both ER stress and IR might affect the coordination of endothe-
lial chemotaxis, haptotaxis, mechanotaxis, Ca2+ signaling, and
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cell polarity modulation, which are key steps associated with
EC migration. Better understanding of these processes regard-
ing the physiopathological mechanism underlying ER stress
might provide new perspectives in the design of therapeutic
targets.

Different ER stress stimuli and micro-environmental contexts
play major roles in regulation of EC migration, as well as the
timing of stimulation signals and the magnitude of ER stress acti-
vation. For example, a physiological role of ER stress has been
shown during pregnancy, where it is required for placenta devel-
opment (Iwawaki et al., 2009), but it still is unknown whether
its overactivation under pathological conditions remains favor-
able or becomes detrimental. On the other hand, intracellular
cascades associated with IR development may be also associ-
ated with impaired EC migration capacity. To further address
these research topics, new models of in vivo and in vitro anal-
ysis are required. An interesting approach recently validated the
use of rat mesenteric EC to evaluate angiogenesis, because these
cells exhibit the same behavior as HUVEC during migration and
angiogenesis (Mansouri et al., 2013). Another approach proposes
3D culture of adipocytes and HUVEC in microspheres, in an
attempt to mimic adipose tissue (Yao et al., 2013). The zebrafish,
a well-established model to evaluate migration and angiogene-
sis, has been recently used to evaluate the role of Akt and ER
stress pathways (Lu et al., 2014). Furthermore, the chick embryo
chorioallantonic membrane assay might be used to evaluate the
impact of ER stress on EC migration and angiogenesis, in a
way similar to its current use in evaluating the anti-angiogenic
potential of different compounds (Lange et al., 2014). Taken
together, these models might provide new tools for studying
EC migration and angiogenesis during obesity-induced ER stress
and IR.

Considering the state of knowledge, we propose that acute and
chronic ER stress might induce different effects on EC migra-
tion. In addition, as observed in tumoral versus non-tumoral
environments, ER stress might promote or impair EC migration
and angiogenesis, respectively. Finally, based on the hypothe-
sis of intrauterine programming during pregnancies affected by
adverse conditions and the induction of ER stress and IR in
the presence of obesity, we suggest that MO might induce fetal
ER stress and IR, two intracellular mechanisms associated with
altered EC migration and hence distorted angiogenesis in offspring
endothelium.
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