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In utero hematopoietic cell transplantation (IUHCT) is a non-myeloablative non-
immunosuppressive transplant approach that allows for donor cell engraftment across
immunologic barriers. Successful engraftment is associated with donorspecific tolerance.
IUHCT has the potential to treat a large number of congenital hematologic, immunologic,
and genetic diseases either by achieving high enough engraftment levels following a single
IUHCT or by inducing donor specific tolerance to allow for non-toxic same-donor postnatal
transplants. This review evaluates donor specific tolerance induction achieved by IUHCT.
Specifically it addresses the need to achieve threshold levels of donor cell engraftment
following IUHCT to consistently obtain immunologic tolerance. The mechanisms of
tolerance induction including partial deletion of donor reactive host T cells by direct and
indirect antigen presentation and the role of regulatory T cells in maintaining tolerance
are reviewed. Finally, this review highlights the promising clinical potential of in utero
tolerance induction to provide a platform on which postnatal cellular and organ transplants
can be performed without myeloablative or immunosuppressive conditioning.
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INTRODUCTION

The fetal environment offers the unique opportunity to take
advantage of the developing immune system to induce immuno-
logic tolerance to foreign antigen. This was initially recog-
nized in an experiment of nature in which Owen observed
permanent red blood cell chimerism in dizygotic cattle twins
that shared cross-placental circulation (Owen, 1945). Later
studies by Billingham, Medawar, and others confirmed the
ability to induce immunologic tolerance by early gestational
exposure to foreign antigen (Anderson etal., 1951; Billing-
ham etal., 1952; Simonsen, 1955). In utero hematopoi-
etic cell transplantation (IUHCT) seeks to take advantage of
this developmental phenomenon. In multiple animal mod-
els, [IUHCT has been shown to be a non-myeloablative non-
immunosuppressive transplant approach that allows for engraft-
ment across immunologic barriers and is associated with
the induction of donor specific tolerance (Flake and Zan-
jani, 1999; Kim etal., 1999; Peranteau etal., 2002). Clinically,
IUHCT has the potential to treat any congenital hemato-
logic, genetic or immunologic disorder which can be prenatally
diagnosed and which is currently managed with a postna-
tal hematopoietic stem cell (HSC) transplantation requiring a
matching donor and/or myeloabalative and immunosuppressive
conditioning.

The clinical application of IUHCT could take one of two poten-
tial courses (Figure 1). A single in utero transplant may result
in high enough levels of donor cell engraftment to treat the tar-
get disease. Alternatively, [IUHCT may be used to induce donor
specific tolerance which would allow for postnatal same-donor
transplants with non-toxic conditioning regimens to increase

donor cell engraft to clinically relevant levels. Tolerance achieved
by IUHCT may also be used to permit postnatal same-donor
organ transplants without immunosuppressive conditioning. To
date, JTUHCT has only been clinically successful in the treat-
ment of severe combined immunodeficiency disorder (SCID;
Flake etal., 1996; Wengler etal., 1996). Broader clinical applica-
tion of IUHCT is limited by the ability to consistently achieve
high enough levels of donor cell engraftment to treat the tar-
get disease. Thus, tolerance induction by IUHCT to allow
for postnatal “booster” transplants may be instrumental to the
future clinical application of IUHCT. In this review, we focus
on the progress that has been made in understanding and
achieving immunologic tolerance following IUHCT and how
this tolerance can be used as a platform for non-myeloablative
non-immunosuppressive postnatal transplants to either achieve
clinically acceptable levels of engraftment or allow for solid organ
transplants.

IUHCT AND ALLOGENEIC ENGRAFTMENT: FROM MICRO TO
MACROCHIMERISM AND TOLERANCE INDUCTION

In utero hematopoietic cell transplantation has been studied in
multiple animal models. Initial results in the sheep model were
very encouraging demonstrating stable long-term hematopoietic
chimerism in three of four sheep following IUHCT (Flake etal.,
1986). Unfortunately, these findings did not translate into sim-
ilar results in clinical studies. Successful engraftment following
TUHCT in humans has been limited to circumstances of immun-
odeficiency and those in which a donor cell selective advantage
exists (Flake etal., 1996; Wengler etal., 1996; Gil etal., 1999;
Bartolome et al., 2002; Pirovano etal., 2004; Touraine et al., 2004;
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FIGURE 1 | Two approaches for the clinical application of IUHCT.

Muench, 2005; De Santis etal., 2011). These discouraging results
highlighted the need for a more in depth study of the events follow-
ing ITUHCT including the induction of donor specific tolerance.
To this aim, murine models of IUHCT have been developed. Stud-
ies in these models support an intimate relationship between the
levels of donor cell chimerism following IUHCT and tolerance
induction. In chimeric mice in which donor cell engraftment
was only detectable by PCR and undetectable by flow cytome-
try (microchimerism), donor specific tolerance, as demonstrated
by skin graft acceptance, response to postnatal boosting trans-
plants, and in vitro proliferation assays, is inconsistent and occurs
in only a subset of animals (Billingham etal., 1953; Carrier etal.,
1995; Kim etal., 1999). Interestingly, studies in mice and large
animals have found that tolerance following ITUHCT may per-
sistent even when peripheral blood chimerism levels are low if
donor cells persist in tissues or the peritoneal cavity of recipi-
ents (Carrier etal., 1995; Mathes etal., 2001, 2005; Chen etal.,
2004). Technical advances, including the ability to deliver higher

doses of donor cells at the time of IUHCT via an intravenous
injection, have allowed for the creation of mice with chimerism
levels consistently greater than 1% (macrochimerism; Peranteau
etal., 2006, 2007). The ability to achieve higher initial levels of
donor cell engraftment has demonstrated that induction of donor
specific tolerance can be consistently achieved in macrochimeric
animals and tolerance correlates with donor chimerism levels
(Hayashi etal., 2002; Ashizuka etal., 2006). Specifically, 60% of
mice with peripheral blood chimerism levels of less than 1%,
and 100% of mice with chimerism levels greater than 1% follow-
ing I[UHCT demonstrated successful enhancement of allogeneic
engraftment following postnatal, same-donor, bone marrow (BM)
transplants suggestive of the presence of donor specific tolerance.
Decreased donor specific reactivity was demonstrated by MLR
in those mice with <1% chimerism in which engraftment could
be successfully enhanced following IUHCT compared to those
in which engraftment could not be enhanced (Ashizuka etal.,
2006). In another study, peripheral blood chimerism was noted
to correlate with thymic chimerism and donor specific tolerance
as measured by skin graft acceptance. In this study, chimerism
levels greater than 3% at the time of skin graft placement were
consistently associated with donor specific tolerance and graft
acceptance (Chen etal., 2010). In this study, adequate levels of
donor cell engraftment were needed for the induction of toler-
ance. However, peripheral blood chimerism was not required for
the maintenance of tolerance as demonstrated by persistence of
donor skin grafts despite the loss of peripheral blood chimerism
in some mice.

IUHCT AND MECHANISM OF DONOR SPECIFIC TOLERANCE
Fetal immunologic tolerance is a phenomenon believed to be tem-
porally related to thymic development (Billingham etal., 1953).
The developing fetal thymic microenvironment plays a primary
role in the positive and negative selection of pre-T cells result-
ing in the deletion of presumed auto-reactive T cell clones with a
high affinity for self antigen in association with self MHC while
maintaining a T cell repertoire for foreign antigen (Sprent, 1995;
Goodnow, 1996; Goodnow et al., 2005). In the human fetus, TCR
bearing, single positive lymphocytes can be identified as early as
13-14 weeks gestation. In the murine system, this stage of develop-
ment corresponds to ~17 days gestation. Thus, [UHCT attempts
to introduce donor cells into the fetal thymic microenvironment
prior to this time such that donor cells will be identified as “self”
and donor antigens will undergo appropriate thymic antigen pre-
sentation resulting in clonal deletion of donor alloreactive host T
cells.

Although donor specific tolerance following ITUHCT is well
accepted, the mechanisms underlying this tolerance have only
recently begun to be understood. Early studies suggested toler-
ance was the result of partial deletion of donor specific host T
cells combined with peripheral suppression of donor reactive T
cells that escape deletion (Kim etal., 1999; Nijagal etal., 2011).
Thymic deletion of donor reactive host T cells can occur via the
direct pathway in which donor antigen is presented by donor
antigen presenting cells (APCs) or the indirect pathway in which
recipient APCs process donor derived allo-MHC molecules into
peptides and then present those peptides to T-cells on self-class II
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MHC molecules. Additionally, the “semidirect” pathway whereby
intact donor MHC molecule-donor peptide complexes are taken
up by host APCs and directly interact with reactive T cells may
be involved (Herrera etal., 2004; Nijagal etal., 2013). Initial stud-
ies using the mammary tumor virus (Mtv) superantigen system
demonstrated that partial deletion of donor reactive host lym-
phocytes occurs via both the indirect and direct route of antigen
presentation following IUHCT (Shaaban etal., 2000; Peranteau
etal., 2002). More recently, murine studies using TCR-transgenic
systems that allow differentiation of direct vs. indirect antigen pre-
sentation with subsequent donor reactive T cell deletion confirm
that deletional tolerance can occur via both pathways (Nijagal
etal, 2013). In this study, expression of donor-derived class II
antigens on host APCs was assessed to determine the possible con-
tribution of the “semidirect” pathway to deletion of donor reactive
T cells. No expression was seen suggesting that the “semidirect”
pathway does not play a significant role in deletional tolerance fol-
lowing IUHCT. In addition to inducing immunologic tolerance
of host cells to donor cells, [IUHCT also results in partial dele-
tion of host reactive donor T cells derived from hematopoietic
stem or early progenitor cells at the time of IUHCT via the direct
pathway (Bacchetta etal., 1993; Shaaban etal., 2000; Peranteau
etal., 2002). In these studies, the direct route of antigen presen-
tation was more efficient with respect to the degree of relevant
clonal deletion, but neither route resulted in complete deletion
of donor (or host) reactive lymphocytes. Remaining donor (or
host) reactive lymphocytes are thought to be suppressed in the
periphery by mechanisms that remain to be fully elucidated. This
is similar to clinical experience in children who have undergone a
successful [UHCT for SCID. These children were immunologically
tolerant and were shown to have residual clones of donor reac-
tive cells that were anergic in proliferative assays (Roncarolo etal.,
1988; Sakaguchi et al., 1995; Touraine et al., 2005). The mechanism
by which this occurs is hypothesized to be related to periph-
eral regulatory cells using the natural mechanisms of controlling
autoreactive T cells that escape thymic deletion (Muench, 2005).
In the murine model, the contribution of CD4*CD25" Foxp3™
T regulatory cells to this process remains unclear. Studies have
shown an increase in the percentage of Treg cells (as well as the
Treg/Teft ratio) in the thymus and spleen of chimeric mice fol-
lowing TUHCT related to deletion of the Teff population but not
an increase in the absolute number of Treg cells (Nijagal etal.,
2013). Although this shift in the Treg/Teff ratio may play an impor-
tant role in the establishment of engraftment, the contribution of
Tregs to maintaining chimerism following IUHCT remains to be
shown.

IN UTERO TOLERANCE INDUCTION AND POSTNATAL
TRANSPLANTS

Technical improvements in injection techniques have highlighted
the intravascular route as a promising alternative to the intraperi-
toneal route of injection. IUHCT via the intravascular route has
achieved initial chimerism levels of 1-23 and 3—39% in the murine
model and the preclinical canine model respectively (Peranteau
etal., 2006; Vrecenak etal., 2014). These results are encouraging
and those animals at the higher end of the engraftment spectrum
have donor cell chimerism levels that may be adequate to treat the

target disease. However, studies in murine models of Sickle cell
anemia, a primary target disease for treatment by [IUHCT, suggest
that 70 and 40% donor cell myeloid engraftment is needed to elim-
inate peripheral RBC sickling and anemia respectively (Iannone
etal., 2001). To obtain these and higher levels of engraftment in
all recipients of [UHCT, alternative approaches must be explored.
Ex vivo modification of donor HSCs or in vivo treatment of fetal
recipients with agents which provide a competitive advantage to
donor HSCs over endogenous fetal HSCs may be employed to
increase donor cell engraftment to clinically relevant levels follow-
ing a single IUHCT (Peranteau et al., 2006; Derderian etal., 2014).
Alternatively, donor specific tolerance induction by IUHCT can
be used as a platform on which postnatal transplants using the
same prenatal donor source can be performed following non-
myeloablative, non-immunosuppressive conditioning to increase
engraftment levels.

A review of the literature reveals multiple studies demonstrat-
ing the feasibility of tolerance induction by IUHCT followed
by postnatal same-donor “booster” transplants (Table 1). In
the murine model, allogeneic donor cell engraftment was min-
imally increased when postnatal same-donor transplants were
performed in the absence of any conditioning regimen (Carrier
etal., 1995; Donahue etal., 2001). We performed additional stud-
ies in which non-myeloablative non-toxic conditioning regimens,
including low dose total body irradiation (TBI) or busulfan, were
administered to chimeric recipients prior to a postnatal same-
donor transplant (Peranteau etal., 2002; Ashizuka etal., 2006).
Engraftment enhancement directly correlated with the dose of
TBI or busulfan administered with near complete donor cell
chimerism achieved at the highest doses. The increase in donor
cell chimerism resulted from the postnatal donor cell source as
opposed to expansion of donor HSCs which had engrafted fol-
lowing IUHCT. Finally, chimeric mice in which engraftment was
successfully enhanced demonstrated reduced donor cell reactiv-
ity of recipient cells by MLR following IUHCT and prior to
the postnatal transplant. These studies highlight the potential to
increase allogeneic donor cell engraftment to clinically relevant
levels by a combination of tolerance induction by ITUHCT and
engraftment enhancement by a postnatal BMT using the same
prenatal donor. They demonstrate the need for some condition-
ing regimen to provide a competitive advantage to the donor cell
population to achieve the desired engraftment levels independent
of preexisting immunologic tolerance. Studies in the preclini-
cal canine model also support the feasibility of this approach
with results that reflect similar findings to those achieved in
the murine model. Specifically, we demonstrated the ability to
successfully enhance peripheral blood donor cell chimerism in
the canine model by a combination of IUHCT and a postnatal
same-donor BMT using a low-dose busulfan conditioning reg-
imen (Peranteau etal.,, 2009). In this study, donor chimerism
levels were increased from <1 to 35-50% and remained stable up
to 6 months to 1 year after transplant in two of six recipients.
Control dogs which did not receive an ITUHCT never demon-
strated any donor cell engraftment following postnatal BMT.
The 33% success rate of enhancing engraftment in dogs with
initial chimerism levels <1% following IUHCT concurs with
murine studies in which 60% of mice with chimerism levels <1%
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Table 1 | Summary of studies using IUHCT to induce donor specific tolerance for postnatal allogeneic cellular or organ transplants.

Animal Postnatal Result Study
model transplant
Murine BM (cellular) Small increase in donor engraftment following unconditioned Carrier etal. (1995)
postnatal transplant (0.2-5% donor chimerism)
Small increase in donor engraftment following unconditioned Donahue etal. (2001)
postnatal transplant (0.05-0.58 to 2.53%)
Conversion to >90% donor cell engraftment following low dose Peranteau etal. (2002)
non-myeloablative TBI and postnatal transplant
Conversion to near total donor cell chimerism following minimally Ashizuka etal. (2006)
myeloablative conditioning and postnatal transplant
Canine BM (cellular) Transient elevation of donor cell engraftment (<1-40% donor cell Peranteau etal. (2009)
chimerism) in all recipients of an IUHCT and postnatal BM transplant
following low-dose Busulfan conditioning. Sustained long-term
enhancement of engraftment (donor cell chimerism: 35-560%) in two
of six recipients
Non-human BM (cellular) Persistent hyporesponsiveness to donor cells on mixed lymphocyte Shields etal. (2004)
primate reaction but no significant increase in donor cell engraftment
Murine Skin graft Prolonged skin graft acceptance in microchimeric mice Carrier etal. (1995)
Skin graft acceptance in 66% of microchimeric mice Kim etal. (1998)
Skin graft acceptance in 100% of macrochimeric mice Hayashi etal. (2002, 2004)
Donor cell chimerism levels >3% required to consistently accept Chen etal. (2010)
postnatal skin grafts
Ovine Renal Donor kidney rejected 10 days after transplant in sheep that had Hedrick etal. (1994)
3-5% donor cell engraftment following [IUHCT
Swine Renal Prolonged donor kidney survival after minimal immunosuppression Mathes etal. (2001)
for minor histocompatibility antigens
Prolonged donor kidney survival with minimal or no Mathes etal. (2005)
immunosuppression and no evidence of anti-donor antibodies
Renal allograft survival for >100 days without immunosuppression Lee etal. (2005)
Canine Renal Long-term acceptance of donor kidney transplant without Vrecenak etal. (2014)
immunosuppression in four recipients; No evidence of rejection in
three of four recipients (12-55% donor cell chimerism at transplant);
Mild chronic rejection noted in recipient who had lowest donor cell
chimerism (7%) at the time of transplant
Non-human Renal Prolonged survival of paternal kidney transplant in chimeric recipients Mychaliska etal. (1997)
primate (donor chimerism level <0.1%) of a paternal IUHCT vs. controls

which did not receive an IUHCT (time to rejection: 1 vs. 4-7 weeks)

All studies evaluated the ability of IUHCT to provide a platform on which postnatal allogeneic transplants, using the same-donor source that was used to perform
the IUHCT could be performed to increase the levels of donor cell engraftment or allow for successful organ transplant with minimal or no myeloablation or

immunosuppression.
BM, bone marrow; TBI, total body irradiation.

following IUHCT successfully enhanced donor cell engraftment
using a similar postnatal transplant regimen (Ashizuka etal,
2006). In both studies, failure to achieve stable enhanced donor
cell engraftment was associated with increased donor cell reactivity
of recipient cells on MLR suggesting a lack of definitive toler-
ance. These studies support the need to achieve initial levels

of donor cell engraftment >1% following IUHCT to reliably
induce donor specific tolerance for postnatal cellular transplants.
More recently, IUHCT via the intracardiac route in the canine
model has more consistently resulted in donor cell engraftment
at levels believed to be associated with donor specific tolerance
(Vrecenak etal., 2014). These results highlight the potential to
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more reliably enhance donor cell chimerism by the combination
of IUHCT and postnatal same-donor transplants in the clinical
setting.

In utero hematopoietic cell transplantation may also induce
donor specific tolerance and allow for postnatal solid organ
transplants without the requirement for immunosuppressive con-
ditioning (Table 1). Acceptance of donor skin grafts, a classic
method of assessing donor specific tolerance, has been repeat-
edly demonstrated in the murine model of IUHCT with success
dependent on the levels of donor cell chimerism (Chen etal.,
2010). A renal transplant is potentially the most clinically rele-
vant solid organ transplant in the setting of tolerance induction
by IUHCT. Studies in the swine and canine model support the
ability of donor specific tolerance induction by IUHCT to allow
for successful postnatal same-donor renal transplants without
immunosuppression. Interestingly, in the canine model, clinically
insignificant but histologically detected mild chronic rejection of
one recipient of a postnatal renal transplant following [UHCT
was noted. This recipient had the lowest levels of peripheral
blood donor cell chimerism (7%) at the time of renal trans-
plant. The other renal transplant recipients had chimerism levels
of 12-55% at the time of transplant and demonstrated no clin-
ical or histologic evidence of rejection (Vrecenak etal., 2014).
Donor cell engraftment levels of 7% are above what would be
expected to induce donor cell tolerance and allow for successful
non-myeloablative postnatal cellular transplants suggesting that
chimerism levels that allow for successful postnatal solid organ
transplants without immunosuppression may be different than
those required for postnatal cellular transplants. Finally, toler-
ance induction by IUHCT to allow for xenogeneic solid organ
transplants has also been investigated. Results from these limited
studies highlight the potential of this approach to overcome the
immune limitation to xenogeneic transplantation (Tanaka etal.,
1998).

CONCLUSION

In utero hematopoietic cell transplantation is a non-myeloablative
non-immunosuppressive transplant approach that allows for
donor cell engraftment and donor specific tolerance across
immunologic barriers. It has the potential to treat a large number
of congenital hematologic, genetic, and immunologic disorders
which, because of advances in prenatal care, can be diagnosed
before birth and before the maturation of the fetal immune sys-
tem. Studies in murine and preclinical large animal models suggest
that, in limited circumstances, a single IUHCT may result in high
enough levels of donor cell engraftment to ameliorate the target
disease. However, even in the absence of obtaining therapeutic
levels of engraftment, the major benefit of IUHCT may be in the
reliable induction of donor specific tolerance to allow for postna-
tal non-myeloablative same-donor cellular transplants to enhance
engraftment to target levels with minimal treatment related toxi-
city. Although less clinically relevant at the current time, a similar
approach of tolerance induction by IUHCT to allow for postnatal
organ transplants without immunosuppression may hold promise
in the future. In order to embrace the full potential of in utero
tolerance induction for postnatal cellular and organ transplants,
additional insights into the mechanisms involved in the induction

and maintenance of tolerance including the role of peripheral reg-
ulatory cells as well as the barriers to engraftment that prevent the
acquisition of donor specific tolerance in all recipients of IUHCT
must be investigated.
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