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Drug resistance in pathogenic protozoa is very often caused by changes to the ‘trans-
portome’ of the parasites. In Trypanosoma brucei, several transporters have been
implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arseni-
cals.The resistance mechanism had been thought to be due to loss of a transporter known
to carry both types of agents: the aminopurine transporter P2, encoded by the geneTbAT1.
However, although loss of P2 activity is well-documented as the cause of resistance to the
veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the
human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine
cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine
transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine,
published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon
to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and
TbAQP3. Further analysis determined that knockdown of only one pore,TbAQP2, produced
the MPXR phenotype.TbAQP2 is an unconventional aquaglyceroporin with unique residues
in the “selectivity region” of the pore, and it was found that in several MPXR lab
strains the WT gene was either absent or replaced by a chimeric protein, recombined
with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates
of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression
of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed
MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2
in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from
HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is
now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible
structural rationale for this remarkable ability.
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INTRODUCTION
African trypanosomes are extracellular parasites, which circulate
in the bloodstream and tissue fluids of their mammalian hosts
and are transmitted by tsetse flies in sub-Saharan Africa. They are
responsible for the human disease sleeping sickness, or human
African trypanosomiasis (HAT), caused by two subspecies of Try-
panosoma brucei; T. b. gambiense causes the chronic form of the
disease in West and Central Africa, and is responsible for the vast
majority of disease cases (Brun et al., 2010), whilst T. b. rhodesiense
causes the acute form in East Africa. Both are widely believed to be
fatal unless adequate treatment is provided. The number of cases
has recently decreased due to increased surveillance, treatment of
cases, and targeting of the insect vector.

Both forms of HAT comprise two stages: stage one where the
parasites spread through the haemo-lymphatic system from the
site of the tsetse bite and stage two where the parasites cross
into the cerebro-spinal fluid (CSF) via the blood-CSF and blood-
brain barrier and establish an infection in the central nervous
system (CNS; Mogk et al., 2014). If left untreated, the disease

caused by either species leads to coma and death (Brun et al.,
2010).

Most trypanosomes have to survive within two hosts, mam-
malian and insect, necessitating adaption to differing nutritional
environments, and remodelling of their surface coat (Gadelha
et al., 2011); and must also live within two specialized environ-
ments in their mammalian host. In the bloodstream and lymphatic
system the parasites evade both the acquired and innate immune
systems, predominantly by antigenic variation, changing the vari-
ant surface glycoprotein (VSG) expressed on their surface to
avoid antibody-mediated responses (Gadelha et al., 2011). Dur-
ing the second stage of infection, in the CNS, they are more
protected from the immune system, and may exist as a reser-
voir, able to reinfect the bloodstream, for example after treatment
with drugs which do not penetrate into the CSF (Mogk et al.,
2014).

The closely related, but human serum sensitive species T. con-
golense, T. vivax, and T. brucei brucei cause the veterinary disease
animal African trypanosomiasis (AAT) or nagana, a severe, often
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fatal, wasting disease, principally affecting cattle, but also impor-
tantly sheep and goats, and which renders livestock farming
across the tsetse belt of Africa extremely challenging (Steverd-
ing, 2008). T. vivax can also be transmitted mechanically by
bloodsucking insects, and such transmission has been found
in Central and South America (Gonzatti et al., 2014), and in
non-tsetse infested regions of Ethiopia (Cherenet et al., 2006;
Fikru et al., 2012). The disease Surra, a similar wasting disease
to nagana, is caused by T. evansi, which has lost its maxicir-
cle kinetoplast DNA and thus the procyclic stage of its lifecycle,
and as such does pass through an insect vector, instead being
mechanically transmitted between hosts by blood-feeding insects
(Lun et al., 2010). It is the most widely distributed animal try-
panosomiasis, being found in Asia, northern and northeastern
Africa, Central America and South America, within a variety
of host species, mainly causing disease in horses, camels, and
water buffaloes, although it can also affect other equines, cat-
tle, goats, sheep, elephants, cats, and dogs (Desquesnes et al.,
2013; Namangala and Odongo, 2014). A further trypanosomi-
asis of horses and donkeys, dourine, is caused by the related
species, T. equiperdum, which also cannot pass through an insect
vector, being instead, uniquely amongst trypanosomal diseases,
transmitted though sexual contact (Lun et al., 2010). It causes a
variety of genito-urinary symptoms, along with anemia and ema-
ciation, leading to nervous symptoms (Namangala and Odongo,
2014).

TREATMENT OF HAT
There are currently five treatment options for HAT: pentami-
dine, suramin, melarsoprol, eflornithine monotherapy, and
nifurtimox–eflornithine combination therapy (NECT); which
drug is used is mostly dependent on disease stage and the infecting
subspecies, as well as on availability of the medication. Pentami-
dine is used for early stage HAT caused by T. b. gambiense; whilst
early stage T. b. rhodesiense is treated with suramin (Brun et al.,
2010). Both were introduced in the early 20th century, with pen-
tamidine discovered in 1937 and suramin in 1916 (Delespaux and
de Koning, 2007; Steverding, 2008).

For patients with second-stage disease, melarsoprol has been
widely used as the first line drug for decades, despite the fact that
the drug causes fatal reactive encephalopathy in 2–5% of patients
depending on the infective species (Brun et al., 2010), possibly
due to rapid lysis of large amounts of parasites in the brain. Over
the last 15 years, increasing rates of melarsoprol treatment failures
have also been reported, with rates between 20 and 39% being seen
in some foci of infections in Uganda, Republic of South Sudan,
Angola, and the Democratic Republic of Congo (DRC; Legros
et al., 1999; Brun et al., 2001; Moore and Richer, 2001; Stanghellini
and Josenando, 2001; Robays et al., 2008; Mumba Ngoyi et al.,
2010).

Eflornithine was introduced in 1990, and has been freely avail-
able since 2001 (Simarro et al., 2012), but despite the increasing
failures of melarsoprol treatment, it did not replace melarsoprol
as a first line treatment due to a number of significant problems:
it is only effective against T. b. gambiense parasites, it is expen-
sive and requires logistically difficult administration procedures,
requiring four daily intravenous infusions for 14 days (Simarro

et al., 2012). Partly due to the ease of inducing eflornithine resis-
tance in the laboratory (Vincent et al., 2010) and anecdotal reports
of eflornithine treatment failures, clinical trials were conducted
to assess the efficacy of combinations of eflornithine, melarso-
prol and the oral drug nifurtimox, which is commonly used
to treat Chagas disease (Simarro et al., 2012). Ultimately, after
phase III trials, the combination of nifurtimox and eflornithine
(or NECT) was found to have the same safety and efficacy as
eflornithine treatment alone, but to have the significant advan-
tages of reducing both the dose and treatment time necessary for
cure and of being less likely to induce resistance than eflornithine
mono-therapy (Priotto et al., 2009). Thus, the World Health Orga-
nization (WHO, 2009) recommended that NECT should be used
for treatment of second-stage T. b. gambiense sleeping sickness,
and melarsoprol use has rapidly declined. Although between 2001
and 2006 the number of T. gambiense cases treated with eflor-
nithine only increased from 3 to 12%, by 2009 the proportion
treated was 66% and after NECT was added to the WHO essential
medicines list in 2009 the proportion treated with this combina-
tion increased to 88% in 2010 (Simarro et al., 2012). Melarsoprol
does of course remain the only treatment available for late-stage T.
b. rhodesiense HAT, making study of the mechanisms of resistance
crucial.

TREATMENT OF AAT
Currently three drugs are most commonly used for AAT: the
diamidine compound dimiazene aceturate (DA), and the phenan-
thridines isometamidium chloride (ISM) and ethidium bromide;
although ISM is principally used prophylactically (Delespaux et al.,
2008). The effective treatment of livestock remains hugely impor-
tant for farmers within the tsetse belt of Africa, with an estimated
46 million head of cattle at risk of trypanosomiasis (Swallow,
2000). The disease is controlled by both vector control and
chemotherapy, with an estimated 35 million doses of trypanocides
administered annually (Geerts and Holmes, 1998), although the
effectiveness of all trypanocides is threatened by drug resistance
(Geerts et al., 2001; Delespaux et al., 2008).

DRUG RESISTANCE AND TRANSPORTERS
TBAT1/P2
Melarsoprol/pentamidine cross resistance (MPXR) is a well-
known phenomenon in HAT, first described by Rollo and
Williamson (1951); and although the cause was never completely
resolved, it has long been clear that it was linked to reduced drug
accumulation (Damper and Patton, 1976; Frommel and Balber,
1987; de Koning, 2001a). The first drug transporter identified in
trypanosomes was the P2 adenosine/adenine transporter, which
was originally connected to melarsoprol uptake (Carter and Fair-
lamb, 1993) and subsequently to diamidine transport (Barrett
et al., 1995; Carter et al., 1995, 1999; de Koning and Jarvis, 2001;
de Koning et al., 2004). The P2 gene was the first nucleoside
transporter to be cloned from trypanosomes, with the gene des-
ignated as TbAT1 (Mäser et al., 1999). Although the evidence for
diamidine and arsenical transport by TbAT1/P2 is unquestion-
able, it has become equally clear that TbAT1/P2 mediates only a
proportion of the uptake of both diamidines and arsenicals (de
Koning, 2001b; Bray et al., 2003). The proportion of uptake varies
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in particular for different diamidines, as the deletion of TbAT1
led to a high level of resistance to the veterinary diamidine DA
(Matovu et al., 2003) and the newer clinical candidates furami-
dine and CPD0801 (Ward et al., 2011), but only to a minor loss
of sensitivity for melaminophenyl arsenicals and for pentamidine
(Matovu et al., 2003; Bridges et al., 2007). Thus, T. brucei is sen-
sitive to these diamidines only because it expresses this unique
adenosine/adenine transporter – a very rare example of a trans-
porter with virtually equal affinity and transport efficiency for
a nucleoside and its nucleobase (de Koning et al., 2005). The
TbAT1 allele may be the random result of extensive gene dupli-
cation, as the T. brucei genome contains at least 15 genes of
the equlibrative nucleoside transporter (ENT) family (de Kon-
ing et al., 2005). Interestingly, the related parasite T. congolense,
which is a major pathogen of livestock in sub-Saharan Africa, also
has a major amplification of the ENT family (up to 19 mem-
bers), but phylogenetically most of these cluster as nucleobase
transporters rather than nucleoside transporters (P1-cluster) or
nucleoside/nucleobase transporters (P2 cluster; Munday et al.,
2013). As such, T. congolense does not have a counterpart of TbAT1
(Munday et al., 2013) and is much less sensitive to diminazene
(Munday and De Koning, in preparation), although this is the
main drug for the treatment of T. congolense infection.

The mode by which TbAT1 recognizes substrates as different
as diminazene, adenine, melarsoprol, adenosine and pentami-
dine, while displaying total selectivity for aminopurines (adeno-
sine/adenine) over oxopurines (inosine, hypoxanthine, guanosine,
guanine) has been investigated in detail. From an initial analy-
sis of substrate selectivity, using purine analogs, it was clear that
the main recognition site was the so-called ‘amidine’ motif =N-
CH(R)-NH2 consisting of N1 and the 6-position amine group
of the purine ring (Carter et al., 1999; de Koning and Jarvis,
1999). Substrate recognition was modelled in great detail using
Comparative Molecular Field Analysis (CoMFA) and Comparative
Molecular Similarity Indices analysis (CoMSIA), which produced
a predictive pharmacophore model using a very diverse dataset of
binding energies for 112 compounds (Collar et al., 2009).

The functional loss of TbAT1 has been linked to drug resis-
tance in T. brucei species, starting with the seminal paper by
Carter and Fairlamb (1993) showing that trypanosomes resis-
tant to melaminophenyl arsenicals had lost ‘an unusual adenosine
transporter.’ This transporter was cloned by Mäser et al. (1999)
and a ‘resistance allele’ with several single nucleotide polymor-
phisms was linked to the failure to sensitize cells to the arsenicals.
Similar mutations were also detected in clinical isolates and linked
to high levels of melarsoprol failure in Uganda (Matovu et al.,
2001). However, it has become clear that the model for melarso-
prol resistance is more complicated (de Koning, 2008; Baker et al.,
2013), with loss of at least one additional transporter necessary for
the high-resistance phenotype (Bridges et al., 2007).

ADDITIONAL PENTAMIDINE/ARSENICAL TRANSPORTERS IN T. brucei
Studies with [125I]-iodopentamidine showed that only half the
pentamidine transport capacity of T. brucei is sensitive to inhi-
bition by adenosine or adenine, and identified an additional low
affinity pentamidine transporter, LAPT1 (de Koning and Jarvis,
2001). A further high affinity pentamidine transport activity,

HAPT1, was identified using [3H]-pentamidine of high specific
activity, which allowed the very low substrate concentrations
required to detect this transport activity (de Koning, 2001b). This
established a model of three pentamidine transporters with Km

values of approximately 35 nM (HAPT1), 300 nM (P2), and
35 μM (LAPT1; de Koning, 2008). HAPT1 was additionally
found to be a transporter for the arsenical drugs, with the loss
of both the TbAT1 and HAPT1 transporters simultaneously lead-
ing to high-level MPXR (Bridges et al., 2007; de Koning, 2008),
and also to mediate a small proportion of diminazene uptake
(Teka et al., 2011), although the latter is clinically insignificant.
The very low flux of diminazene through HAPT1, relative to
TbAT1, shows that this transporter is far more selective in the
transport of diamidines. We have observed that, particularly,
diamidines that lack a flexible linker chain between the benzami-
dine end groups tend to be poorly recognized and transported
by HAPT1 (Ward et al., 2011), which helps explain the much
higher activity of pentamidine than diminazene against T. brucei
species.

EFLORNITHINE TRANSPORTER
Transporters were similarly found to be crucial for sensitiv-
ity and resistance to another essential anti-trypanosomal drug,
eflornithine. The T. brucei transporter of eflornithine, AAT6,
was identified in 2010 via metabolomic analysis of eflornithine-
resistant parasites, which indicated a low level of eflornithine
in the resistant parasites, and the subsequent sequencing of
the predicted T. brucei amino acid transporter genes, which
found that the locus of TbAAT6 and several adjacent genes was
lost in the resistant line. The identification of TbAAT6 as the
transporter of eflornithine was confirmed using specific gene
knockdown with RNA-interference (RNAi), which resulted in
resistance to eflornithine. Moreover, the expression of TbAAT6
in an eflornithine-resistant line reversed the resistance phenotype
(Vincent et al., 2010). Two RNAi library screens also identified
TbAAT6 as the transporter of eflornithine and the main deter-
minant of resistance to the drug (Baker et al., 2011; Schumann
Burkard et al., 2011). TbAAT6 was subsequently confirmed to be
a functional amino acid transporter, with its expression allow-
ing growth of Saccharomyces cerevisiae mutants on neutral amino
acids (Mathieu et al., 2014).

AQUAPORINS IN T. brucei
There are three aquaglyceroporins in the T. brucei genome,
AQP1-3, which transport a number of traditional aquaglycero-
porin substrates, including water, glycerol, urea, dihydroacetone
(Uzcátegui et al., 2004), and ammonia (Zeuthen et al., 2006), as
well as the trivalent metalloids arsenite and antimonite (Uzcátegui
et al., 2013). The relatively high number of AQPs expressed in
T. brucei and other extracellular parasites has been hypothe-
sized to be due to their need to survive in the extracellular
environment, and/or to the differentiation between the different
parasitic lifecycle stages necessary for survival in both mam-
malian and sandfly hosts, with the accompanying morphological
and functional changes to their surface membranes (Song et al.,
2014). The three T. brucei aquaporins have differing localisa-
tions, with TbAQP1 located on the flagellar membrane, TbAQP3
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on the plasma membrane (Bassarak et al., 2011) and TbAQP2
in the flagellar pocket in bloodstream form parasites and on
the plasma membrane in procyclic-form parasites (Baker et al.,
2012). Interestingly, TbAQP2 and TbAQP3 are not essential for
in vivo replication, nor indeed for testse-mediated transmission,
as in vivo drug pressure can lead to the loss of these genes (see
below).

UNUSUAL PORE OF TbAQP2
TbAQP2 contains non-standard motifs in key portions of the gene
which are thought to determine the selectivity of the pore, whereas
AQP3 has standard selectivity region amino acids. TbAQP2 is
the only Major Intrinsic Protein (MIP) family member so far
described that has NSA/NPS and IVLL motifs, whilst TbAQP3
and TbAQP1 both contain the classical NPA/NPA motifs present
in most other family members (Baker et al., 2012), and a WGYR
motif in the selectivity region common to 118 aquaglyceroporin-
type pores (Baker et al., 2013). Particularly, the absence of the
aromatic/arginine (ar/R) motif in AQP2 may lead to an increase
in its ability to transport larger and charged molecules as has been
found for mammalian aquaporin 1 (Beitz et al., 2006; Li et al.,
2011; Rambow et al., 2014).

LOSS OF TbAQP2 CAUSES MELARSOPROL-PENTAMIDINE
CROSS RESISTANCE (MPXR)
T. brucei aquaporins 2 and 3 were initially identified as being
potentially important for MPXR by an RNAi library screen. The
two genes are arranged on chromosome 10 in a tandem array and
share 83% sequence identity (Alsford et al., 2012). By expressing
each gene separately in aqp2–aqp3 double null cells, it was shown
that TbAQP2 was the determinant for pentamidine and arsenical
sensitivity/resistance (Baker et al., 2012).

The open reading frame of TbAQP2 was investigated in the
well-characterized laboratory-selected strain B48, which has high
levels of resistance to both pentamidine and melarsoprol, hav-
ing had TbAT1 deleted by homologous recombination and lost
HAPT1 because of continuous passage in increasing concen-
trations of pentamidine (Bridges et al., 2007). In this strain a
TbAQP2-3(569−841)

1 chimeric gene, inactive with respect to pen-
tamidine sensitivity and transport, was found to have replaced
TbAQP2; a 272-bp section toward the 3′ end of TbAQP2 was
replaced in-frame with the corresponding section of TbAQP3
(Baker et al., 2012), see Figures 1A,B. This suggested that it was
this latter section of the gene which is at least partially responsible
for the drug-sensitivity profile of TbAQP2, and this section does
include the second half of the likely selectivity region (NPS/IVLL
is replaced with the classical regions of NPA/IGYR in the chimera).
The chimeric gene was found to have assumed the location pat-
tern of TbAQP3, being found across the whole plasma membrane
(Munday et al., 2014).

1As multiple different chimeric AQP2/3 chimeric genes are being reported in con-
nection with (potential) drug resistance, it is important to have a nomenclature that
unambiguously identifies each isolate. In brackets the first numbers indicate the
first nucleotide that is unambiguously AQP3 sequence; the second number is the
first nucleotide after that to be unambiguously AQP2 sequence. If there is no second
number the sequence reads as AQP3 to the end.

The aquaporins present in other lab-derived MPXR strains,
produced by selection with the water-soluble derivative of melar-
soprol, cymelarsan, have also been assessed. In the T. b. gambiense
line 386-Mr, the TbAQP2 gene was completely absent (Figure 1D);
whilst in the T. b. brucei 247-Mr line a different chimera,
TbAQP2/3(364), had been produced via the loss of both wild-
type TbAQP2 and TbAQP3 (Figure 1C) The 247-Mr chimera
was in frame, comprised of the first 363 bp of TbAQP2 and the
last 576 bp of TbAQP3; thus the protein contains both of the
NPA/NPA selectivity motifs of TbAQP3. In a further two MPXR
strains, produced by in vivo selection of the T. b. rhodesiense
strain STIB900 to grow in either pentamidine or melarsoprol, the
TbAQP2 genes were found to be absent altogether (Munday et al.,
2014; Figure 1D).

RE-EXPRESSION OF TbAQP2 REVERSES MPXR
Re-expression of TbAQP2 in B48 cells re-established the sensitiv-
ity of the parasites to pentamidine and cymelarsan and restored
the missing HAPT1 activity; expression of TbAQP2 in Leishma-
nia mexicana promastigotes also introduced HAPT1 function,
with kinetic parameters indistinguishable from those obtained
in T. brucei, and greatly sensitized the parasites to pentami-
dine and cymelarsan. In contrast, expression of the chimeric
TbAQP2-3(569−841) gene from the B48 strain in Tbaqp2 null par-
asites had no significant effect on the sensitivity of the parasites
to pentamidine and cymelarsan, showing that TbAQP2-3(569−841)

is not a functional pentamidine/cymelarsan transporter (Mun-
day et al., 2014), although it is as yet unclear whether it forms a
functional aquaporin.

TbAQP2 IN FIELD ISOLATES
The above studies established that TbAQP2 encodes the HAPT1
transport activity, and that alterations in the TbAQP2 locus were
the main determinant of MPXR in lab-derived strains. However,
it was vital to verify whether TbAQP2 defects also contribute to
MPXR in field isolates; this has now been completed in two sep-
arate studies, using T. gambiense isolates which were found to
have reduced melarsoprol sensitivity in in vivo tests (Graf et al.,
2013; Pyana Pati et al., 2014). Firstly, the TbAQP2-AQP3 locus
was genotyped in a number of T. gambiense field isolates (both
recent and historical; from patients who either relapsed or were
cured after melarsoprol treatment). In the five recent isolates
from the Mbuji-Masi focus in the DRC, which were isolated from
patients who relapsed after melarsoprol treatment, a single in-
frame, chimeric TbAQP2-3(814) gene was found instead of the
native tandem gene locus (Graf et al., 2013). The first 813 bp of
the chimera were from TbAQP2, with the remaining 126 bp end
of TbAQP3. In this chimera, the putative NSA/NPS selectivity
region of TbAQP2 is retained, see Figure 1E. In an older iso-
late from South Sudan, K03048, heterozygosity in the locus was
observed; one allele contained only TbAQP3, having lost TbAQP2,
whilst the other allele was composed of a similar TbAQP2-3(814)

chimera to that found in the DRC strains (Figures 1D,E). This
South Sudanese isolate was also from a patient who relapsed
after melarsoprol treatment. The wildtype TbAQP2 allele was
found in a number of older strains, isolated from 1960 to 1995,
which came from patients either successfully cured by melarsoprol
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FIGURE 1 | Schematic of the documented AQP2 and AQP3 loci in

lab-derived and field-isolated strains of Trypansoma brucei. Brown
lines = SNPs in chimeras compared to WT; yellow lines = position of
NSA/NPS loci from TbAQP2; pink lines = position of NPA/NPA loci from
TbAQP3. (A) Locus found in wildtype strains (T. b. brucei Lister 427,
247, and TREU927; T. b. gambiense 386, STIB 930, and DAL972; and T.
b. rhodesiense STIB900 (minor differences in TbAQP3 are not
highlighted); (B) Locus with chimera TbAQP2-3(569−841) from lab-derived
pentamidine resistant strain B48 (Baker et al., 2012); (C) Locus of
chimera TbAQP2-3(376) from lab-derived melarsoprol resistant strain
247-Mr (Munday et al., 2014); (D) Locus in lab-derived melarsoprol

resistant strains 386-Mr and STIB900-Mr; and lab-derived pentamidine
resistant strain STIB900-PR (Munday et al., 2014), and in one T. b.
gambiense K03048 allele (Graf et al., 2013); (E) Locus with chimera
TbAQP2-3(814) found in field isolates from Mbuji-Masi locus in DRC and
the other K03048 allele (Graf et al., 2013; Pyana Pati et al., 2014); (F)

Locus with chimera TbAQP2-3(880) found in all T. b. gambiense field
strains from Mbuji-Masi (Pyana Pati et al., 2014); (G) Locus with chimera
TbAQP2-3(678−880) found in two old Congolese T. b. gambiense field
strains, MBA and KEMLO (Pyana Pati et al., 2014) and (H) Chimera
TbAQP2-3(617−658), without loss of AQP3, from four T. b. gambiense
field strains isolated in Masi-Manimba (Pyana Pati et al., 2014).

treatment, or whose treatment outcome is unknown (Graf et al.,
2013).

Further recent T. b. gambiense isolates from the Mbuji-Masi
focus in the DRC have now been analyzed, including several pairs
of isolates collected before and after treatment with melarsoprol
(Pyana Pati et al., 2014). In 12 of these strains, the TbAQP2-3(814)

chimera was found one of these isolates had been previously
sequenced by Graf et al. (2013), which is a chimera contain-
ing only the last 43 amino acids of AQP3 (Figure 1E). By
direct sequencing, a further TbAQP2-3(880) chimera was found
from the Mbuji-Masi strains; comprising of the first 879 bp
of TbAQP2, with a SNP of T869C, followed by an in-frame
switch to the last 60 bp of TbAQP3 (Figure 1F). Thus these
strains, despite being from patients both cured and relapsing
after treatment with melarsoprol, seem all to contain the two
heterozygous chimeric alleles, TbAQP2-3(814) and TbAQP2-3(880)

(Pyana Pati et al., 2014). In two old isolates of T. b. gambiense,
MBA and KEMLO (Paindavoine et al., 1986), from the DRC,
another chimera was found. The patient history of these strains
is unknown, however, the strains have lost the native TbAQP2
and TbAQP3 genes, instead having a chimera consisting of the
first 677 bp of TbAQP2, then the next 202 bp of TbAQP3, fol-
lowed by the final 60 bp from TbAQP2 (see Figure 1G). This
TbAQP2-3(678−880) chimera, similarly to that found in the lab
strain B48 (described above), lacks the second half of the likely
selectivity region, with the NPS/IVLL residues of TbAQP2 replaced
with the classical region, NPA/IGYR in the chimera (Pyana Pati
et al., 2014).

A further four strains of T. b. gambiense, isolated in 2001 from
the Masi-Manimba focus in the DRC, where high relapse rates after
melarsoprol treatment have never been found, were also investi-
gated. These four strains were isolated from patients cured of

www.frontiersin.org March 2015 | Volume 6 | Article 32 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Drug_Metabolism_and_Transport/archive


Munday et al. Transport proteins determine drug sensitivity

their trypanosomiasis by melarsoprol treatment and appear to be
heterozygous, containing both a TbAQP2 gene which contains
18 single nucleotide polymorphisms (SNPs) compared to that
found in the wild-type T. b. gambiense strain STIB930, as well as a
chimera of the first 616 bp of TbAQP2 (with two SNPs), a 41 bp
region of TbAQP3 and the last 282 bp of TbAQP2 (Pyana Pati
et al., 2014; Figure 1H). This TbAQP2-3(617−658) chimera from
the Masi-Manimba focus retains the potential NSA/NPS selectiv-
ity region of TbAQP2, providing a potential explanation for the
assumed sensitivity of these strains to melarsoprol treatment.

So far, it has not been investigated whether the various chimeras
found in these T. b. gambiense field isolates are capable of
transporting pentamidine or melarsoprol, and further expression
studies are necessary. However, in all the lab-derived and field iso-
lates with reduced sensitivity to, or relapse after treatment with,
melarsoprol and/or pentamidine TbAQP2 has been found to be
altered in some way. In the isolates from some cured patients
the wild-type TbAQP2 was present, although with a number of
SNPs, alongside a TbAQP2-3 chimera, which retains the unusual
selectivity region of TbAQP2. At least one of the chimeras, from
the lab-derived resistant strain, has been shown to be incapable
of transporting pentamidine; and thus TbAQP2 appears to be a
determinant of the efficacy of pentamidine and melaminophenyl
arsenicals.

SELECTIVITY FILTER
The organization of the AQP2/AQP3 locus in the various strains
so far investigated is shown in Figure 1. In many cases TbAQP2
has been recombined into a chimeric gene that possesses most
of the AQP3 selectivity filter. Thus, the potential of the selec-
tivity regions to determine the MPXR has been investigated
(Munday et al., 2014). Synthetic genes encoding either the B48

chimera TbAQP2-3(569−841) or TbAQP3 containing the selectivity
region of TbAQP2 were expressed in the aqp2/aqp3 null line;
only for the TbAQP2-3(569−841) chimera (which already con-
tains the first part of the selectivity motif, as part of the first
561 bp of TbAQP2 in the chimeric protein), did introduction
of the second TbAQP2 selectivity region affect sensitivity to
cymelarsan, reaching susceptibility to this drug halfway between
the aqp2/aqp3 null and the same line expressing WT TbAQP2,
indicating that more residues in the first portion of TbAQP2
are necessary than just the predicted selectivity region; this con-
clusion was underscored by the observation that the effect was
only apparent for arsenical drug sensitivity and that pentami-
dine sensitivity was not affected by the change (Munday et al.,
2014).

MODELLING OF TbAQP2
The predicted binding modes of pentamidine and melarsoprol are
shown in Figures 2A,B, respectively. The two guanidine groups of
pentamidine are predicted to interact with main-chain carbonyl
oxygen atoms of residues located near both the extracellular and
cytoplasmic side of the protein channel (Figure 2A). Similarly to
pentamidine, one of the melamine amino substituents of melar-
soprol is predicted to interact with main-chain carbonyl oxygen
atoms of residues located near the extracellular side, whilst the
hydroxyl group of melarsoprol is predicted to interact with the
amidic side-chain group of Asn130 (Figure 2B). The pore size
of TbAQP2 is sufficiently large to accommodate either pentami-
dine or melarsoprol (Figure 2C), with both ligands able to assume
distended conformations.

The tetrameric structure of the protein models of TbAQP2,
TbAQP3, and TbAQP2-3(569−841) chimera are shown in
Figures 3A–C, respectively. The key pore forming residues

FIGURE 2 | Predicted binding of pentamidine and melarsoprol in

complex with a single TbAQP2 subunit (green). (A) Binding of
pentamidine (cyan carbon atoms). (B) Binding of melarsoprol (orange
carbon atoms). Key polar interactions are shown for both (A,B).
(C) Top extracellular view of the overlay of the docked binding
poses of pentamidine (cyan carbon atoms) and melarsoprol (orange
carbon atoms). The protein was modeled using MODELLER 9.14
(Sali and Blundell, 1993), using as a template the crystal structure
of PfAQP (PDB code: 3c02) published by Newby et al. (2008). The
sequence identity between TbAQP2 and the template was 33%.

The images were created using PyMOL version 1.50.04
(Schrödinger). PyMOL was used to generate the biological units for
the aquaglyceroporin from Plasmodium falciparum (generation of
symmetry mates). Molecular docking was performed using FRED
(McGann, 2012), using a multiconformer database generated using
OMEGA. The docked poses were energy minimized using SZYBKI
(version 1.7.0) allowing partial relaxation of the protein residues in
the direct proximity to the ligand. FRED, OMEGA, and SZYBKI are
software developed by OPENEYE (OpenEye Scientific Software:
Santa Fe, NM, USA).
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FIGURE 3 | Extracellular top view of the tetrameric structures.

(A) TbAQP2; the residues constituting the NSA, NPS, and IVLL motif
are shown in space-filling models and the locations of Ile110, Leu258,
and Leu 264 are indicated in one subunit. (B) TbAQP3; the residues
constituting the two NPA and WGYR motif are shown in space-filling
models and the locations of Trp102, Tyr250, and Arg256 are indicated in
one subunit. (C) TbAQP2-3(569−841); the residues constituting the NSA,
NPS, and IGYR motif are shown in space-filling models and the
locations of Ile110, Tyr258, and Arg264 are indicated in one subunit. The

images were created using PyMOL version 1.50.04 (Schrödinger). The
proteins were modeled using MODELLER 9.14 (Sali and Blundell, 1993),
using as a template the crystal structure of PfAQP (PDB code: 3c02;
(Newby et al., 2008)). The sequence identity between the target and the
template was 33, 36, and 34% for TbAQP2, TbAQP3, and the
TbAQP2-3(569−841) chimera, respectively. The C-alpha atoms of chain A,
B, C, and D of the tetramer template were restrained during homology
modeling using MODELLER in order to reduce the number of
interatomic distances that need to be calculated.

listed in Table 1 are also shown in Figure 3 in space-filling
models. The structural alignment of these protein models sug-
gests that TbAQP3 and the TbAQP2-3(569−841) chimera contain
pore-forming residues which have bulkier side-chains than with
TbAQP2. This could explain the lack of drug transport activity
by TbAQP3 and TbAQP2-3(569−841) chimera given the predicted
smaller pore in these subunits in comparison with TbAQP2. AQP3,
at least, is known to retain normal transport functions for the
much smaller water and glycerol substrates (Bassarak et al., 2011),
as well as for inorganic As(III) and Sb(III) (Uzcátegui et al., 2013).
In particular, TbAQP3 contains three residues (Trp102, Tyr250,
and Arg256) whose side-chains protrude into the pore of the chan-
nel. These residues align with residues with smaller side-chains
in TbAQP2 (Ile110, Leu258 and Leu264, respectively; Table 1;
Figures 3A–C). Similarly, in the TbAQP2-3(569−841) chimera,
Tyr258 and Arg264 are likely to be responsible for the lack of
transport, as the side-chains of these residues are also predicted
to protrude into the pore channel. These predictions are currently
under experimental investigation using site-directed mutagenesis.

CONCLUDING REMARKS
All the drugs currently in use against trypanosomiasis were identi-
fied through in vivo disease models and/or phenotypic screens
in vitro. To a large extent, these toxic chemicals, including
diamidines, arsenicals, eflornithine, and even suramin (Delespaux
and de Koning, 2007; Alsford et al., 2012, 2013), act selectively on
trypanosomes because of unique transport mechanisms, explain-
ing the enormous differences in potency against the closely
related Leishmania species. Just the expression of the single gene
TbAQP2 in L. mexicana promastigotes rendered these parasites
40-fold sensitive to pentamidine and >1000-fold more sensi-
tive to Cymelarsan (Munday et al., 2014). Conversely, the same
transporters that make the current chemotherapy against sleep-
ing sickness possible are the cause of drug resistance when their
activities are lost.

Table 1 | Key pore-forming residue differences amongTbAQP2,

TbAQP3, and theTbAQP2-3(569−841) chimera.

TbAQP2 TbAQP3 TbAQP2-3(569−841)

Ile110 Trp102 Ile110

Asn130 Asn122 Asn130

Ser131 Pro123 Ser131

Ala132 Ala124 Ala132

Val249 Gly241 Gly249

Leu258 Tyr250 Tyr258

Asn261 Asn253 Asn261

Pro262 Pro254 Pro262

Ser263 Ala255 Ala263

Leu264 Arg256 Arg264

Thus, the main reason for the sensitivity of trypanosomes to the
drugs used against them is that they have unique transporters, and
although these transporters are easily recognized as being from
ubiquitous gene families, there is currently no way to predict
their unusual substrate specificity and role from their primary
sequences. The drug transporters so far identified still function
efficiently as would be expected from their homologs in other
species: i.e., as a purine transporter (P2/TbAT1), an aquaglycero-
porin (TbAQP2), and as an amino acid transporter (TbAAT6).
It is only because trypanosomal drug transport has been studied
in the amount of detail that it has been, that the drug transport
activities have been identified for these otherwise relatively unre-
markable members of ubiquitous gene families. This leads to the
important conclusion that any transporter may be a potential drug
transporter and that there is no narrowly defined class of ‘drug
transporters,’ nor any transporter families that can be excluded
from that category.
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As there are so many transporters in the T. brucei genome it is
possible to do this the other way round, i.e., to try to generate a
drug that will enter trypanosomes through a specific transporter
(Barrett and Gilbert, 2006; Vodnala et al., 2013). In such a sce-
nario, given that loss of transporters has been demonstrated to
give rise to resistance, it would be important to assess by how
many transporters any new compounds are taken up; this could
lead to minimisation of the risk of transporter-related resistance
for new compounds, especially if the transporter, like any individ-
ual purine transporter, TbAQP2 or TbAAT6, are non-essential. In
each case a single point mutation (such as the introduction of a
STOP codon or frame shift) could be sufficient to induce a high
level of drug resistance, apparently with no fitness cost.

The unusual aquaglyceroporin TbAQP2 was found to encode
the high affinity pentamidine transporter (HAPT1), (Munday
et al., 2014), and appears to be vitally important for sensitiv-
ity to pentamidine and melaminophenyl arsenicals (Baker et al.,
2012; Graf et al., 2013). It may be possible to test for MPXR
by assessing the presence of wild-type TbAQP2 alleles in clini-
cal samples. However, this is unlikely to deliver a simple test as
there is no single, easily confirmed mutation and the emerging
data suggest that many different mutations or rearrangements
can give rise to loss of AQP2 as a drug transporter (Graf et al.,
2013; Munday et al., 2014; Pyana Pati et al., 2014), it would prob-
ably require sequencing of the complete AQP2-AQP3 locus to
identify any changes and adjust drug treatment plans accord-
ingly. Even then, we need to know more about the link between
observed mutations to the drug transport activity of the gene
product, which will require functional expression and analy-
sis of all chimeras and mutants identified. Only if we can gain
sufficient insights of all the structural determinants of drug tran-
port by TbAQP2 may we be able to base treatment decisions on
TbAQP2 sequnce analysis. The model presented here provides
testable hypotheses for not just the structure of the aquaporin,
but also the residues involved in binding of pentamidine and
melarsoprol.
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