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Targeted therapies have become an important therapeutic paradigm for multiple
malignancies. The rapid development of resistance to these therapies impedes the
successful management of advanced cancer. Due to the redundancy in angiogenic
signaling, alternative proangiogenic factors are activated upon treatment with anti-
VEGF agents. Higher doses of the agents lead to greater stimulation of compensatory
proangiogenic pathways that limit the therapeutic efficacy of VEGF-targeted drugs and
produce escape mechanisms for tumor. Evidence suggests that dose intensity and
schedules affect the dynamics of the development of this resistance. Thus, an optimal
dosing regimen is crucial to maximizing the therapeutic benefit of antiangiogenic agents
and limiting treatment resistance. A systems pharmacology approach using multiscale
computational modeling can facilitate a mechanistic understanding of these dynamics
of angiogenic biomarkers and their impacts on tumor reduction and resistance. Herein,
we discuss a systems pharmacology approach integrating the biology of VEGF-targeted
therapy resistance, including circulating biomarkers, and pharmacodynamics to enable the
optimization of antiangiogenic therapy for therapeutic gains.
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INTRODUCTION
Therapeutic intervention in diseases takes place within a milieu
of factors, including drug pharmacokinetics, signaling pathways,
mechanisms of drug action, and compensatory processes. Study-
ing any single pathway, mechanism of action, or interactive
process in isolation has limited value in improving our under-
standing of the complexity of disease physiology. This is evident
in the redundancy of signaling networks, feedback, and cross
talk between multiple regulatory processes (Moriya et al., 1996;
Pawson and Warner, 2007; Logue and Morrison, 2012). A systems
approach is required to quantitatively integrate underlying disease
and information contributing to treatment response and resis-
tance. Systems pharmacology combines large scale experimen-
tal studies, pharmacokinetics, mechanisms of action, signaling
pathways, adaptation mechanisms, biomarker, and pharmacody-
namic data in a quantitative framework utilizing computational
methods. This approach can facilitate understanding of disease
systems, their mechanisms of action and pathways, and hypothe-
sis development (Agoram, 2014). Systems pharmacology further
offers a tool for translational considerations from non-clinical
models to patients, realizing the bench to bedside paradigm
(Allerheiligen, 2010; Kreeger and Lauffenburger, 2010; van der
Graaf and Benson, 2011; Demin et al., 2013; Rogers et al., 2013;
Vicini and van der Graaf, 2013; Visser et al., 2014). Herein we
discuss systems pharmacology approaches to achieve a mechanis-
tic understanding of the dynamics of circulatory biomarkers for
antiangiogenic agents, thereby guiding selection of doses that can
maximize the therapeutic benefits.

CHALLENGES IN ANTIANGIOGENIC THERAPIES
Angiogenesis is critical for tumor growth and metastasis. VEGF
signaling is an extensively studied pathway for blocking tumor
angiogenesis. Several antiangiogenic agents targeting the VEGF-
pathways have been approved and are important modalities in
the management of advanced cancers. Bevacizumab, a therapeutic
antibody targeting VEGF and various VEGF receptor tyrosine
kinase inhibitors (TKIs), have shown clinical benefit in solid
tumors. However, the benefits of VEGF-targeted agents are short-
lived and resistance to anti-VEGF agents rapidly emerges after
an initial response phase, leading to restored tumor growth and
progression. This rapid development of resistance to therapy con-
stitutes a major clinical obstacle to providing extended therapeu-
tic benefits with this class of drugs. Thus, effective strategies are
needed to delay or prevent resistance to VEGF antiangiogenics.

Resistance to antiangiogenic agents arises through multiple
mechanisms, including the activation of compensatory responses
that are mediated by malignant cells and stroma cells within the
microenvironment. Angiogenesis is a highly adaptive biological
process. Tumors can resume angiogenesis and progress using
diverse angiogenic signaling, including VEGF, FGF, HGF, PDGF,
PlGF, and several proangiogenic cytokines. Numerous compen-
satory angiogenic factors are upregulated upon anti-VEGF ther-
apy in a dose-dependent manner (Ebos et al., 2007), suggesting
that dose intensity and frequency influence the development of
therapy resistance. Higher doses of anti-VEGF therapy can create
favorable conditions for metastasis by upregulating these growth
factors (Ebos et al., 2009a). This emphasizes the importance of
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finding optimal dosing schedules for anti-VEGF therapy. The cur-
rent dosing approach does not consider the best way to delay or
prevent resistance to VEGF-targeted therapy, and thereby improve
patient survival beyond a few months (Jubb et al., 2006; Azad
et al., 2008; Cannistra, 2008).

BIOLOGICALLY EFFECTIVE DOSES OF ANTI-VEGF THERAPY
Oncology drug development often involves the maximum-
tolerated dose (MTD)-based paradigm, even when data suggest
that a drug maximally inhibits its target at lower doses. The recent
analysis by the U.S. Food and Drug Administration (FDA) showed
that inappropriate dose selection was the major cause of post-
marketing requirements for oncology drugs approved between
2011 and 2013 (Prowell, 2014). Clinically recommended doses
are often derived based on their safety profiles. Toxicity has been
the primary end point for conventional dose-finding strategies
(Parulekar and Eisenhauer, 2004; Le Tourneau et al., 2009). Since
antiangiogenic therapies are mostly cytostatic in nature, they do
not always conform to the concept that MTD produces maximum
benefits (Sleijfer and Wiemer, 2008). Studies have revealed better
therapeutic benefits when lower doses of antiangiogenic therapies
were used in combination with other treatments (Kabbinavar
et al., 2003; Huang et al., 2012). Similar results were observed with
other targeted therapies, such as mammalian target of rapamycin
kinase inhibitor, in which a lower dose of 25 mg was selected as
the recommended dose for treatment after testing 25, 75, and
250 mg doses (Atkins et al., 2004). Likewise, in a study of 24
consecutive Phase I clinical trials, in which 97.7% of participants
received targeted agents, patients receiving lower (≤25% MTD)
doses responded as well as those patients receiving medium (25–
75% MTD) or high (≥75% MTD) doses (Jain et al., 2010). These
findings support the concept that higher doses are not necessarily
the most effective.

Higher doses of anti-VEGF therapies can lead to pronounced
anti-vascular effects and, subsequently, hypoxia in the tumor, e.g.,
treatment-induced hypoxia. Treatment-induced hypoxia stimu-
lates several compensatory biological processes to circumvent
continued VEGF inhibition, leading to resistance to therapy (Har-
ris, 2002; Casanovas et al., 2005; Drevs et al., 2005; Kerbel, 2005;
Mizukami et al., 2005; Hendriksen et al., 2009; Casanovas, 2011).
This excessive pruning also leads to reduced delivery of therapies
into the tumor (Jain, 2005; Van der Veldt et al., 2012; Van der Veldt
and Lammertsma, 2014). Tumors have abnormal vasculature,
which leads to an abnormal blood supply that produces hypoxic
regions in the tumor. Hypoxia has been also implicated in tumor
progression by increasing genomic instability (Nelson et al.,
2004) and selection of more malignant cancer stem cells with
increased metastatic potential (Bottaro and Liotta, 2003; Conley
et al., 2012). Therefore, antiangiogenic therapy can produce more
challenges than benefits, if it is inappropriately administered
(Huang et al., 2013b; Jain, 2013, 2014). This is consistent with
RK Jain’s vascular normalization concept, in which the judicious
use of antiangiogenic drugs can lead to more efficient delivery of
drugs and oxygen to the tumor cells (Jain, 2005). Utilization of
the vascular normalization strategy has been shown to improve
cancer immunotherapy (Huang et al., 2012, 2013a) and survival
in glioblastoma patients (Sorensen et al., 2012; Emblem et al.,

2013). Therefore, there is a critical need to find the biologically
effective dose (BED) that balances between normalization and
excessive anti-vascular effects from antiangiogenic agents, since
suboptimal and higher doses can fail to alleviate hypoxia. Further,
the BED can minimize stimulation of alternative, compensatory
proangiogenic signals in response to treatment-induced hypoxia,
and thus limit the rapid development of treatment resistance,
extending the therapeutic benefits of antiangiogenic agents (Jubb
et al., 2006; Azad et al., 2008; Cannistra, 2008).

DYNAMICS OF CIRCULATING ANGIOGENIC BIOMARKERS
The transient effects of antiangiogenic therapy predominantly
result from a redundancy in the angiogenesis signaling that
mediates tumor escape from anti-VEGF therapy. Many of the
signaling molecules (circulating angiogenic factors, or CAF)
within these compensatory pathways can be detected systemically
in patients treated with VEGF-targeting agents. For example,
increases in VEGF and PlGF, and decreases in VEGFR2 can be
observed. These changes are considered a “class” effect of VEGF-
targeted therapies (Jain et al., 2009). Many of these observed
CAF changes are recapitulated in tumor-bearing mice in a dose-
dependent manner, and are correlated with antitumor activity
(Ebos et al., 2007). Thus, CAF are increasingly recognized as
important pharmacodynamic biomarkers for better understand-
ing the treatment response and aiding in the identification of
the optimal dosing schedules for VEGF-targeted therapy (Huang
et al., 2013b). Understanding the molecular interactions between
therapy-induced CAFs and resistance to VEGF-targeted agents
can inform the development of strategies to delay or overcome
resistance to antiangiogenic therapy (Jain et al., 2009; Clarke and
Hurwitz, 2013).

These circulating biomarkers are dynamic, altered over the
course of treatment by variables including in vivo drug con-
centrations (PK), changes in the tumors (e.g., antitumor effect
and disease progression), the biological turnover of signaling
molecules, compensatory mechanisms, tumor-independent CAF
induction by normal cells in the host body, and the development
of resistance. These diverse contributing factors create uncertainty
when attempting to use dynamic biomarkers. Mathematical mod-
eling can play an important role in understanding and utilizing
the biomarkers to find the optimum biological dose and schedule
which can delay the onset of therapy resistance (Duda et al., 2013).
A recent study showcased the utility of computational models
in identifying dosing schedules to manipulate the dynamics of
the development of resistance to EGFR-targeted therapy (Foo
et al., 2012; Dolgin, 2014). A systems pharmacology approach
using multiscale computational modeling offers a tool to inte-
grate the biology of response and resistance to VEGF-targeted
therapy, including circulatory biomarkers and the pharmacoki-
netics/pharmacodynamics of antiangiogenic drugs (Figure 1), to
optimize therapeutic gains.

SYSTEMS PHARMACOLOGY APPROACH TO
ANTIANGIOGENIC THERAPY
The major challenge in developing a systems pharmacology
model is how to integrate the dynamics outside the cell (phar
macokinetics) with their downstream effects in terms of protein

Frontiers in Pharmacology | Experimental Pharmacology and Drug Discovery February 2015 | Volume 6 | Article 33 | 2

http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Sharan and Woo Systems pharmacology for optimization of antiangiogenic therapy

FIGURE 1 | Key components of the systems pharmacology model for
anti-VEGF therapy. The model integrates the pharmacokinetics of the drug,
antitumor activity, circulating angiogenic biomarkers emanated from host and

tumor cells, and therapeutic endpoints based on the drug’s response and
compensatory mechanisms within a quantitative framework, to realize a
bench to bedside paradigm.

formation or pharmacodynamic effects. PK/PD modeling has
been used to explain the relationship between pharmacokinetics
and the end downstream effects. What is missing is the mech-
anistic information in between. Limiting our investigation to
antiangiogenic therapy, we anticipate three major challenges to
filling this gap: (1) determining the interaction of ligands to their
receptors and perturbation by drug molecules, (2) integrating
the ensuing signal from these receptors with the downstream
protein production machinery, and (3) accounting for interaction
between various cell types, that produces pharmacodynamics
responses and resistance.

DRUG-TARGET INTERACTION
Receptor occupancy theory is well-developed and can be readily
utilized to integrate this process (Black and Leff, 1983; Black
et al., 1985; Mager and Jusko, 2008; Chen et al., 2009; Goodman
and Redberg, 2014). We must be mindful that biology is com-
plex and there are many subtypes of ligands, receptors, and co-
receptors which have varying degrees of affinity and modulatory
functions. Ligand-receptor interaction for angiogenesis involves
the VEGF family of ligands (VEGF-A, B, C, D, and PlGF), three
main receptors (VEGFR-1, -2, and -3), co-receptors NRP-1 and
NRP-2, and heparan sulfate proteoglycans. NRP- and, -2 and
proteoglycans play modulatory roles in ligand-receptor interac-
tion; even VEGF-A is alternatively spliced to form VEGFA121,
VEGFA145, VEGFA165, and VEGFA189 (Hoeben et al., 2004;
Koch et al., 2011; Tugues et al., 2011). Popel and colleagues have
contributed extensively to our understanding of the kinetics and
interaction of VEGF ligands and receptors (Stefanini et al., 2010;
Finley et al., 2011, 2013; Finley and Popel, 2012, 2013; Tan et al.,
2013). Although a potential contribution of other ligand and
receptor isoforms and families may be recognized, several studies
have simplified these interactions by accounting for the most

important VEGF ligand, VEGF-A (165), and receptor VEGFR-
2 interaction as the major players in angiogenesis (Sharan and
Woo, 2014; Zhang et al., 2014). The combination of competitive
ligand receptor binding and an inhibitory Hill function model
can be used to explain the VEGF-induced VEGFR activation and
inhibitor-induced VEGFR inactivation (Sharan and Woo, 2014).

SIGNAL TRANSDUCTION
Signaling pathways are an important component of a systems
pharmacology model, which links receptor-ligand interaction to
pharmacodynamic outputs (Iyengar et al., 2012). VEGF binding
to its receptors led to the phosphorylation of the tyrosine kinase
domain, which in turn initiated the canonical downstream sig-
naling cascades involved in proliferation, migration, survival, and
permeability (Tugues et al., 2011). Ordinary differential equa-
tion (ODE)-based models, also termed mechanistic or physic-
ochemical models (Birtwistle et al., 2013; Zhang et al., 2014),
are often used to describe the canonical signaling cascades. The
advantage of this approach being more mechanistic can help
a personalized medicine paradigm by incorporating informa-
tion related to genomic variation and mutation (Iyengar et al.,
2012). The limitation of this approach is the currently incomplete
mechanistic knowledge of several mediators, signaling processes,
and parameter identifiability. Given the incomplete mechanistic
knowledge of several mediators and signaling processes, or in
the absence of measurement of mediator signaling molecules,
a more empirical quantitative logic (QL; Kirouac et al., 2013;
Kirouac and Onsum, 2013) or transduction model (Mager and
Jusko, 2001) can be utilized to characterize signal transduction.
The QL approach has been elegantly explained by Kirouac and
Onsum (2013) in building multiscale models which capture the
features of oncogenic signaling networks. The transduction model
has the flexibility of handling multiscale events with different
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transit time parameters to account for time needed for signal
transduction from receptor-ligand interaction to nucleus, time
for cell machinery to form proteins, and to show the pharmaco-
dynamic effects on tumor growth. It is vital to take a balanced
approach between mechanistic representation of the signaling
pathway and the model’s predictive power (Sharan and Woo,
2014).

THERAPEUTIC AND COMPENSATORY RESPONSES TO ANTI-VEGF
THERAPY
Ideally, signaling events are linked to tumor growth kinetics.
Tumor inhibitory effects of anti-VEGF agents can be described
by adapting well-established models (Simeoni et al., 2004, 2013;
Ribba et al., 2014). In addition to tumor growth inhibition,
systemically quantifiable biomarkers such as CAFs can serve as
an important measurement to identify disease progression, make
dose selections, or stratify patients. Indirect response models
can be effectively used to capture inhibition, stimulation, and
turnover rates of biomarkers modulation (Mager et al., 2003).
We can use non-linear feedback regulation to account for com-
pensatory increases in circulatory biomarkers in response to
treatment-induced hypoxia by anti-VEGF agents.

The contributions of host cells and stroma cells within the
tumor microenvironment have been increasingly recognized to
play an important role in cancer progression and treatment
(Ebos et al., 2007, 2009b; Kerbel and Ebos, 2010; Jain, 2013;
Stroh et al., 2014). This should be explored using a systems
pharmacology model. Antiangiogenic therapies have been shown
to upregulate various growth factors in healthy cells and are dose-
dependent in non-tumor-bearing mice (Ebos et al., 2007). This
dose-dependency is also observed in healthy human volunteers
(Lindauer et al., 2010). Thus, it is important to characterize
tumor and host cell contributions to CAF modulation and to
provide mechanistic information for interpreting biomarker data
in respect to antiangiogenic treatments.

APPLICATION OF A SYSTEMS PHARMACOLOGY MODEL
OF CAFs FOR DOSE OPTIMIZATION
We have recently developed a systems pharmacology model that
uses sunitinib as the test drug to quantify the link between in vivo
drug concentrations (PK), target–drug interactions, the biological
target pathway, antitumor activity, and compensatory signals
leading to treatment resistance (Figure 1). We used the most
frequently studied CAFs, including VEGF, PlGF, and sVEGFR2.
Our model predictions were consistent with the time- and dose-
dependent changes in these hypoxia-derived CAFs following suni-
tinib given to mice at various dosages (Ebos et al., 2007). We
then tested our model within a clinical setting to explain VEGF
changes in patients with cancer who experience different treat-
ment outcomes; we found that our predictions were consistent
with the observed VEGF changes in patients receiving sunitinib
for the treatment of metastatic renal cancer (Kontovinis et al.,
2009). The stimulation/inhibition capacity and the hill coeffi-
cients of VEGF, PlGF, and sVEGFR2 in mice were similar to those
reported in humans, indicating that system-specific parameters
for conserved physiological processes such as angiogenesis are
comparable across species (Sharan and Woo, 2014).

FIGURE 2 | (A) Relationships of therapeutic efficacy and modulation of
VEGF and PlGF biomarkers to sunitinib doses. Percentage reduction in
tumor volume (•) and fold change in PlGF (N) and VEGF (�) are shown at
various doses of sunitinib at the end of study. At the dose of 40 mg/kg/day,
∼75% of tumor volume was reduced, with minimal upregulation of
hypoxia-dependent CAF. Further dose escalation resulted in marginal
therapeutic gain (<5%), but significant upregulation of CAF, which may
indicate excessive anti-vascular effects. (B) Utilization of CAF biomarkers in
the selection of biological dose of antiangiogenic drugs. The fold change in
VEGF and PlGF may serve as a surrogate marker for excessive anti-vascular
effects and, in turn, potential for emerging resistance. This illustrates how
the biologically effective dose may be selected in a manner which does not
invoke significant hypoxia and involves little stimulation of
hypoxia-dependent CAF. Monitoring multiple CAFs will be advantageous, as
each factor has a different dynamic range. PlGF has a wider dynamic range
than VEGF, and results in higher fold change at the same dose. This
provides an advantage over VEGF, because PlGF changes are more likely
detectable even at lower doses.

Our model allows us to delineate CAF changes in the tumor
microenvironment and host body during VEGF-targeted therapy
and to assess their impacts on tumor response and resistance to
therapy. This provided insight into the possible ways to utilize the
CAF for better dose guidance of these therapies, either alone or
in combination. We found a relationship of tumor reduction and
compensatory increase in VEGF and PlGF with increasing suni-
tinib doses in xenograft mice (Figure 2A). The increase in proan-
giogenic factors was directly related to the dose, suggesting that
these CAF can be used as biomarkers to determine the optimal
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dose for antiangiogenic drugs. For example, in an A431 xenograft
mouse model, the maximum benefit from sunitinib treatment
may be achieved at a dose of 20–40 mg/kg/day of sunitinib, as such
doses produce no significant changes in VEGF or PlGF levels. Fur-
ther dose escalation resulted in marginal therapeutic gain (<5%),
but significant upregulation of hypoxia-dependent CAF, which
may indicate excessive anti-vascular effects. As such, these CAF
could be used to construct a therapeutic index for antiangiogenic
agents. Figure 2B illustrates this CAF biomarker-based paradigm
for dose selections in particular, balancing between antitumor
effects and CAF changes. The CAF modulation may serve as a
surrogate marker reflecting the anti-vascular effects of antiangio-
genic treatment. Ligands of tyrosine kinase receptors have been
found to confer resistance by engaging survival signals redundant
to those of targeted kinase (Wilson et al., 2012). If we assume that
higher changes in compensatory signals are associated with higher
likelihood of early onset of resistance, antiangiogenic doses may
be increased up to the level at which the CAF increase from their
baseline is minimal (e.g., <2-fold for VEGF).

Increasing sunitinib doses also led to VEGF and PlGF stim-
ulation with different magnitudes (Figure 2B). This differential
stimulation of pro-angiogenic factors can be exploited to facili-
tate dose finding. Given the inter-individual variability and het-
erogeneity in tumor response, monitoring multiple biomarkers,
rather than relying on a single marker, would be advantageous.
We found that PlGF changes were ∼2-fold higher than VEGF
changes at the same dose (Sharan and Woo, 2014). This finding
suggests that PlGF has a wider dynamic range than VEGF, and can
ensure better detection of its change even at lower doses. Thus,
monitoring PlGF and VEGF can aid in ensuring that the therapy
does not fall below the minimum effective dose nor go above the
excessive anti-vasculature dose. This finding is consistent with the
recent study in which increased PlGF, but not VEGF, was associ-
ated with patients responding to cediranib (Batchelor et al., 2013).
While we illustrated the CAF-based dose-finding strategy using
VEGF and PlGF, other CAF could be used, as different tumor
types and drug targets can invoke different CAF dynamics. Many
concepts and the mathematical framework are broadly applicable
among several tumor types and different antiangiogenic agents,
and could serve as a paradigm for determining the optimal dose
of targeted therapies.

Antiangiogenic therapies are often administered in combi-
nation with chemotherapy. There is increasing interest in com-
bining antiangiogenics with other targeted therapies in order to
improve therapeutic outcomes. However, since the clinical doses
of many targeted therapies are determined based on MTD rather
than BED, we cannot easily deduce the dosage and schedules
of combinations from single agent studies. When antiangiogenic
therapies are combined with drugs of same class, excessive over-
lapping toxicities have resulted (Azad et al., 2008, 2009). In
addition, antiangiogenic therapies at higher doses could reduce
the efficacy of concomitant cytotoxic agents, most likely due
to reduced drug delivery by excessive vessel pruning (Van der
Veldt et al., 2012). The CAF biomarker-based approach could
also be useful for determining the optimal dose of combination
therapy. In combination therapy, the role of antiangiogenic drugs
may be focused on vascular normalization. Other therapeutics

can be targeted toward killing tumor cells. In such cases, it is
desirable for antiangiogenic drugs to be administered at lower
doses at which the stimulation of compensatory signaling is
minimal.

CONCLUSION
Therapy-induced CAF can be effectively utilized as pharmacody-
namic biomarkers to find the optimal biological dose for antian-
giogenic drugs. This will ensure that the therapy maintains mini-
mum effective dose levels, without invoking much compensatory
response from the system. Routine incorporation of biomarkers
into future clinical trials will be critical for the optimization
of anti-VEGF agents and development of next generation of
antiangiogenic regimens. Biomarker studies can be augmented by
imaging studies, such as dynamic contrast-enhanced MRI (DCE-
MRI), or other imaging techniques to monitor vessel integrity,
permeability of blood vessels, and tumor perfusion (Murukesh
et al., 2010). Thus, future strategies will require circulating
biomarkers and imaging with an integrated multi-scale compu-
tational tool to guide optimal dose selection for antiangiogenic
agents. As more data become available in the future, with the
advance of high throughput methods like genomic data, the main
challenge will be vertically integrating those data. Systems phar-
macology will offer a tool to vertically integrate knowledge from
pharmacokinetics, mechanisms of action, genomics, biomark-
ers, toxicokinetics, and pharmacodynamics. This approach yields
an informed perspective from which we can streamline drug
discovery and development. The knowledge gained from this
approach can provide an in-depth understanding and, hence, a
better approach for achieving enduring therapeutic benefits from
antiangiogenic therapy.
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