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Neuroinflammation is hypothesized to enhance alcohol consumption and contribute
to the development of alcoholism. GABAergic transmission in the central amygdala
(CeA) plays an important role in the transition to alcohol dependence. Therefore,
we studied the effects of interleukin-1p (IL-18), a proinflammatory cytokine mediating
ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic
transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J
mice. Intake with unlimited (24 h) ethanol access was 9.2-12.7 g/kg (3—-15% ethanol),
while limited (2 h) access produced an intake of 4.1 + 0.5 g/kg (15% ethanol).
In our electrophysiology experiments, we found that recombinant IL-18 (50 and
100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic
potentials (elPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-18
(60 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents
(mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both
mIPSC frequencies and amplitudes in a few cells. The IL-18 receptor antagonist (IL-
1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1p
on mIPSC frequencies. These results suggest that IL-18 can alter CeA GABAergic
transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased
elPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1p did not
alter ethanol’s enhancement of the elPSP amplitude, but, in IL-1B-responsive neurons,
the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the
IL-1 system is involved in basal GABAergic transmission and that IL-1f interacts with
the ethanol-induced facilitation of CeA GABAergic transmission.

Keywords: IL-18, central amygdala, GABA,, IPSCs, elPSPs, interleukin, cytokine, IL-1ra

Introduction

Studies of human alcoholic brains and animal models have shown a link between the neu-
roimmune system and the brain changes associated with acute and chronic alcohol expo-
sure (Crews and Vetreno, 2011; Crews et al., 2011; Harris and Blednov, 2012; Szabo et al.,
2012; Szabo and Lippai, 2014). In particular, the interleukin-1 (IL-1) system has emerged as
an important player in alcohol drinking and the development of alcohol dependence, and
as a key regulator of alcohol-induced neuroimmune responses (Crews and Vetreno, 2011;
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Crews et al., 2011; Harris and Blednov, 2012; Szabo et al., 2012;
Szabo and Lippai, 2014). The IL-1 system includes the cytokines
IL-1a and IL-1B, the receptor IL-1R1, the IL-1R accessory pro-
tein (IL-1RAcP), and two negative regulators (a decoy receptor
IL-1R2 and the IL-R1 antagonist: IL-1ra). The proinflamma-
tory activities of the cytokines IL-1a and IL-1f are initiated by
their binding to the IL-1 receptor (IL-1R1) and formation of a
receptor heterodimeric complex with IL-1RAcP. After recruit-
ment of the myeloid differentiation primary response gene 88
(MyD88) adaptor to the IL-1R/IL-1RAcpP complex, signaling
pathways, including NF-kB, c-Jun N-terminal kinase (JNK) and
p38 MAPK, are activated (Garlanda et al., 2013; Krumm et al.,
2014).

Interleukin-1 and its receptor (IL-1R1) are expressed through-
out the brain (Hagan et al.,, 1993; Ericsson et al.,, 1995; Quan
et al., 1996, 1998; Taishi et al., 1997; Cartmell et al., 1999; French
et al.,, 1999; Gayle et al., 1999; Parker et al., 2000; Hosoi et al.,
2002; Johnson et al., 2004; Heida and Pittman, 2005) in both
neurons (Allan et al., 2005) and glial cells (Blanco et al., 2005;
Blanco and Guerri, 2007). Several studies have reported changes
in the expression of genes encoding components of the IL-1R1
signaling pathways in the brains of mice with a genetic predis-
position to alcohol consumption (Mulligan et al., 2006; Blednov
et al,, 2012). Additionally, polymorphisms in the genes encod-
ing the IL-1R antagonist (IL-1ra; IlIrn) and IL-1f (Il1b), but
not IL-1a (Il1a) and IL1-R1 (IL-1R1 type 1; IlIr), have been
associated with a susceptibility to alcoholism or ALD (alcohol
liver disease) in Spanish men (Pastor et al., 2005). Behavioral
studies indicate a reduction in alcohol drinking and/or prefer-
ence in IlIrn knockout mice (Blednov et al., 2012) and suggest
an important role of the IL-1 system in alcohol’s effects. IL-1f
levels are increased in alcoholics, as well as animal models of
chronic alcohol exposure (Valles et al.,, 2004; Qin et al., 2008;
Lippai et al., 2013a,b), and intracerebroventricular administra-
tions of IL-1p potentiate alcohol withdrawal-induced anxiety
(Breese et al., 2008). Conversely, administration of IL-1ra pre-
vented and protected against alcohol-induced neuroinflamma-
tion (Lippai et al.,, 2013b), and reduced alcohol-induced seda-
tion and motor impairment recovery time in mice (Wu et al,
2011).

As the central nucleus of the amygdala (CeA) plays a criti-
cal role in mediating alcohol-related and anxiety-like behaviors
(Gilpin et al., 2014), it is likely that the IL-1 signaling system
modulates ethanol’s effects on CeA function. In fact, we reported
recently that the IL-1ra regulates baseline GABAergic transmis-
sion in the CeA and is critical for the effects of ethanol at these
synapses (Bajo et al., 2014a). Additionally, immune challenges,
such as systemic IL-1f or LPS administration, are known to acti-
vate the CeA (Dayas et al.,, 2001; Frost et al., 2001; Konsman
etal., 2008). Moreover, IL-1R1 is expressed in the amygdala under
basal conditions (Frost et al., 2001), while both IL-1f and IL-
Ira are induced in the CeA by excitotoxic stimuli or systemic
immune challenge (Eriksson et al., 2000; Konsman et al., 2008).
This is particularly significant as the activation of IL-1R1 mod-
ulates synaptic transmission and plasticity (Zeise et al.,, 1992;
Bellinger et al., 1995; Dunn et al., 1999; O’Connor and Coogan,
1999; Rothwell and Luheshi, 2000; Lin et al., 2006), glutamate

and GABA release (Miller et al., 1991; Murray et al., 1997; Feleder
etal., 1998; Sama et al., 2008; Mishra et al., 2012), and membrane
expression of GABA receptors (Serantes et al., 2006; Wang et al.,
2012).

As neuroinflammation plays an important role in alcohol
use disorders and other psychiatric disorders (e.g., depres-
sion, PTSD; Jones and Thomsen, 2013), there are concerted
efforts to develop new therapeutic strategies using compounds
with anti-inflammatory properties to treat these disorders.
Therefore, understanding the molecular and cellular mech-
anisms that mediate normal and pathological neuroimmune
responses in the key brain regions involved in the pathogen-
esis of psychiatric disorders is critical for the evaluation of
potential candidate drugs and their clinical use. Here, we exam-
ined the effects of IL-1 on GABAergic transmission in the
CeA, as well as its actions on ethanol-induced facilitation of
GABAergic transmission. We recorded from B6129SF2/] mice
because they have been used previously as a control for Il1r
KO mouse studies assessing the role of IL-1R1 in various bio-
logical phenomena' (for list of publications). Because alcohol-
related behaviors in these mice have not been studied, we also
characterized the B6129SF2/] strain for alcohol drinking and
preference.

Materials and Methods

Animal Treatment

Male B6129SF2/] (n = 80; 29.5 £+ 0.3 g) mice were housed
in a temperature- and humidity-controlled room on a 12-h
light/dark cycle (lights on at 6:00 pm) with food and water avail-
able ad libitum. We conducted all care procedures in accordance
with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and with the Institutional Animal
Care and Use Committee policies of The Scripps Research
Institute.

Slice Preparation

The mice (10-16 weeks old at the time of electrophysiological
recordings) were anesthetized with 3% isoflurane, decapitated,
and the brains quickly removed and placed in ice-cold artificial
cerebrospinal fluid (ACSF: composition in mM: NaCl, 130; KCl,
3.5; NaH2P04, 1.25; MgSO4.7H20, 1.5; CaClz, 2.0; NaHC03, 24;
glucose, 10) and ice-cold oxygenated high-sucrose cutting solu-
tion (composition (in mM): sucrose, 206; KCl, 2.5; CaCl,, 0.5;
MgCly, 7; NaH,POy, 1.2; NaHCOs3, 26; glucose, 5; HEPES, 5;
pH7.3-7.4) gassed with 95% O, and 5% CO,. We cut coronal
slices containing the CeA using a Leica 1000S vibratome cutter
(Campden, Lafayette, IN, USA).

Intracellular Recordings

We incubated the slices (400 wm) in an interface configuration
for 30 min, and then completely submerged and continuously
superfused (flow rate of 2-4 ml/min) them with warm (31°C),
0,/CO;,-gassed ACSF. We added drugs to the ACSF from

'http://jaxmice jax.org/strain/003018.html
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stock solutions to obtain known concentrations in the super-
fusate. We recorded from CeA neurons with sharp micropipettes
containing 3 M KCl (65-80 MQ resistance) using current-
clamp mode. Data were acquired with an Axoclamp-2B pream-
plifier (now Molecular Devices, Sunnyvale, CA, USA) and
stored for offline analysis via pClamp 10.2 software (Molecular
Devices). We evoked pharmacologically isolated GABA pergic
IPSPs by stimulating locally within the medial subdivision
of the CeA with a bipolar stimulating electrode, while con-
tinuously superfusing the glutamate receptor blockers 6,7-
dinitroquinoxaline-2,3-dione (DNQX, 20 M) and DL-2-amino-
5-phosphonopentanoic acid (DL-AP5, 30 wM), and the GABAp
blocker CGP 55845A (1 wM).

We held the CeA neurons near their resting membrane poten-
tials (RMPs ranging from -65 to -85 mV (mean: -78.6 4+ 0.7 mV,
n = 73), and applied hyperpolarizing and depolarizing cur-
rent steps (200 pA increments, 750 ms duration) to gener-
ate voltage-current curves. To determine half-maximal IPSP
amplitudes, we examined input/output (I/O) curves by measur-
ing evoked IPSP amplitudes at five stimulus strengths ranging
from the threshold to maximum stimulation. Subsequent anal-
yses were done with averages of two IPSPs evoked with the
half-maximal stimuli. We measured the IPSP amplitudes before
(baseline), during (up to 20 min) and after (washout for 10-
25 min) drug application, and determined the percent change
in IPSP amplitude at each stimulus intensity using the equation:
(Vdrug/Vcontrol) * 100.

We examined paired-pulse facilitation (PPF) using 100 ms
interstimulus intervals and the stimulus strength was adjusted
so that the amplitude of the first IPSP was 50% of the max-
imal determined from the I/O relationship. We calculated the
PPF using the equation: (2nd IPSP amplitude/1st IPSP ampli-
tude) * 100. We took PPF measurements before drug super-
fusion (baseline), during (10-20 min) and after drug washout
(10-25 min).

Whole-cell Patch-Clamp Recording

After cutting, the slices (300 pm) were incubated in O,/CO;-
gassed ACSF for 30 min at 32°C, followed by incubation for
30 min at room temperature. We performed whole-cell patch-
clamp recording in voltage clamp mode, as described previously
(Bajo et al., 2011). Briefly, we used infrared/DIC visualization
of CeA neurons (Dodt and Zieglgansberger, 1990), followed by
digitization and image enhancement via an upright, fixed-stage
Olympus microscope. We used micropipettes with an input resis-
tances of 3-6 MQ (access resistance <20 MC, compensated
60-80%) filled with an internal solution (composition in mM:
KCl, 145; EGTA, 5; MgCl,, 5; HEPES, 10; Na-ATP, 2; Na-GTP,
0.2; the latter two added fresh on the day of recording), pH
7.3-7.4. We isolated spontaneous miniature GABA-mediated
IPSCs (mIPSCs) pharmacologically by applying blockers of gluta-
matergic (20 uM DNQX, 30 uM DL-AP5) and GABAg receptors
(I pM CGP 55845A), and adding 0.5 M tetrodotoxin (TTX)
to the bath. We used the Multiclamp 700B and pClamp 10.2
software (Molecular Devices) for data acquisition. Recombinant
mouse IL-1p, recombinant IL-1ra and ethanol were added to the
ACSF from stock solutions in known concentrations. We took

all measures before drug (baseline) and during drug superfusion
(12-15 min).

Ethanol Drinking Procedure

This procedure was adapted from that of Blednov et al. (2005).
Mice were allowed to acclimate for 1 week to individual housing.
Two drinking tubes were continuously available, Monday-
Friday, to each mouse and fluid consumption was measured daily.
One bottle of water was available across weekends. Food was
available ad libitum and mice were weighed each week. After
4 days of water consumption (on Monday, off Friday; water in
both tubes), mice were offered 3% ethanol (v/v) versus water
on the following Monday-Friday. We changed tube positions
every day to control for position preferences. Over the following
4 weeks mice received 6,9, 12, and 15% ethanol in this same man-
ner. Following this, mice received 15% ethanol for 2 h per day
(starting 3 h after lights off) for 5 days in order to examine limited
access two bottle-choice (2BC) drinking. The quantity of ethanol
consumed (g/kg body weight/24 h or 2 h) was calculated for each
mouse and averaged across each 4-5 day measurement period.

Data Analysis and Statistics

To analyze data acquired from intracellular and whole-cell
recordings, we used Clampfit 10.2 (Molecular Devices) and
MiniAnalysis 5.1 software (Synaptosoft, Leonia, NJ, USA),
respectively. We used GraphPad Prism 5.0 (GraphPad Software,
San Diego, CA, USA) software for all statistical analysis. We
accepted statistical significance at the p < 0.05 level using one-
way ANOVA and t-tests. The data are presented as percentile
changes in mean & SEM.

Drugs

We purchased CGP 55845A, DNQX, and DL-APS5 from Tocris
Biosciences (Ellisville, MI, USA), recombinant mouse IL-18
from Biolegend (San Diego, CA, USA), recombinant human
IL-1ra from Peprotech (Rocky Hill, NJ, USA), and TTX from
Calbiochem (San Diego, CA, USA). We obtained ethanol from
Remet (La Mirada, CA, USA).

Results

Ethanol Drinking and Preference of

B6129SF2/J Mice

Although the B6129SF2/] mice have been used previously as
controls for IlIr KO mouse studies assessing the role of IL-
IR1 in various biological phenomena, their ethanol drinking
and preference behavior is unknown. Therefore, we used 2BC
tests with unlimited (24 h) and limited (2 h) ethanol access to
determine their voluntary drinking and preference. The average
daily ethanol intake with 24 h access, measured for a period of
5 days, ranged from 9.24 to 12.65 g/kg for the ethanol concen-
trations tested (3, 6, 9, 12, and 15%; Figure 1A). There were no
significant differences in ethanol intake between the tested con-
centrations, nor was there a correlation between the intake and
ethanol concentration (R? = 0.7). During 2 h limited access, the
average ethanol (concentration 15%) intake was 4.1 £ 0.5 g/kg
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FIGURE 1 | Ethanol drinking behavior of B6129SF2/J mice. The ethanol
intake of B6129SF2/J mice was tested using unlimited (24 h) and limited (2 h)
2-bottle choice (2BC) paradigms. (A) The intake of 3, 6, 9, 12, and 15%
ethanol was measured by 2BC with unlimited access to ethanol. On average,
the mice consumed 11.6 + 0.9 g/kg/day of 3% ethanol solution,

12.7 + 1.8 g/kg/day of 6% ethanol solution, 10.7 £+ 1.1 g/kg/day of 9%
ethanol solution, 9.2 £ 1.1 g/kg/day at 12% ethanol solution, and

9.3 £+ 1.0 g/kg/day of 15% ethanol solution. There was significant main
difference in ethanol intake between the ethanol concentrations [F4,19) = 2.5,
n = 20], but Tukey post hoc analysis did not reveal significant differences
between specific ethanol concentrations. (B) For limited access
measurements of ethanol consumption, we used 15% ethanol solution and
intake was measured for 2 h daily (starting 3 h after lights off) for a period of

5 days. Consumption was 3.3 & 0.6 g/kg of ethanol on day 1; 4.2 + 0.4 g/kg
of ethanol on day 2; 0.4.2 + 0.5 g/kg on days 3 and 4; 4.4 + 0.5 on day 5.
Repeated measure one-way ANOVA showed no significant difference in
ethanol intake between testing days [F 4,17y = 0.7, n = 18]. (C) Ethanol intake
of individual mice is plotted as a function of preference. The average ethanol
preference ratio (volume of ethanol consumed/total volume of fluid consumed)
was 0.56 = 0.05. There was no significant correlation (R2 = 0.01) between
ethanol preference and intake in B6129SF2/J mice.

(n = 18; Figure 1B) and the average ethanol preference ratio
was 0.56 & 0.05 (volume of ethanol consumed/total volume of
fluid consumed). We did not observe a significant correlation
between ethanol preference and ethanol intake (R* = 0.01) in the

individual B6129SF2/] mice (Figure 1C). These data indicate that
B6129SF2/] mice drink a substantial amount of ethanol and have
a modest preference for ethanol.

IL-18 Decreased elPSP Amplitudes in the

CeA

We tested the effects of recombinant mouse IL-18 (5, 50,
and 100 ng/ml) on GABA, receptor-mediated eIPSPs in the
CeA. None of the tested concentrations significantly altered the
current-voltage relationships, resting membrane potentials, or
resistance (data not shown). In the majority of CeA neurons, high
IL-1P concentrations (50 and 100 ng/ml) significantly decreased
eIPSP amplitudes, by 27.8 & 6.0% (n = 11; t-test: p < 0.01) and
by 21.6 + 6.7% (n = 5; t-test: p < 0.05), respectively (Figure 2A).
However, 5 ng/ml IL-1 had no significant effect on the mean
amplitudes of the eIPSPs (to 89.8 &+ 5.0% of baseline, n = 7).
The significant decreases in eIPSPs were not associated with
changes in the PPF ratio, although there was a trend toward
an increase in the PPF ratio by IL-1p at 100 ng/ml (50 ng/ml:
103.7 £ 7.2% of baseline, n = 8; 100 ng/ml: 130.1 &+ 19.4% of
baseline, n = 4; Figure 2B). Thus, these results indicate that
IL-1B reduces GABAergic transmission, likely via postsynaptic
mechanisms.

IL-18 had Dual Effects on mIPSC

Frequencies and Decreased mIPSC

Amplitudes in CeA Neurons

We performed whole-cell recordings of mIPSCs in CeA neurons
while superfusing 50 ng/ml of IL-1B. Here, we present the com-
bined results of all experiments where IL-1p was applied to the
naive slice for 12-15 min (Figure 3). We found that IL-1f had
dual effects (A > 15% from baseline) on mIPSC frequencies and
amplitudes, and so we examined its effects on mIPSC frequen-
cies and amplitudes separately. We found that IL-1f significantly
increased the mean mIPSC frequency by 50.7 & 10.1% in 13 of
21 CeA neurons (Figure 3A). In 6 of 21 cells, we observed a sig-
nificant decrease in the mean mIPSC frequency by 44.1 £ 9.5%,
which was associated with a significant decrease in the mean
mIPSC amplitude (76.7 & 6.2% of baseline) and an increase in
mIPSC rise time (114.4 & 4.7% of baseline; Figure 3B). In the
remaining 2 neurons, IL-1p had no effect on mIPSC frequency
(data not shown). Using the changes in mIPSC amplitude as the
parameter for the division of the data, we found a significant
decrease in the mIPSC amplitude in 8 of 21 cells (72.2 £ 6.2%
of baseline) and no effects in 10 of 21 cells. In the remaining
three CeA neurons, IL-1f increased both the mIPSC amplitude
by 46.0 £ 14.7% and frequency by 62.8 + 26.7% (data not shown).
Since changes in mIPSC frequencies suggest an altered probabil-
ity of vesicular transmitter release, and changes in mIPSC ampli-
tudes may reflect modulation of postsynaptic GABA 4 receptors
(De Koninck and Mody, 1994; Otis et al., 1994), our data indi-
cate that IL-1p alters spontaneous action potential-independent
GABA transmission through both presynaptic and postsynap-
tic mechanisms of action. Importantly, the parallel changes in
mIPSC frequencies and amplitudes of individual CeA neurons
suggest that acute IL-1f acts in a cell-specific manner.
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FIGURE 2 | IL-18 decreases evoked GABA,-receptor mediated IPSPs
in the CeA. (A) Recombinant mouse IL-1B decreased the mean amplitude of
evoked IPSPs (elPSPs) by 27.8 + 6.0% (n = 11; t-test: p < 0.01) at 50 ng/ml
and by 21.6 + 6.7% (n = 5; t-test: p < 0.05) at 100 ng/ml. A lower
concentration of IL-1g (5 ng/ml) had no significant effects on the elPSPs
(89.8 £ 5.0% of baseline, n = 7). (Top) Representative elPSPs taken during
baseline and IL-1B superfusion. (Bottom) Summary of the maximal effects of
IL-1B elicited by the tested doses of IL-18 as compared to baseline. The
statistical significance (*p < 0.05 and *p < 0.01) was calculated by t-test.
(B) IL-1p did not alter significantly paired-pulse facilitation (PPF; using a

100 ms interstimulus interval) at any of the tested concentrations (5 ng/ml:
99.4 + 9.3% of baseline, n = 6; 50 ng/ml: 103.7 £+ 7.2% of baseline, n = 8;
100 ng/ml: 130.1 £ 19.4% of baseline, n = 4). (Top) Representative
recordings of PPF from a CeA neuron superfused with 50 ng/ml IL-18.
(Bottom) The PPF results are summarized on the bar graph with the PPF ratio
during IL-1p superfusion compared to the baseline levels.

IL-1ra Modulates CeA mIPSCs and Blocks

the Effects of IL-18 on mIPSCs

To examine the role of IL-1R1 in the effects of IL-1f in the
CeA, we used an IL-1R1 antagonist (recombinant IL-1ra) to block

IL-1f’s actions on GABAergic transmission. Here, we present the
results of experiments where IL-1ra (100 ng/ml) was applied to
the naive slice for 12-15 min, and the subset of these experi-
ments where IL-18 was subsequently co-applied for 12-15 min
(Figure 4). We observed transient IL-1ra effects with maximal
cellular responses within 9-15 min of drug application. Similar
to the IL-1p effects, the IL-1ra-induced changes in mIPSC fre-
quency and/or amplitude varied among individual CeA neurons.
In the majority (67%) of CeA cells, IL-1ra decreased signifi-
cantly the mean mIPSC frequency by 31.3 & 2.1% (Figure 4A).
In the remaining cells, IL-1ra significantly increased the mIPSC
frequency by 34.1 £ 7.7% (Figure 4A). These changes in the
mIPSC frequencies were not associated with significant changes
in mIPSC amplitudes or kinetics. On the other hand, when we
used the change in mIPSC amplitude (A > 15%) as the criterion
for cell grouping, we found that IL-1ra increased significantly the
mean mIPSC amplitude by 27.9 £ 4.5% in 39% of the cells and
decreased the mean mIPSC amplitude by 21.7 & 5.9% in 28% of
CeA neurons (Figure 4B). These changes in mIPSC amplitudes
were not associated with significant changes in mIPSC frequen-
cies or kinetics. In the rest of the cells (33%), IL-1ra did not alter
significantly the mean mIPSC frequency, amplitude or kinetics.
These results indicate that IL-1R1 plays a role in basal GABAergic
transmission in the CeA.

We also examined whether IL-1ra prevents the IL-1B-induced
changes in mIPSCs. In order to do this, we grouped the neurons
into two groups based on their IL-1ra-induced changes in mIPSC
frequencies, and compared their mean mIPSC characteristics to
the average mIPSC characteristics observed after 12-15 min of
IL-1ra and IL-1B co-application. Co-application with IL-18 did
not induce significant differences in the mIPSCs compared to IL-
1ra alone (Figure 4C). These results suggest that IL-18 modulates
mIPSCs via IL-1R1.

Ethanol Increased elPSPs and mIPSCs in

the CeA Via a Predominantly Presynaptic
Mechanism

Ethanol (44 mM) had no significant effects on the intrinsic
membrane properties (resting membrane potential, the current-
voltage relationship, resistance) of CeA neurons (data not shown;
see also Roberto et al., 2003). Superfusion of 44 mM ethanol
increased the mean eIPSP amplitude by 22.5 &+ 5.9% in CeA
neurons and significantly decreased the PPF ratio (82.2 & 4.0%
of baseline), suggesting that ethanol acts via presynaptic mecha-
nisms (Figure 5A). This finding is supported by ethanol’s facilita-
tion of the mean mIPSC frequency by 40.7 & 17.5% (Figure 5B).
Although ethanol had no effect on the mean mIPSC amplitude, it
significantly increased the mIPSC rise (by 14.7 = 4.2%) and decay
(by 25.4 &= 7.0%) times.

Co-Application of Ethanol Reversed the
IL-18-Induced Decrease in the Mean elPSP
Amplitude

We then examined the interaction between IL-1p and ethanol
on GABAergic transmission in the CeA, by superfusing IL-1f
(50 ng/ml) for 15-20 min, followed by co-application of IL-
18 and ethanol (44 mM) for an additional 15-20 min. Using
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FIGURE 3| IL-18 has dual effects on miniature IPSCs in CeA neurons.
(A) IL-1B increases mIPSC frequencies in the CeA. (Top) A representative whole-
cell voltage clamp recording showing an increase in mIPSC frequency induced
by 50 ng/ml IL-1p superfusion. (Bottom) The bar graphs present normalized
mIPSC parameters from 62% of CeA neurons (13 of 21 cells) responding to
IL-1B with an increase in MIPSC frequency (150.7 £ 10.0% of baseline). mIPSC
amplitude (104.0 + 7.8% of baseline) and kinetics were not significantly
changed in these CeA neurons, although some cells showed individual changes
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in mIPSC amplitude. We calculated statistical significance (**p < 0.01) by t-test.
(B) IL-1B decreases mIPSC frequencies and amplitudes in CeA neurons. (Top)
Representative recording of a CeA neuron responding to IL-18 with a decrease
in mIPSC frequency. (Bottom) Acute application of IL-1B significantly decreased
the mIPSC frequency (55.9 £ 9.5% of baseline) and amplitude (76.7 + 6.2% of
baseline) in 29% of CeA neurons (6 of 21 cells). In addition, IL-1p increased the
mIPSC rise time (114.3 & 4.7% of baseline) in these neurons. Statistical
significance (*p < 0.05) and (**p < 0.01) were calculated by t-test.

intracellular recording, we found no significant changes in the
membrane properties induced by IL-1f or co-application of IL-1f
and ethanol (data not shown). IL-1f alone significantly decreased
the mean eIPSP amplitude (84.8 &= 4.7% of baseline), whereas
co-application with ethanol reversed the IL-1p-induced decrease
in the mean eIPSP amplitude back to 115.4 & 5.3% of the origi-
nal baseline (Figures 6A,B). Ethanol co-application significantly
increased the mean eIPSP amplitude in comparison to the IL-
1B effect, but not with respect to the baseline level (Figure 6C).
In addition, we did not observe significant changes in the PPF
ratio following superfusion with IL-1f alone or co-application of
IL-1p and ethanol (Figure 6D). These results indicate that IL-
1B and ethanol modulate CeA eIPSPs via different mechanisms,
though the occlusion of ethanol’s PPF effects suggest that IL-
18 may interfere with the downstream mechanisms mediating
ethanol-facilitated GABA release.

IL-18 Occluded Ethanol Effects on CeA

mIPSCs

Finally, we investigated the potential interaction between IL-1f
and ethanol on action potential-independent vesicular GABA
release. In the majority of CeA neurons (6 of 10 cells), IL-1f
alone, as well as its co-application with ethanol, significantly
increased the mean mIPSC frequency (to 145.9 + 14.6% and
142.4 &+ 8.9% compared to baseline, respectively; Figure 7A).
There were no significant changes in the mean mIPSC amplitudes
or kinetics with IL-1f or co-application of IL-1f and ethanol in

these cells (Figure 7A). However, in 3 of 10 cells, IL-18 alone
decreased the mIPSC frequency by 53.5 £ 11.3%, and subse-
quent co-application of ethanol did not alter this IL-1B-induced
decrease in mIPSC frequency (remained at 59.2 &= 7.9% of base-
line; Figure 7B). Although there was a trend toward a decrease
in mIPSC amplitudes by IL-1p and co-application of IL-1p and
ethanol (82.15 & 9.7% and 88.14 & 11.8 of baseline, respectively)
in these three neurons, it did not reach statistical significance.
Finally, there was one CeA cell that showed no IL-1f effect on
mIPSC frequency, but co-application of ethanol increased the
mIPSC frequency to 127.6% of baseline. In this neuron, the
mIPSC amplitude was decreased by IL-1p alone (by 30.8%) and
also by ethanol co-application (by 32.1%).

Discussion

In the present study, we investigated cytokine IL-1f modulation
of GABAergic transmission and its interaction with ethanol-
induced facilitation of GABA signaling in the CeA of B6129SF2/]
mice. Behaviorally, B6129SF2/] mice have a moderate preference
for alcohol and consume a substantial amount of alcohol. At the
cellular level, IL-1f modulation of CeA GABAergic transmission
is characterized by a reduction of evoked IPSPs, mediated pre-
dominantly by postsynaptic mechanisms, and by predominantly
presynaptic dual effects on spontaneous miniature IPSCs in a
cell-specific manner. The IL-1 effects on mIPSCs appear to be
mediated by IL-1R1. Moreover, IL-1R1 regulates basal mIPSCs in
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FIGURE 4 | IL-1ra has dual effects on basal mIPSCs and prevents
IL-1B-induced modulation of mIPSCs in the CeA. IL-1ra-induced
changes in mMIPSC frequencies and/or amplitudes vary among CeA
neurons, indicating cell-specific differences in IL-1ra modulation of
GABAergic transmission. (A) Dual IL-1ra-induced changes in mIPSC
frequencies. (Top) Representative recordings of two CeA neurons showing
a decrease (left column) or increase (right column) in mIPSC frequencies
following IL-1ra application (100 ng/ml). (Bottom) Summary bar graph
showing IL-1ra decreased significantly (t-test, p < 0.01) the mean mIPSC
frequency by 31.3 £ 2.1% in 12 of 18 (67%) neurons. In the remaining
CeA cells (6 of 18), IL-1ra increased the mIPSC frequency by

341 £ 7.7% (t-test, p < 0.05). The changes in mIPSC frequencies were
not associated with significant changes in mIPSC amplitudes or kinetics.
(B) The IL-1ra induced changes in the mIPSC amplitudes were also
variable. (Top) Representative recordings of two cells responding to IL-1ra
with increased (left column) or decreased (right column) mIPSC
amplitudes. (Bottom) Summary bar graph showing IL-1ra increased (t-test,
p < 0.01) mIPSC amplitudes by 27.9 + 4.5% in 7 of 18 cells (39%)
and decreased (t-test, p < 0.01) by 21.7 + 5.9% in 5 of 18 cells
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(28%). There were no significant changes in the mean mIPSC frequencies
and kinetics across all cell groups. The statistical significance (*p < 0.05)
and (**p < 0.01) was calculated by t-test. (C) To examine the effects of
IL-1ra on the IL-1B-induced modulation of mIPSCs, we compared the
mIPSC parameters recorded within 9-15 min of 100 ng/ml IL-1ra and
50 ng/ml IL-1B co-application to the last 6 min (9-15 min) of IL-1ra
application alone. We divided the CeA neurons into two groups according
to their cellular responses (MIPSCs frequency) to IL-1ra alone: the cells
that responded to IL-1ra with decreased mIPSC frequency [by

31.8 + 3%; Fo3 = 7.5 p < 0.05 n = 7] and the cells that
responded to IL-1ra with increased mIPSC frequency [by 27.9 + 7%;
Feg = 1.7, p < 005 n = 3]. (Left) Representative recordings from two
CeA neurons responding to IL-1ra with decreased (left column) or
increased (right column) mIPSCs frequencies. (Right) IL-1ra prevented the
IL-1B-induced modulation of mIPSCs, as there were no significance
differences in mIPSCs after co-application of IL-1ra and IL-18 compared
to IL-1ra alone. The statistical significance was set at (*p < 0.05) and
was calculated by repeated measurement one-way ANOVA followed by a
Tukey post hoc test.
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FIGURE 5 | Ethanol potentiates CeA GABAergic transmission.

(A) Ethanol potentiated elPSPs via a presynaptic mechanism in CeA
neurons. (Top) Representative recordings of elPSPs from a CeA neuron
showing an ethanol-induced increase in elPSP amplitude that is reversed
upon drug washout. (Bottom) On average, 44 mM ethanol significantly
increased the mean elPSP amplitude by 22.5 + 5.9% (left column: n = 8;
t-test: p < 0.05) and decreased the PPF ratio to 82.2 + 4.0% of baseline in
six of eight neurons (right column: n = 6; t-test: p < 0.05), indicating that
ethanol-induced elPSP potentiation is mediated by increased GABA release.
(B) Ethanol increases spontaneous miniature GABA transmission in the CeA
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by both pre- and postsynaptic mechanisms. (Top) Representative mIPSC
recordings from a CeA neuron showing an ethanol-induced increase in
frequency. (Bottom) Superfusion of 44 mM ethanol induced a significant
increase in the mean mIPSC frequency (140.7 £ 17.5% of baseline), but
had no effect on the mean amplitude (102.6 + 9.5% of baseline; n = 4,
t-test: p < 0.05), supporting the finding that ethanol’s mechanism of action
is predominantly presynaptic. However, ethanol significantly altered mIPSC
kinetics, with a 14.7 + 4.2% increase in the rise time and a 25.4 + 7.0%
increase in the decay time, indicating additional postsynaptic changes (t-test:
*p < 0.05 and **p < 0.01).
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FIGURE 6 | IL-18 and ethanol have opposing effects on elPSP
amplitudes. (A) Representative elPSPs from a CeA neuron showing a

50 ng/ml IL-1B-induced decrease in elPSP amplitude, and its subsequent
reversal to baseline levels by the addition of ethanol (44 mM). (B) Time
course presenting the averaged elPSP amplitudes over 3 min bin periods.
(C) Co-application of ethanol reversed the IL-1B-induced decrease in mean
elPSP amplitude [84.8 £+ 4.7% of baseline, n = 9; F 06 = 12.1,
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p < 0.01] to slightly above baseline levels (115.4 + 5.3% of baseline).
Statistical significance [p < 0.05; *(comparisons to baseline) and
#(comparison of the effects of ethanol plus IL-1p co-application to IL-1B
alone or washout)] was calculated by repeated measurement one-way
ANOVA followed by a Tukey post hoc test. (D) There were no significant
effects on the PPF ratio (100 ms interstimulus interval) of IL-1p alone, or
when it was co-applied with ethanol [F(223) = 0.24].
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FIGURE 7 | IL-18 occludes ethanol’s facilitation of mIPSCs. (A) The
effects of ethanol on mIPSCs are blocked by IL-18 in cells that
previously showed increased mIPSC frequency in the presence of IL-1B
alone. (Top) Voltage clamp recordings of mIPSCs from a CeA neuron
showing an IL-1B-induced increase in mIPSC frequency that is unaltered
by the addition of ethanol. (Bottom) Summary of the normalized mIPSC
maximal effects of IL-18 (50 ng/ml) alone, and IL-18 and ethanol (44 mM)
co-application. IL-1p alone significantly increases mIPSC frequency by
459 + 14.6% in 6 of 10 CeA neurons. The co-application of ethanol did
not further change the mIPSC frequency (142.4 + 8.9% of baseline;
[Fe50 = 6.9, p < 0.05; Tukey post hoc test]. There were no differences
in mIPSC amplitudes and kinetics across all treatments. Statistical
significance (*p < 0.05) was calculated by one-way ANOVA followed by
a Tukey post hoc test. (B) Ethanol's effects on mIPSC frequency are
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blocked by IL-1B in cells that previously showed decreased mIPSC
frequency in the presence of IL-1B alone. (Top) Representative recordings
from a CeA neuron showing a reduction in mIPSC frequency elicited by
IL-18 and the co-application of IL-18 and ethanol. (Bottom) In 3 of 10
CeA neurons, mIPSC frequency was significantly decreased by IL-18
(46.5 £ 11.3% of baseline) alone, as well as with the co-application of
IL-1p and ethanol [59.2 + 7.9% of baseline; F22 = 35.5, p < 0.05;
Tukey post hoc test]. There was no significant difference between the
effects of IL-18 alone and co-application of IL-18 and ethanol (Tukey post
hoc test, p < 0.05), but co-application of IL-18 and ethanol significantly
increased the mean rise time of mIPSCs [116.4 + 5.4% of baseline;
Fepo = 7.9, p < 0.05 Tukey post hoc test]. The statistical significance
(*p < 0.05) was calculated by one-way ANOVA followed by a Tukey post
hoc test.

the CeA. The interaction of IL-1p and ethanol is likely to occur
presynaptically, and is characterized by the occlusion of ethanol’s
facilitation of vesicular GABA release by IL-1p.

B6129SF2/] mice have been used previously as controls for 1117
KO mice (#003018, Jackson Laboratories) in studies characteriz-
ing the role of IL-1R1 in various physiological and pathological
processes® (for a list of publications). Alcohol drinking behavior
in B6129SF2/] mice has not been determined, despite the fact that
different mice strains exhibit a range of alcohol drinking behav-
iors in terms of alcohol consumption and preference (Rhodes
etal., 2007; Yoneyama et al., 2008). Since the genetic background
of B6129SF2/] mice is based on C57BL/6] and 129S1/SvIm] mice,
we expected to find similarities in the alcohol drinking pheno-
type of B6129SF2/] mice to those two strains, particularly the
C57BL/6] mice. Our behavioral data showed that ethanol intake
and ethanol preference of B6129SF2/] mice are similar to the
values reported for C57BL/6] mice (Yoneyama et al., 2008).

Cytokines, including IL-1, play an important role in the
regulation of both excitatory and inhibitory neurotransmis-
sion in the central nervous system (Camacho-Arroyo et al,

Zhttp://jaxmice.jax.org/strain/003018.html

2009). IL-1R1 is expressed on glial cells and neurons, and
thus, the overall effect of IL-1 on synaptic transmission is a
combination of the direct effects of IL-1 binding to neuronal
IL-1R1 and the indirect effects mediated by other signaling
molecules generated and released by both neurons and glia in
response to IL-1/IL-1R1 binding (e.g., cytokines, chemokines,
ATP, etc.). The IL-1p effects on GABAergic transmission appear
to be brain region specific, as IL-1 increases GABAergic trans-
mission in some regions (e.g. hypothalamus, hippocampus;
Miller et al.,, 1991; Plata-Salaman et al., 1998; Tabarean et al,,
2006) and decreases it in others (e.g., basolateral amygdala,
cerebellum; Yu and Shinnick-Gallagher, 1994; Pringle et al,
1996).

In our study we determined a concentration response curve
for IL-1B, and found that only higher concentrations of IL-1f
(>5 ng/ml) were effective in the modulation of CeA GABAergic
transmission. The fact that the effective doses in our study are
higher than in other brain regions (often in pg/ml range) may
be caused by regional differences in the IL-1 system, especially
in the expression of IL-1R1 (Wong and Licinio, 1994; Yabuuchi
et al., 1994; Ericsson et al., 1995). To examine the role of IL-1R1
in the IL-1p effects, we used a recombinant IL-1R1 antagonist
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(IL-1ra). IL-1ra blocks the effects of IL-1p on mIPSCs, indicat-
ing that IL-1R1 mediates the IL-1B-induced modulation of CeA
GABAergic transmission. We also observed a transient modu-
lation of mIPSCs by IL-1ra alone, indicating that IL-1R1 regu-
lates basal mIPSCs. In agreement with this finding, we reported
recently an important role of IL-1ra and the IL-1 system in basal
CeA GABAergic transmission. In that study, we observed an
increase in the frequency of the spontaneous action potential-
dependent IPSCs in IL-1ra deficient mice, but mISPC frequencies
(action potential-independent IPSCs) were not affected (Bajo
et al., 2014a). In addition to the compensatory mechanism asso-
ciated with knockout technology and the different strains of mice
used in the two studies (B6129SF2/] vs. C57Bl6]), the transiency
of the IL-1ra effects on mIPSC in the current study may explain
the lack of differences between baseline mIPSC frequencies of
IL-1ra deficient mice and wild-type controls. Overall, both stud-
ies indicate that IL-1ra and the IL-1 system are involved in the
regulation of basal GABAergic transmission in the mouse CeA.
In the hippocampus, IL-1R1 also plays a critical role in base-
line neuronal activity, (Hellstrom et al., 2005), while IL-1ra alone
had no effects in neurons from the paraventricular nucleus of the
hypothalamus (Ferri and Ferguson, 2003) or the spinal cord (Liu
et al,, 2013). Collectively, these findings further support that the
regional specificity of the IL-1 system-dependent regulation of
neuronal activities may underlie the brain region differences in
the neuropathology associated with neuroinflammation.

Additionally, in our study, the IL-1f and IL-1ra effects on
GABAergic transmission occurred in a majority of CeA neurons,
and the effects were characterized by a duality of responses in
individual CeA neurons. Other groups have reported a similar
duality in their results, with electrophysiological studies revealing
that IL-1B only affects synaptic transmission in a portion of neu-
rons in the amygdala, cerebellum, hippocampus, and hypothala-
mus (Miller etal., 1991; Yu and Shinnick-Gallagher, 1994; Pringle
et al., 1996; Plata-Salaman et al., 1998; Tabarean et al., 2006). It
is therefore plausible to speculate that the cell-specific IL-1f and
IL-1ra effects that we observed are determined by neuronal type,
especially given the considerable heterogeneity of CeA neurons
in terms of their biochemical and electrophysiological proper-
ties (Chieng et al., 2006; Herman et al., 2013) and their likely
IL-1R1 expression. We classified each CeA neuron according to
the electrophysiological criteria used in our previous studies on
cell-type specific tonic GABA conductance in the CeA (Herman
et al., 2013; Herman and Roberto, 2014), but did not observe
any correlation between the IL-1p or IL-1ra effects and cell-type
(low-threshold bursting, late spiking and regular spiking CeA
neurons). Instead, it is likely that the cell-specificity of the IL-1p
and IL-1ra effects are determined by the CeA neuronal expression
of IL-1R1 (pre- versus postsynaptic expression), signaling path-
ways and/or other biochemical properties. Although our findings
strongly indicate that the IL-1p effects on GABAergic transmis-
sion are mediated by IL-1R1, we cannot rule out completely that
some of the IL-1f effects in the CeA may be caused by indirect
actions of IL-1p via other signaling molecules (Camacho-Arroyo
et al., 2009).

In this study, we have corroborated in B6129SF2/] mice
our previous findings on ethanol’s facilitation of GABAergic

transmission in the mouse CeA (mostly C57BL6/J; Bajo et al.,
2008, 2014b; Kang-Park et al., 2009; Cruz et al., 2011; Herman
etal., 2013). In CeA slices from B6129SF2/] mice, ethanol potenti-
ated both evoked and spontaneous CeA GABAergic transmission
predominantly via presynaptic mechanisms, but also had lim-
ited postsynaptic effects. To investigate the potential interaction
between ethanol and IL-1f, we pretreated slices with IL-1f, and
then co-applied ethanol and IL-1f. Ethanol, in the presence of IL-
1B, was still able to potentiate evoked GABAergic transmission,
despite the IL-1B-induced reduction in evoked IPSP amplitudes.
However, the effects of ethanol co-application with IL-1f were
not significantly different when compared to the original baseline
levels. These data suggest that the mechanisms of action of IL-1p
and ethanol on evoked GABA transmission are different, in line
with our findings that IL-1f acts via predominantly postsynaptic
mechanisms, whereas ethanol acts presynaptically. In the case of
spontaneous GABAergic transmission in the CeA, IL-1p has dual
effects, either increasing or decreasing vesicular GABA release.
Notably, ethanol co-application with IL-18 did not facilitate
further vesicular GABA release in the neurons that had previ-
ously responded to IL-1B with an increase in mIPSC frequency.
Ethanol also failed to increase GABA release in the neurons that
responded to IL-1P with decreased mIPSC frequency, suggesting
an occlusion of ethanol’s effects by IL-1f pretreatment. The dif-
ferences in eIPSP and mIPSC findings on the interaction of IL-1f
and ethanol are likely to originate from differences in the forms
of GABA release involved in each kind of synaptic transmission
(Mathew et al., 2008; Fredj and Burrone, 2009). Specifically, mIP-
SCs are recorded in the presence of TTX to block Na™ channels
and consequently, the generation of action potentials. In contrast,
evoked IPSPs require stimulation of a synaptic network, and thus,
action potential-dependent release (Farrant and Nusser, 2005).

Conclusion

Our data collectively demonstrate that B6129SF2/] mice show
an ethanol phenotype similar to that of C57BL6] mice, both
behaviorally and electrophysiologically, in the CeA. IL-18 mod-
ulation of CeA GABAergic transmission is complex and char-
acterized by dual and cell-specific modulations of presynaptic
GABA release and postsynaptic GABA receptor activity. With
regard to the IL-1f effects on ethanol-induced facilitation of CeA
GABAergic transmission, our data indicate that IL-1f interacts
with ethanol presynaptically to occlude ethanol’s enhancement
of GABA signaling. Understanding these complex interactions of
acute ethanol with IL-1 on GABAergic transmission are critical
for shedding light on the potential role of the IL-1 neuroimmune
system in the development of alcohol dependence and addiction.
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