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Interactions of antiretroviral drugs
with the SLC22A1 (OCT1) drug
transporter
Darren M. Moss*, Neill J. Liptrott, Marco Siccardi and Andrew Owen

Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK

The SLC22A1 influx transporter is expressed on the basolateral membrane of

hepatocytes and is involved in the excretion of numerous cations. Inhibition of SLC22A1

by several antiretrovirals, such as the protease inhibitor darunavir, has not previously

been determined. In order to better understand and predict drug-SLC22A1 interactions,

a range of antiretrovirals were screened for SLC22A1-associated inhibition and transport.

Stable SLC22A1-expressing KCL22 cells were produced previously by nucleofection.

Control KCL22 cells were transfected with the empty vector pcDNA3.1. Accumulation

of tetraethylammonium (5.5µM, 30min) was determined in SLC22A1-expressing and

mock-transfected cells with and without 50µM of SLC22A1 inhibitor prazosin, or 50µM

of each antiretroviral drug. SLC22A1 IC50 values for efavirenz, darunavir, and prazosin

were determined. Cellular accumulation of efavirenz and darunavir was also assessed in

SLC22A1-expressing KCL22 cells and reversibility of this accumulation was assessed

using prazosin. Tetraethylammonium accumulation was higher in SLC22A1-expressing

cells compared to mock-transfected cells (10.6 ± 0.8µM vs. 0.3 ± 0.004µM, p =

0.009) and was significantly reduced in SLC22A1-expressing cells when co-incubated

with all antiretrovirals tested except atazanavir, lamivudine, tenofovir, zidovudine, and

raltegravir. Particularly noticeable was the predominance of SLC22A1 inhibitors in the

protease inhibitor and non-nucleoside reverse transcriptase inhibitor classes. Absolute

SLC22A1 IC50 values for efavirenz, darunavir, and prazosin were 21.8, 46.2, and 2.8µM,

respectively. Efavirenz accumulation was higher in SLC22A1-expressing cells compared

to mock-transfected cells (17% higher, p = 0.009) which was reversed using prazosin,

whereas no difference was observed for darunavir (p = 0.86). These data inform

the mechanistic basis for disposition, drug-drug interactions and pharmacogenetic

candidate gene selection for antiretroviral drugs.
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Introduction

Eukaryotic drug transporting proteins play an important role in the absorption, distribution,
and elimination of numerous antiretrovirals used in Human Immunodeficiency Virus (HIV)
therapy. For example, the efflux transporter ABCB1 is expressed at several important cel-
lular barriers in the body and is capable of transporting the protease inhibitors saquinavir
(Janneh et al., 2005), ritonavir (Kim et al., 1998), indinavir (Lee et al., 1998), nelfinavir
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(Choo et al., 2000), amprenavir (Choo et al., 2000), lopinavir (Jan-
neh et al., 2007), atazanavir (Bousquet et al., 2008), tipranavir
(Orman and Perry, 2008), and darunavir (Kwan et al., 2009)
in vitro. Antiretroviral drugs are also known to interact with
influx transporters, including members of the organic anion and
cation transporters of the SLCO and SLC22A gene subfamilies
(Roth et al., 2012). The organic cation transporter SLC22A1 (also
called Organic Cation Transporter 1, or OCT1) is predominantly
expressed in the liver and is localized to the basolateral membrane
of hepatocytes (Nies et al., 2008) where it mediates the uptake
of substrates from the blood and facilitates drug elimination.
Expression of SLC22A1 is also detected in other tissues, including
the immunological cells where HIV can replicate, such as lym-
phoid mononuclear cells (Bleasby et al., 2006; Jung et al., 2008).
The functionality of SLC22A1 has been shown to have clinically
relevant consequences. As an example, the antidiabetic drug met-
formin is transported into the liver by SLC22A1, where it elicits
a pharmacological effect. If SLC22A1 activity is reduced, this can
result in inhibiting drug penetration into the liver and therefore
reducing the effectiveness of treatment (Zhou et al., 2009). The
SLC22A transporters play a role in regulating exposure to sev-
eral antiretroviral drugs, particularly the nucleoside reverse tran-
scriptase inhibitors (NRTIs) (Takeda et al., 2002), and SLC22A1
activity is inhibited in vitro by nelfinavir and ritonavir (Jung
et al., 2008). However, for certain newer drugs (e.g., darunavir,
lopinavir, and etravirine), the ability to inhibit and be trans-
ported by SLC22A1 has yet to be determined. The rationale of this
study was to determine the inhibitory potential across antiretro-
viral classes for SLC22A1-mediated tetraethylammonium trans-
port. This was used to confirm past data and to investigate the
effects of previously un-assessed antiretrovirals such as darunavir,
lopinavir, and etravirine. The SLC22A1-mediated transport of
darunavir and efavirenz, which both showed moderate inhibi-
tion of SLC22A1 activity in initial screens, has not previously
been investigated and therefore this was also assessed. This infor-
mation will aid in our understanding of factors responsible for
antiretroviral disposition, andmay provide explanations and pos-
sible solutions for drug interactions involving antiretrovirals and
co-administered substrates of SLC22A1.

Methods

Chemicals and Materials
[14C]Tetraethylammonium (specific activity = 55 mCi/mmol)
and [3H]efavirenz (specific activity = 5 Ci/mmol) were pur-
chased from American Radiolabelled Chemicals (Missouri,
USA). Lopinavir was a gift from Abbott (Illinois, USA). Ralte-
gravir sodium salt was a gift from Merck (New Jersey, USA).
Etravirine was a gift from Janssen (Buckinghamshire, UK).
[14C]Darunavir (specific activity = 39.19 mCi/mmol), non-
radiolabelled darunavir and non-radiolabelled rilpivirine were
gifts from Tibotec (Mechelen Belgium). Atazanavir was a gift
from Bristol-Myers Squibb (New York, USA). Nevirapine was
a gift from Boehringer Ingelheim (Berkshire, UK). Ritonavir
was a gift from Abbott (Illinois, USA). Tenofovir, efavirenz and
lamivudine were purchased from Toronto Research Chemicals
(Toronto, Canada). Amprenavir was a gift fromGlaxoSmithKline

(Middlesex, UK). Ultima Gold scintillation fluid was purchased
from Perkin Elmer (Boston, USA). All other drugs and reagents
were obtained from Sigma (Poole, UK).

Culture of Mock-Transfected and
SLC22A1-Overexpressing KCL22 Cells
SLC22A1-overexpressing chronic myeloid leukemia (KCL22)
cells and mock-transfected KCL22 cells were produced by Athina
Giannoudis, Royal Liverpool University Hospital, Liverpool, UK,
as previously described (Giannoudis et al., 2008). SLC22A1-
overexpressing KCL22 cells were created by transfecting pcDNA-
hSLC22A1 plasmid into KCL22 cells by nucleofection. Similarly,
mock-transfected KCL22 cells were created by transfecting the
empty vector pcDNA3.1 into cells by nucleofection. To create sta-
ble cell lines, transfected cells were subjected to neomycin and
surviving clones were selected. Non-transfected KCL22 cells are
known to express only a low level of SLC22A1 in comparison to
other chronic myelogenous leukemia cell lines and were there-
fore suitable for use in the current study (Thomas et al., 2004).
KCL22 cells were maintained in cell culture medium [Roswell
Park Memorial Institute medium (RPMI), 10% [vol/vol] fetal calf
serum (FCS)] prior to experiments in a CO2 incubator (37◦C,
5% CO2). All cell culture procedures were performed in a sterile
environment.

Determination of Tetraethylammonium
Accumulation in SLC22A1-Expressing KCL22
Cells Co-Incubated with Antiretroviral Drugs
SLC22A1-overexpressing KCL22 cells and mock-transfected
KCL22 cells of a constant cell density (1mL, 2.5 × 106 cells/mL)
were incubated (37◦C, 5% CO2) for 30min in cell culture
medium (RPMI, 10% [vol/vol] FCS) containing SLC22A1 sub-
strate [14C]tetraethylammonium (5.5µM, 0.3 µCi/mL). Separate
incubations were undertaken where SLC22A1-overexpressing
KCL22 cells were preincubated for 30min prior to the sub-
strate addition with cell culture medium (RPMI, 10% [vol/vol]
FCS) containing one of a selection of co-incubated drugs,
which included either 50µM of SLC22A1 inhibitors prazosin,
50µM of the immunosuppressant cepharanthine, or 50µM of
each antiretroviral drug, which were also included during the
30min of substrate incubation. It should be noted that pra-
zosin is also capable of inhibiting SLC22A3 (Hayer-Zillgen et al.,
2002), although this is unlikely to play into the experiment as
SLC22A3 is not excepted to be significantly expressed in KCL22
cells, which are derived from chronic myeloid leukemia cells
(Bleasby et al., 2006). The antiretroviral drugs examined as poten-
tial SLC22A1 inhibitors were atazanavir, lopinavir, amprenavir,
indinavir, darunavir, ritonavir, nelfinavir, lamivudine, tenofovir,
zalcitabine, abacavir, zidovudine, stavudine, etravirine, nevirap-
ine, rilpivirine, efavirenz, and raltegravir. To assess toxicity of
inhibitor in each sample, following the incubation 5µL was
removed and added to 5µL trypan blue 0.4% for cell viability
assessment using a Countess™ (Thermo Fisher, MA) automated
cell counter. Samples were discarded if cell viability was less than
80% of the viability determined in inhibitor-free control samples.
The remaining incubation was centrifuged (800× g, 1◦C, 1min),
supernatant fraction was discarded and the cells were washed

Frontiers in Pharmacology | www.frontiersin.org 2 April 2015 | Volume 6 | Article 78

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Moss et al. Interactions of antiretroviral drugs with SLC22A1

with ice-cold HBSS and centrifuged (800 × g, 1◦C, 1min). This
HBSS wash was repeated a total of three times, after which the
HBSS was discarded and 100µL tap water was added to lyse
the cells. The incubations were vortexed for 5min and samples
were added to scintillation vials. Four milliliters of scintillation
fluid was added to scintillation vials, which were then loaded into
a liquid scintillation analyzer (TRI-CARB R©). Using intracellu-
lar radioactivity readings, intracellular tetraethylammonium con-
centrations were determined (µM ± SD, assuming 1 pL volume
per cell).

Determination of the SLC22A1 IC50 of Efavirenz
and Darunavir
Prior to this study, there has been no published data on the
inhibition of SLC22A1 by the protease inhibitor darunavir. Fur-
thermore, efavirenz did not show SLC22A1 inhibition in a pre-
vious publication, which contradicted our data (Jung et al.,
2008). Therefore, the inhibitory potential (IC50) of darunavir
and efavirenz for SLC22A1-mediated transport was assessed in
more detail to confirm results. Accumulation of tetraethylam-
monium (5.5µM, 0.3 µCi/mL) was determined when cells were
co-incubated for 30min with a log range concentration of either
efavirenz or darunavir (0, 1, 2.5, 5, 10, 25, 50, 100µM). A parallel
experiment was performed using prazosin as a positive control
inhibitor of SLC22A1-mediated tetraethylammonium transport.
To assess toxicity of inhibitor in each sample, cellular integrity
was assessed using the trypan blue exclusion test as described pre-
viously. Following incubation, intracellular concentrations were
analyzed as described in the previous section and data was plotted

using Prism 5. Non-linear regression analysis was used to cal-
culate relative IC50 (the amount of drug needed to achieve 50%
SLC22A1 inhibition as determined from the maximum and min-
imum extremes of the non-linear regression plot) and absolute
IC50 (the amount of drug needed to achieve 50% SLC22A1 as
determined from the maximum of the non-linear regression plot
and 0% accumulation).

Determination of Accumulation of Efavirenz and
Darunavir in SLC22A1-Overexpressing KCL22
Cells
Mock transfected KCL22 cells and SLC22A1-overexpressing
KCL22 cells of a constant cell density were incubated (1mL,
2.5×106 cells/mL 37◦C, 5% CO2) in cell culture medium (RPMI,
10% [vol/vol] FCS, 30min) containing either efavirenz (20µM),
darunavir (20µM) or SLC22A1 control substrate tetraethylam-
monium (1µM). A parallel incubation was undertaken where
SLC22A1-expressing KCL22 cells were preincubated prior to
the substrate addition in cell culture medium containing the
potent SLC22A1 inhibitor, prazosin (RPMI, 10% [vol/vol] FCS,
100µM prazosin, 30min) and prazosin was also included during
the 30min substrate incubation. To assess toxicity of inhibitor
in each sample, cellular integrity was assessed using the try-
pan blue exclusion test as described previously. Following incu-
bation, intracellular concentrations were analyzed as described
above. Using intracellular radioactivity readings, the amount
of drug in mock transfected cells was compared to SLC22A1-
overexpressing KCL22 cells (% ± SD). The amount of drug in

SLC22A1-overexpressing KCL22 cells incubated with prazosin
was also compared to SLC22A1-overexpressing KCL22 cells (%
± SD).

Statistical Analyses
Data were analyzed using SPSS 20 forWindows. IC50 curves were
generated using Prism 5 forWindows. TheMannWhitneyU-test
was used to evaluate significance for all data. A two-tailed p-value
of <0.05 was accepted as being statistically significant.

Results

Accumulation of Tetraethylammonium in
SLC22A1-Overexpressing KCL22 Cells
Co-Incubated with Antiretroviral Drugs
The inhibition of SLC22A1-mediated tetraethylammonium
transport by HIV PIs (Figure 1A), NRTIs (Figure 1B), NNRTIs
(Figure 1C) and the integrase inhibitor raltegravir (Figure 1C)
was determined in transfected SLC22A1-overexpressing KCL22
cells and mock transfected control KCL22 cells. Prazosin was
included as a control SLC22A1 inhibitor for validation, and
cepharanthine was assessed for SLC22A1 inhibition. Results are
given as tetraethylammonium concentration in cells after 30min
incubation (µM, n = 9 replicates in SLC22A1-overexpressing
KCL22 cells incubated with tetraethylammonium, n = 3
experimental replicates in mock transfected cells incubated
with tetraethylammonium and n = 3 experimental repli-
cates in SLC22A1-overexpressing KCL22 cells incubated with
both tetraethyammonium and test compound) ± SD. Tetraethy-
lammonium cellular accumulation was significantly higher in
SLC22A1-overexpressing KCL22 cells compared to mock trans-
fected control KCL22 cells (10.6 ± 0.8µM vs. 0.3 ± 0.04µM,
p = 0.009). Tetraethylammonium cellular accumulation was sig-
nificantly reduced in SLC22A1-expressing KCL22 cells when cells
were co-incubated with 50µM test compound lopinavir (7.2 ±

1.8µM, p = 0.009), amprenavir (6.8 ± 1.6µM, p = 0.009),
indinavir (5.2 ± 0.6µM, p = 0.009), darunavir (4.7 ± 0.4µM,
p = 0.009), ritonavir (4.0 ± 0.3µM, p = 0.009), nelfinavir (3.1
± 2.5µM, p = 0.009), zalcitabine (9.1 ± 0.7µM, p = 0.048),
abacavir (8.8 ± 0.8µM, p = 0.036), stavudine (7.6 ± 0.6µM,
p = 0.009), etravirine (8.2± 1.4µM, p = 0.036), nevirapine (8.0
± 1.5µM, p = 0.018), rilpivirine (6.3 ± 0.2µM, p = 0.009),
efavirenz (5.4 ± 0.7µM, p < 0.009), cepharanthine (2.4 ±

0.2µM, p = 0.009), or control SLC22A1 inhibitor prazosin (2.1
± 0.4µM, p = 0.009). Tetraethylammonium cellular accumula-
tion was not significantly altered in SLC22A1-expressing KCL22
cells when cells were co-incubated with 50µM atazanavir (10.2
± 0.8µM, p = 0.839), lamivudine (11.4 ± 0.6µM, p = 0.145),
tenofovir (9.7 ± 0.6µM, p = 0.145), zidovudine (8.5 ± 3.1µM,
p = 0.1), or raltegravir (9.6 ± 1.4µM, p = 0.373), indicating
that these antiretrovirals are unlikely to inhibit SLC22A1 activity
at therapeutic concentrations.

Inhibitory Potential of Efavirenz and Darunavir in
SLC22A1-Overexpressing KCL22 Cells
The IC50 of SLC22A1-mediated tetraethylammonium transport
using a concentration range of efavirenz, darunavir, or prazosin
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FIGURE 1 | The effects of protease inhibitors (A), nucleoside

reverse transcriptase inhibitors (B), non-nucleoside reverse

transcriptase inhibitors (C) and the integrase inhibitor raltegravir

(C) on the accumulation of tetraethylammonium in KCL22 cells.

Results are given as tetraethylammonium concentrations in cells after

30min incubation (µM, n = 9 replicates in SLC22A1-overexpressing

KCL22 cells incubated with tetraethylammonium, n = 3 experimental

replicates in mock transfected cells incubated with tetraethylammonium

and n = 3 experimental replicates in SLC22A1-overexpressing KCL22

cells incubated with both tetraethyammonium and test compound,

*p < 0.05, **p < 0.01) ± SD. The IC50 values of prazosin, efavirenz, and

darunavir were determined in further experiments (D). Results are given

as tetraethylammonium concentrations in cells after 30min incubation

(µM, n = 3 experimental replicates) ± SD.

was determined (Figure 1D). The concentration-inhibition
relationship curves of efavirenz and darunavir appeared to
plateau before complete inhibition of SLC22A1 was achieved,
which may be due to drug solubility limitations or non-
competitive SLC22A1 inhibition. Therefore, plots were used to
calculate both relative and absolute IC50 values (Table 1). Con-
trol SLC22A1 inhibitor prazosin achieved an 84% reduction in
cellular tetraethylammonium accumulation at 100µM and a rel-
ative IC50 value of 2.3µM, which is similar to values found in
published literature (Minematsu et al., 2010).

Accumulation of Efavirenz and Darunavir in
SLC22A1-Overexpressing KCL22 Cells
Co-Incubated with Prazosin
Accumulation of efavirenz and darunavir in SLC22A1-
overexpressing and mock-transfected KCL22 cells, and the
influence of SLC22A1 inhibitor prazosin, were determined
(Figure 2) (% accumulation of test substrate compared to
accumulation in SLC22A1-overexpressing cells, n = 9 replicates
in SLC22A1-overexpressing KCL22 cells incubated with test
substrate, n = 3 experimental replicates in mock transfected
cells incubated with test substrate and n = 3 experimental repli-
cates in SLC22A1-overexpressing KCL22 cells incubated with

TABLE 1 | Maximum observed SLC22A1 inhibition and calculated relative

and absolute IC50 values for darunavir, efavirenz, and control SLC22A1

inhibitor prazosin.

Inhibitor TEA accumulation when Relative IC50 Absolute IC50

100µM inhibitor used (µM) (µM)

(%compared to

inhibitor-free control)

Prazosin 16.1 2.3 2.8

Darunavir 41.3 15.9 46.2

Efavirenz 39.7 7.4 21.8

The relative IC50 is the amount of drug needed to achieve 50% SLC22A1 inhibition as

determined from the maximum and minimum extremes of the non-linear regression plot.

The absolute IC50 is the amount of drug needed to achieve 50% SLC22A1 as determined

from the maximum of the non-linear regression plot and 0% accumulation.

both test substrate and prazosin) ± SD. Tetraethylammonium
was used to validate the experiment and showed signifi-
cantly decreased amounts in mock-transfected cells (92% less,
p = 0.009) and SLC22A1-overexpressing cells subjected to
prazosin (76% less, p = 0.009), when compared to SLC22A1-
overexpressing cells. Efavirenz showed a minor but significantly
lower amount in mock-transfected cells (17% less, p = 0.009)
and SLC22A1-overexpressing cells subjected to prazosin (11%
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FIGURE 2 | The accumulation of tetraethylammonium, efavirenz, and

darunavir in mock-transfected KCL22 cells, SLC22A1-overexpressing

KCL22 cells and SLC22A1-overexpressing cells co-incubated with

prazosin. The amount of drug in mock transfected cells and

SLC22A1-overexpressing KCL22 cells subjected to prazosin were compared

to the amount of drug in SLC22A1-overexpressing KCL22 cells (% compared

to SLC22A1-overexpressing cells ± SD, n = 9 replicates in

SLC22A1-overexpressing KCL22 cells incubated with test substrate, n = 3

experimental replicates in mock transfected cells incubated with test substrate

and n = 3 experimental replicates in SLC22A1-overexpressing KCL22 cells

incubated with both test substrate and prazosin). **p < 0.01.

less, p = 0.009), when compared to SLC22A1-overexpressing
cells. Darunavir did not accumulate to a different extent in
mock-transfected cells (p = 0.86) or SLC22A1-overexpressing
cells subjected to prazosin (p = 0.21), when compared to
SLC22A1-overexpressing cells.

Discussion

Overall, SLC22A1 inhibition was achieved using numerous
antiretrovirals: all protease inhibitors apart from atazanavir
were able to reduce tetraethylammonium accumulation. These
findings agree with previous data, where saquinavir, indinavir,
ritonavir, and nelfinavir were able to reduce tetraethylam-
monium accumulation in SLC22A1-overexpressing Hela cells
(Zhang et al., 2000) and atazanavir was found to have no
SLC22A1-inhibiting capability in vitro (Jung et al., 2008). As
inhibition of SLC22A1 by darunavir has not been previously
investigated and the inhibition observed was more substan-
tial than most protease inhibitors, a concentration-inhibition
relationship was established in this study. Although darunavir
showed inhibition of SLC22A1, it should be noted that the
maximum darunavir plasma concentrations in patients taking
600 mg/100mg darunavir/ritonavir (8.8µM) is lower than the
relative (15.9µM) and absolute (46.2µM) SLC22A1 IC50 value

determined in this study (Sekar et al., 2008). Generally, the
NRTIs did not inhibit SLC22A1 or only showedminor inhibition.
Lamivudine did not inhibit SLC22A1 and this contradicts
previous published data which showed significant inhibition
(Jung et al., 2008). However, Jung et al used 1-methyl-4-
phenylpyridinium as the control SLC22A1 substrate and this
could explain the conflicting data. Indeed, it may suggest the
existence of separate substrate binding sites on SLC22A1, only

one of which is able to be inhibited by lamivudine. Also, the
previous study utilized kidney-derived HEK-293 cells, which
may have naturally expressed other transporters of 1-methyl-4-
phenylpyridinium, which were able to be inhibited by lamivu-
dine. The non-nucleoside reverse transcriptase inhibitors all
showed some level of SLC22A1 inhibition, although inhibition
by etravirine and nevirapine was minor (22.5% and 24.5% reduc-
tion in cellular accumulation, respectively, when using 50µM
drug). Efavirenz and rilpivirine showed a more substantial level
of SLC22A1 inhibition (50.0% and 41.2% reduction in cellular
accumulation, respectively, when using 50µM drug). Efavirenz
did not show SLC22A1 inhibition in a previous publication,
which contradicts our data (Jung et al., 2008). However, Jung
et al used 1-methyl-4-phenylpyridinium as the control SLC22A1
substrate, and efavirenz was assessed only at a concentration of
5µM. Also, incubations in the study were only 1min (com-
pared to 30min in the current study) and time-dependent inhi-
bition may be apparent. To investigate further, SLC22A1 IC50

values were determined for efavirenz. It should be noted that the
maximum plasma concentration of efavirenz (12.7µM) is lower
than the absolute SLC22A1 IC50 value (21.8µM), but higher
than the relative SLC22A1 IC50 value (7.4µM), determined in
this study (Villani et al., 1999). The immunosuppressant cepha-
ranthine was also found to be an inhibitor of SLC22A1, which
is a novel discovery. The small extent of SLC22A1-mediated
efavirenz transport may suggest a minor role for SLC22A1 in
efavirenz disposition but it is not possible to extrapolate these
in vitro data directly to the in vivo scenario. To assess this more
completely, it may be possible to perform a study in animals
where the effects SLC22A1-knockdown or inhibition was deter-
mined on efavirenz pharmacokinetics. SLC22A1 pharmacoge-
netic studies may be warranted in patients taking efavirenz in
order to determine the relevance of SLC22A1 polymorphisms
on efavirenz pharmacokinetics. Additionally, this information
could potentially be utilized to establish more effective efavirenz
treatment strategies in populations with relevant SLC22A1
polymorphisms.
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