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Therapeutic strategies for preventing
skeletal muscle fibrosis after injury
Koyal Garg, Benjamin T. Corona and Thomas J. Walters *

US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Houston, TX, USA

Skeletal muscle repair after injury includes a complex and well-coordinated regenerative
response. However, fibrosis often manifests, leading to aberrant regeneration and
incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic
agents aimed at reducing the fibrotic response and improving functional recovery. While
there are a number of mediators involved in the development of post-injury fibrosis,
TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate
TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number
of these agents are FDA approved for other conditions, clearing the way for rapid
translation into clinical treatment. In this article, we provide an overview of muscle’s
host response to injury with special emphasis on the cellular and non-cellular mediators
involved in the development of fibrosis. This article also reviews the findings of several
pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing
following most common forms of muscle injuries. Although some studies have shown
positive results with anti-fibrotic treatment, others have indicated adverse outcomes.
Some concerns and questions regarding the clinical potential of these anti-fibrotic agents
have also been presented.
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Introduction

According to the Armed Forces Health Surveillance Center, musculoskeletal injuries were the lead-
ing cause of medical encounters in 2010 (A.F.H.S. Center, 2011; Zambraski and Yancosek, 2012).
On the battlefield, musculoskeletal trauma constitutes the majority of injuries (Owens et al., 2008).
In civilian medicine muscle injuries related to sports account for 10–55% of all injuries (Garrett,
1996; Huard et al., 2002; Jarvinen et al., 2005). The poor healing responses and a high risk of re-
injury presents a significant challenge to the performance of a service member or a professional
athlete. The inability to effectively treat these injuries can have devastating consequences including
permanent functional deficits, failed limb salvage, and delayed amputation, resulting in a tremen-
dous toll on quality of life for the wounded personnel and their families, and also represents a great
expense to the military in terms of military readiness and medical costs.

Muscle trauma can range from simple strains and contusions to severe lacerations and pene-
trating trauma, including volumetric muscle loss (VML) (physical loss of muscle). The ability of
the skeletal muscle to regenerate depends on the type and severity of the injury. While skeletal
muscle has a remarkable regenerative capacity even simple strains can heal incompletely resulting
in vulnerability to reinjury (Carlson, 1986; Huard et al., 2002; Mu et al., 2010). Severe battlefield
trauma involving VML is well beyond the muscles inherent capacity for self-repair (Grogan and
Hsu, 2011).
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The major impediment to optimal muscle healing after any
injury is fibrosis (Huard et al., 2002),defined as an abnormal and
unresolvable, chronic overproliferation of extracellular matrix
(ECM) components (Lieber and Ward, 2013). Fibrosis inter-
feres with muscle regeneration (Huard et al., 2002), causes a
loss in muscle function (Lieber and Ward, 2013) and alters the
tissue environment causing increased susceptibility to reinjury
(Carlson, 1986; Huard et al., 2002; Mu et al., 2010).

Clearly treatments aimed at improving muscle healing fol-
lowing injury would be of great benefit. Efforts in this area
have concentrated on enhancing muscle regeneration and reduc-
ing fibrosis. Of the two, the greatest effort has been devoted
to enhancing regeneration, primarily related to growth factors
and/or cell-based treatments. Although optimal healing clearly
involves both processes, this review will focus on therapies
aimed at improving healing specifically through the reduction of
fibrosis.

Fibrosis: Key Players and Contributing
Factors

Extracellular Matrix of Skeletal Muscle
The muscle ECM is composed of two major layers; the basal
lamina and the interstitial matrix. The basal lamina is in direct
contact with the sarcolemma, and is composed primarily of type
IV collagen, laminin, and heparan sulfate proteoglycans. The
more abundant interstitial matrix surrounds the basal lamina
and is primarily composed of collagen I, III, and V, fibronectin
and perlecan (Cornelison, 2008). Structurally the ECM provides
mechanical support, organization and directional guidance for
nerves, vessels, and muscle cells (Sanes, 2003; Cornelison, 2008).
It also provides the overall anatomical organization of the mus-
cle: the endomysium surrounds each individual myofiber; the
perimysium surrounds groups of myofibers to form fascicles;
and epimysium surrounds each muscle. The perimysium con-
tains primarily collagen I, whereas type III collagen is evenly
distributed between endomysium and epimysium (Light and
Champion, 1984; Gillies and Lieber, 2011).

Functionally, the ECM plays multiple roles. It is the pri-
mary contributor to the passive elastic properties of the mus-
cle. Alterations in the amount or composition of collagen as a
result of injury, diseases or aging is reflected as alterations in
muscle stiffness (Lieber and Ward, 2013). The ECM and mus-
cle fiber are coupled through intricate protein networks com-
posed of dystroglycan and α/β integrin complexes that connect
both the contractile proteins and the nucleus within the inte-
rior of the muscle fiber to the sarcolemma membrane and in
turn to the basal lamina of the ECM (Jaalouk and Lammerding,
2009). These connections provide a means to transmit force from
the contractile elements of individual muscle fibers to the ECM,
which are in turn transmitted to the tendon and ultimately the
bone (Kjaer et al., 2006). It also provides a means to transmit
force laterally through providing a connection among individ-
ual neighboring muscle fibers, as well as among fascicles (Street
and Ramsey, 1965; Kjaer, 2004). The protein complexes also facil-
itate the transduction of mechanical cues to the nucleus of the

muscle and for the presentation of sequestered growth factors
such as hepatocyte growth factor (HGF) and fibroblast growth
factor (FGF) to the muscle (Cornelison, 2008). This cross-talk
provides the requisite communication to tune the needs of the
muscle to its mechanical environment for proper cell differenti-
ation during development (Reilly and Engler, 2010) and repair
(Kjaer et al., 2006), as well as for adaptation to altered physical
demands (Kjaer et al., 2006).

Normal vs. Aberrant Regeneration of Skeletal
Muscle after Injury
The host response tomuscle injury consists of three broad phases:
degeneration (1–3 days), regeneration (3–4 weeks) and remodel-
ing (3–6 months) (Jarvinen et al., 2005; Smith et al., 2008). The
degeneration phase is characterized by the disruption of mus-
cle ultrastructure and ensuing necrosis of the damaged muscle
fibers. Entry of plasma proteins and activation of the comple-
ment cascade induces chemotactic recruitment of inflammatory
cells (Tidball, 2005). Plasma proteins such as fibrin cross-link and
invading fibroblasts deposit collagen to form a provisional ECM
matrix. This ECMmatrix is transient and acts as a scaffold for the
invading cells and supports the ruptured and damaged myofibers
during the ongoing healing process (Middleton and Smith, 2007;
Smith et al., 2008). Neutrophils are typically the first immune
responders, which are gradually replaced by macrophages as the
predominant inflammatory cell at the site of injury (Tidball, 2005;
Tidball and Villalta, 2010). The duration and intensity of the
inflammatory response aftermuscle injury can critically influence
the regeneration process. Macrophages begin the disinfection
and debridement of the wound site by phagocytosis of necrotic
muscle fibers, cellular debris and microorganisms (Wynn, 2004;
Smith et al., 2008; Tidball and Villalta, 2010; Wehling-Henricks
et al., 2010; Wynn and Barron, 2010). This macrophage popula-
tion is classified as the M1 phenotype and is pro-inflammatory.
Cytokines released by the M1 macrophages (e.g., Tumor necrosis
factor - alpha, interleukin (IL)-6) promote recruitment, activa-
tion and proliferation of muscle satellite cells (Torrente et al.,
2003; Lolmede et al., 2009), the primary muscle precursor.
The regenerative phase ensues with satellite cell proliferation,
which leads to the formation of myogenic precursor cells called
myoblasts which express myogenic transcription factors such as
MyoD and Myf5 (Yan et al., 2003). For proper muscle healing,
a shift in the macrophage phenotype from a pro-inflammatory
M1 to a tissue remodeling M2 is absolutely essential (Arnold
et al., 2007). M2 macrophages peak in numbers at ∼4 days post
injury and persist until the muscle remodeling phase (Tidball,
2005; Tidball and Villalta, 2010). M2s promote myoblast differ-
entiation and fusion and maturation of myotubes by releasing
IL-4 and IL-10. At this time the expression of myogenin, Myf4
andmyocyte enhancer binding factor-2 (MEF2) is initiated (Lluis
et al., 2006; Le Grand and Rudnicki, 2007; Rudnicki et al., 2008).
The newly forming myotubes fuse with the existing myofibers
to form new muscle tissue mature muscle fibers. The regenera-
tive phase overlaps with the remodeling phase, in which matura-
tion of the regenerating fibers into a functional contractile unit
takes place. In the final phases of remodeling, re-organization of
the ECM, revascularization and reinnervation of the myofibers
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occurs to ensure structural and functional recovery (Ciciliot and
Schiaffino, 2010).

The Development of Fibrosis
ECM deposition in the wound bed can be seen within a week
post-injury and it can continue on for several weeks. The pre-
dominant cell type responsible for the deposition of ECM is the
fibroblast. In response to locally produced mediators such as
transforming growth factor beta 1 (TGF-β1), fibroblasts trans-
form into α-smooth muscle actin (α-SMA) expressing myofi-
broblasts (Darby et al., 1990; Desmouliere et al., 2005). These cells
play a key role in wound healing and matrix deposition. Myofi-
broblasts can also arise from endothelial or epithelial cells or from
epithelial stem cell progenitors via endothelial-mesenchymal
transition. In addition, circulating CD34+ bone marrow derived
progenitor cells called fibrocytes can also be recruited to the
wound site to promote collagen deposition (Quan et al., 2004).
Among the first synthesized ECM proteins by the myofibrob-
lasts in the wound bed are fibronectin and tenascin-C (Hanamura
et al., 1997; Tuxhorn et al., 2002), followed by collagen type III
and collagen type I. As the production of collagen type I con-
tinues on for several weeks, the tensile strength of the scar tis-
sue increases considerably (Kaariainen et al., 1998). In cases of
acute and self-healing injuries (e.g., muscle strains), myofibrob-
lasts disappear after wound closure due to apoptotic signals. But
in cases of chronic injuries marked by persistent inflammation
(e.g., VML), these cells do not undergo apoptosis and remain in
the granulation tissue. The sustained presence and elevated num-
bers of immune cells in the granulation tissue promote the release
of fibrogenic cytokines such as TGF-β1. Under these conditions,
myofibroblasts continue to proliferate and synthesize ECM, thus
contributing to pathological scar tissue formation, referred to as
fibrosis (Desmoulière et al., 2003; Moulin et al., 2004; Sarrazy
et al., 2011).

ECM deposition typically proceeds more rapidly than myo-
genesis. If unresolved under physiological conditions, this ECM
transforms into a fibrotic scar that creates a mechanical barrier
and restricts the regeneration of myofibers and axons across the
injury gap (Jarvinen and Lehto, 1993; Jarvinen et al., 2005, 2007).
Furthermore, the fibrotic tissue lacks the elasticity of the native
muscle, which can render the muscle susceptible to reinjury
(Huard et al., 2002).

Role of TGF-β1 and Factors in Fibrosis and
Regeneration
Although several growth factors such as epidermal growth fac-
tor (EGF), vascular endothelial growth factor (VEGF) and FGF-2
released from neutrophils, macrophages, fibroblasts and myo-
genic precursors can promote fibrosis, the most pro-fibrogenic
growth factor identified in the literature is TGF-β1 (Sheppard,
2006; Serrano andMunoz-Canoves, 2010; Burks and Cohn, 2011;
Mann et al., 2011; Serrano et al., 2011). In the canonical TGF-β1
pathway, ligand binding leads to the phosphorylation of SMAD2
and SMAD3 which then bind to a common mediator SMAD4
and translocate to the nucleus to activate collagen transcription.
SMAD7 suppresses this action. TGF-β1 can also signal through

the induction of non-canonical pathways including mitogen acti-
vated protein kinase (MAPK). The MAPK family consists of
isoforms of extracellular signal-regulated kinases (ERKs), c-Jun
N-terminal kinase (JNKs) and p38 (Figure 1). The activation of
MAPK pathway may also phosphorylate SMADs independent of
the canonical TGF-β1 pathway. Both these pathways lead to the
synthesis of ECM proteins, cell proliferation, differentiation and
motility. The effects of TGF-β1 can also be mimicked and ampli-
fied by other growth factors and members of the TGF-β1 super-
family such as connective tissue growth factor (CTGF), myostatin
and platelet derived growth factor (PDGF-AA, BB) (Sheppard,
2006; Pohlers et al., 2009).

The maintenance of the ECM involves a delicate equilibrium
between MMPs and their inhibitors; tissue inhibitors of metal-
loproteinases (TIMPs). Matrix metalloproteinases (MMPs) are
endogenous zinc-dependent proteases capable of degrading ECM
components. TIMPs inhibit the enzymatic activity of MMPs
either by binding to the active MMPs or stabilizing the inactive
forms. MMPs expressed in skeletal muscle include MMP-1, 2,
9, and 13. MMP-2 and MMP-9 are gelatinases that degrade type
IV collagen, fibronectin, proteoglycans and laminin. MMP-1 and
MMP-13 degrade type I and III collagen. Besides matrix destruc-
tion, MMPs also play other crucial roles in cell-to-cell commu-
nication and myogenesis (Kherif et al., 1999; Chen and Li, 2009;
Gillies and Lieber, 2011).

TGF-β1 can promote fibrosis through aberrant ECM deposi-
tion and decreased production of MMPs, thereby promoting the
survival of myofibroblasts and preventing the destruction of the
deposited ECM (Vaday et al., 2001; Yuan and Varga, 2001; Ser-
rano et al., 2011). Additionally, TGF-β1 inhibits satellite cell and
myoblast proliferation and differentiation (Allen and Boxhorn,
1989; Johnson and Allen, 1990; Li et al., 2008). TGF-β1 can also
promote fibrotic cascades via the differentiation of myoblasts and
muscle derived stem cells into myofibroblasts (Li et al., 2004).
TGF-β1 has anti-inflammatory functions and can switch M1
macrophages to an M2 phenotype. Macrophages of the M2 phe-
notype produce various growth factors such as TGF-β1, PDGF,
FGF-2, and VEGF and express high levels of arginase, which
can all potentially lead to increased matrix production (Wehling-
Henricks et al., 2010). In contradiction, other studies have sug-
gested that M2s are required for the suppression and resolution
of fibrosis because they can also stimulate the production of col-
lagen degrading MMPs and IL-10 (Pesce et al., 2009; Wynn and
Ramalingam, 2012). A recent study showed that exogenous ther-
apy of M1 macrophages reduced fibrosis and enhanced muscle
fiber regeneration in laceratedmuscles (Novak et al., 2014). Thus,
macrophages play very complex roles in regeneration and are
capable of both inducing and inhibiting fibrosis (Wynn, 2004;
Wynn and Barron, 2010; Murray and Wynn, 2011).

Anti-Fibrotic Therapies

The dominant role of TGF-β1 makes it an obvious target for
anti-fibrotic treatments and several agents that inactivate TGF-β1
signaling cascade have emerged as promising therapies. Table 1
provides an overview of the existing agents in the literature. The
focus of this review article is on muscle injury. Therefore, the
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FIGURE 1 | Illustration of the TGF-β1 signaling pathways and the mechanism of therapeutics. ERK, Extracellular signal regulated kinase; JNK, c-Jun
N-terminal kinase; LTBP, Latent transforming growth factor binding proteins; MAPKs, Mitogen-activated protein kinase; TSP-1, Thrombospondin-1.

readers are referred elsewhere for information on anti-fibrotic
agents aimed at muscle diseases (e.g., pirfenidone) (Burks and
Cohn, 2011). Losartan is an FDA approved antihypertensive
medication that acts by blocking angiotensin II type 1 receptor
(AT1) (Figure 1). Activation of the AT1 receptor by angiotensin
produces thrombospondin -1 (TSP-1), which is a key regulator
of latent TGF-β1 activation. Losartan is an inhibitor of AT1
activation and indirectly blocks TGF-β1 activation by inhibiting
TSP-1 production (Chamberlain, 2007). Losartan has been
shown to attenuate TGF-β1 signaling in chronic renal disease,
cardiomyopathies and marfan syndrome (Cohn et al., 2007). The
optimal healing dose of losartan for muscle healing coincides
with the clinically relevant safe human dose of 10mg/kg/day,
which is easily administered in drinking water of rodents
(Kobayashi et al., 2013).

Losartan has been shown to reduce the fibrotic area, improve
muscle regeneration and improve muscle function in murine
models of contusion (Kobayashi et al., 2013) and laceration
(Bedair et al., 2008). However, the timing of administration is
critical. Beneficial effects occur when administration begins on
day 3 or 7 post-injury. In contrast, immediate administration
results in aberrant regeneration, likely attributable to disruption
of the initial inflammatory response and the natural healing pro-
cess of skeletal muscle (Kobayashi et al., 2013). The anti-fibrotic
effect of losartan has also been combined with other regenera-
tive therapies in quest to further improve skeletal muscle heal-
ing. Losartan treatment has been shown to significantly improve
the myogenic potential of transplanted ASCs (Park et al., 2012).

Losartan combined with platelet rich plasma (PRP) significantly
reduced fibrosis and improved function in a mouse contusion
model compared to PRP alone (Terada et al., 2013). Although
PRP presents a promising regenerative therapy (Sanchez et al.,
2014), some researchers have raised concerns about the PRP-
derived TGF-β in fibrotic remodeling of injured muscle (Robi
and Matjaz, 2014). Regardless, these initial studies suggest that
optimal treatment of muscle must consider the interactions of
fibrosis and muscle regeneration. Although losartan is well tol-
erated, the side-effects include hypotension, headache, dizziness,
fatigue, cholestatic hepatitis, raised liver enzymes and pancreatitis
(Aronson, 2009).

Suramin is FDA approved as an anti-parasitic and anti-
neoplastic agent that can inhibit several growth factors includ-
ing TGF-β1 by competitively binding to their receptors (Chan
et al., 2003). Intramuscular injection of suramin after injury
caused by contusion (Nozaki et al., 2008, 2012), laceration (Chan
et al., 2003) and strain (Chan et al., 2005) reduces fibrosis and
improves functional recovery (Chan et al., 2003; Nozaki et al.,
2008). Additionally, suramin also inhibits myostatin expression
(Chan et al., 2005). The side-effects associated with suramin
use include malaise, neuropathy, mineral corticoid insufficiency,
corneal deposits, occasional thrombocytopenia, neutropenia and
renal failure (Chan et al., 2005).

Gamma interferon (γ-INF) has also been shown to dis-
rupt TGF-β1 signaling by upregulating smad7 expression and
is approved by the FDA to treat hepatic fibrosis (Foster et al.,
2003). In amouse lacerationmodel, γ-INF was shown to decrease
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fibrosis and improvemuscle strength. The side effects of this drug
include chills, fever, malaise, fatigue, anorexia, alopecia, depres-
sion, loss of libido and dry skin and mouth (Friedlander et al.,
1996).

The proteoglycan decorin can bind to TGF-β1, preventing
association with its receptor (Li et al., 2004), and has anti-fibrotic
effects in kidney, liver and lung (Dreher et al., 1990; Isaka et al.,
1996; Giri et al., 1997). It reduces fibrosis, and enhances muscle
regeneration and function following muscle laceration in mice
(Fukushima et al., 2001). Decorin has also been used in combina-
tion with IGF-1 in an attempt to reduce fibrosis and also enhance
muscle regeneration. In a murine muscle laceration model the
combination had an additive effect histologically. However, the
results were not translated to an improvement in muscle func-
tion (Sato et al., 2003). The anti-fibrotic halofuginone has been
shown to reduce fibrosis by reducing SMAD 3 phosphorylation.
In amodel of neonatal brachial plexus injury, 0.3μg/g of halofug-
inone administration three times a week for 4 weeks decreased
biceps fibrosis but did not reduce contracture severity (Nikolaou
et al., 2014).

Other approaches for reducing muscle fibrosis after injury
include MMP treatment. It was found that administration of
recombinant human MMP-1 at day 33 post-laceration was effec-
tive in reducingmuscle fibrosis (Kaar et al., 2008). It has also been
suggested that increase in the activity of MMP-3 and MMP-9 by
osteoactivin (a type 1 glycoprotein expressed inmyofibers) is use-
ful for attenuating skeletal muscle fibrosis caused by denervation
and distraction osteogenesis (Furochi et al., 2007; Tonogai et al.,
2014).

Concerns and Future Directions

Unlike fibrosis, the increased collagen deposition is a normal
response to altered demand including submaximal aerobic exer-
cise (Miller et al., 2005), strength and resistance training (Moore
et al., 2005; Heinemeier et al., 2007), and stretching (Stauber
et al., 1996). In these cases, increased collagen deposition is
a positive adaptive response that protects the muscle from
strain injury and provides a means to improve lateral force
transmission (Stauber et al., 1996; Gillies and Lieber, 2011).
The increase in collagen deposition following these activities
is largely affected by increased TGF-β and many of the same
signals that stimulate collagen production also orchestrate pos-
itive adaptation within the myofibrils under these conditions.
What remains unexplored is the interaction of anti-fibrotic
treatment with the response to muscular activity, e.g., physical
therapy.

There is also evidence that increased collagen deposition can
also be beneficial response to certain forms of muscle injury.
Some studies have challenged the concept of preventing fibro-
sis by blocking TGF- β signaling following muscle injury. Lieber
and co-workers have suggested that the development of skeletal
muscle fibrosis in response to nesprin and desmin deletion is a
compensatory mechanism that protects muscle fiber from injury
due to excessive strains (Meyer and Lieber, 2012; Chapman et al.,
2014).

Gumucio et al. have demonstrated that inhibition of TGF-
β using a bio-neutralizing antibody initially improved force

production following eccentric contraction injury, however, it
ultimately led to long-term force deficit (Gumucio et al., 2013).
Recent work from our laboratory involving VML injury, a par-
ticularly severe form of muscle injury in which a portion of the
muscle has been frank lost, demonstrated that the formation of
a fibrotic scar partially restores muscle function (Nikolaou et al.,
2014). Furthermore, accelerating scar formation through surgical
repair and transplantation of an acellular ECM (Chen and Wal-
ters, 2013; Corona et al., 2013) or through exercise (Aurora et al.,
2014), is accompanied by an improvement in muscle function.
Conversely, muscle function is dramatically reduced when col-
lagen deposition is delayed or reduced by the administration of
losartan (Garg et al., 2014). In the unique case of VML injury,
the development of a fibrotic scar at the wound site provides a
means to transmit force between intact areas of muscle by pro-
viding a physical bridge. Additionally, the presence of scar at the
wound site shields the remaining muscle from increased loading
secondary to VML (Corona et al., 2013). Clearly, VML represents
an extreme form of muscle injury, however, this work underlines
the need to consider the type and magnitude of the injury when
exploring anti-fibrotic treatments. TGF-β1 is a multi-functional
growth factor with roles in inflammation, immunomodulation,
wound healing and fibrosis (Kulkarni et al., 1993; Andreetta et al.,
2006). Therefore, it is required to evaluate the long-term effects
of anti-fibrotic therapies targeting TGF-β1 on immunomodula-
tion. Systemic and prolonged attenuation of TGF-β1 may also
lead to massive multi-organ inflammation and autoimmunity
(Andreetta et al., 2006). Similarly, anti-fibrotic therapies such
as γ-INF and halofuginone act downstream on the SMADs
(Figure 1). SMADs are involved in a variety of different path-
ways besides fibrosis and interfering with their action could lead
to undesirable effects (Rodriguez-Vita et al., 2005; Goldstein et al.,
2011).

Clinical Translation
The translation of animal studies involving anti-fibrotic agents
for muscle injury into human studies and clinical trials has
been extremely limited. In fact, with the exception of a single
case report involving the treatment of a muscle strain injury
with losartan (Gharaibeh et al., 2012), we are unaware of any
other human studies involving the treatment of muscle injury
with an anti-fibrotic treatment. Clinically, muscle is viewed as a
regenerative tissue and patients presenting with muscle injuries
often do not receive medical treatment beyond R.I.C.E and some
form of anti-inflammatory medication (Gharaibeh et al., 2012).
Anti-fibrotic agents hold promise as advance in the treatment
of muscle injury, however their potential side effects and pos-
sible disruption of normal adaptive responses represent a valid
concern. While life-threating fibrotic diseases such as idiopathic
pulmonary fibrosis and muscular dystrophy may warrant the
potential adverse side effects of anti-fibrotic drugs, it is not clear
where along the continuum of muscle injury the risk becomes
worth the potential reward.

Conclusion

Skeletal muscle repair following injury includes a complex
and well-coordinated regenerative response. However, fibrosis
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often manifest, leading to aberrant regeneration and incom-
plete functional recovery. In general, preclinical animal studies
have demonstrated improvements in muscle injuries with anti-
fibrotic treatments. However, there remain a number of unan-
swered questions that will need to be addressed in order to refine
our understanding of anti-fibrotic treatments and before their
clinical potential is realized. For example: What is the optimal
time to initiate treatment? What types of muscle injuries are
most amenable to anti-fibrotic treatment, e.g. strain injures vs.
VML injury? And do anti-fibrotic drugs impact the normal adap-
tive response of muscle to increased activity, therefore hindering

long-term healing? While a number of potential treatments are
FDA approved for other indications, clinical trials in human
volunteers will be important in addressing concerns regarding
potential side effects, particularly in regard to balancing cost vs.
benefit of anti-fibrotic treatments. Finally, although anti-fibrotic
treatments improve muscle healing in the majority of the stud-
ies reviewed, they do not result in complete muscle regeneration.
To this end, recent studies combining anti-fibrotic treatments
with cell-based therapies have provided exciting evidence that the
optimal treatment of muscle injuries may lay in a multifactorial
approach to treating muscle injuries.
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