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This minireview discusses the evidence that the inhibition of p38 mitogen-activated

protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous

experimental studies, as well as past and ongoing clinical trials, have focussed on the

role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is

now growing evidence that these kinases are activated within the myocardium of the

failing human heart and in the heart and blood vessels of animal models of heart failure.

Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress

pathways that lead to the activation of p38 MAPKs in heart failure is analogous to

the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin

systems. These have provided some of the most effective therapies for heart failure.

This minireview questions whether similar and synergistic advantages would follow the

inhibition of p38 MAPKs.
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Introduction to Heart Failure

Heart failure, also referred to as chronic or congestive heart failure, is a progressive condition which
occurs when the heart at a normal filling pressure is unable to pump sufficient blood to meet the
body’s requirements. The syndrome is multifaceted including abnormities in heart muscle, valves
and/or pericardium as well as systemic disturbances in neuro-humoral, cytokine and/or vascular
function (Marks, 2013). The changes can include but are not limited to deterioration in the force
of contraction and vascular tone and alterations in hypertrophy, apoptosis, fibrosis, autophagy and
inflammatory cytokines as will be discussed further in this review.

Evidence for p38 Activation in Heart Failure

The mitogen-activated protein kinase p38 is a key Ser/Thr kinase that responds to a variety
of the multifaceted abnormalities contributing to heart failure (see Figure 1). There have
been extensive studies on the role of p38 in different disease states, primarily ischaemic
heart disease in the cardiac setting. Though not as thoroughly explored as ischaemia, the
role of p38 has been investigated in heart failure. Activation of p38 has been observed in
animal models of heart failure and studies on myocardial biopsies from heart failure patients
show increased p38 activity in comparison to “healthy” hearts (Takeishi et al., 2002; Ng
et al., 2003; Bellahcene et al., 2006). In cultured cardiomyocytes, p38 activation augments
hypertrophy and pharmacologic inhibition attenuates hypertrophy occurring in response to
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FIGURE 1 | The downstream effects of p38 in cardiomyocytes,

fibroblasts, and vasculature during heart failure. (A) Emphasized in

red are the effects of p38 which are associated with the progression

of heart failure. p38 activity has been linked to increased interstitial

fibrosis (Wang et al., 1998; Ma et al., 1999), reduced vasoreactivity

(Behr et al., 2001; Vijayan et al., 2004; Kumar et al., 2008; Hoefer

et al., 2010) and increased ROS production (Li et al., 2005; Aukrust

et al., 2011; Denise Martin et al., 2012; Elkhawad et al., 2012). The

effects on the force of cardiomyocyte contraction are mediated by the

effect of p38 on the Ca2+ transient (Andrews et al., 2003; Kaikkonen

et al., 2014) and the sensitivity of the sarcomeres (Liao et al., 2002;

Kan et al., 2004; Vahebi et al., 2007). (B) Schematic showing balance

between stresses on the heart that lead to healthy adaptation and the

pathological increases in cytokines and neurohormones that lead to, or

aggravate, heart failure. The question is whether these pathological

signals can be reversed by inhibiting p38?

stimuli such as endothelin-1 and phenylephrine (Nemoto
et al., 1998). Whilst inhibiting p38 activity using SB203580 in
adult rat cardiomyocytes, increases contractility (Liao et al.,
2002).Variations in patient populations and genetic differences
between animal models make it challenging to determine the
precise role of p38 in heart failure. Collectively, it appears that
p38 plays an important role in the progression of heart failure.
The structure and function of p38 has been recently reviewed
in the cardioprotective context (Martin et al., 2015). In this
review, we will elucidate the mechanisms and consequences of
p38 activity in heart failure with the aim of highlighting areas for
further research required to clarify future potential therapeutic
benefit.

Pathological Features of Heart Failure that
May Lie Downstream of p38

The Force of Contraction
An intricate protein signaling cascade exists to control the
contraction of cardiomyocytes. The increase in cytosolic Ca2+

ions in the cell leads to actin interacting with myosin and the
power stroke that shortens the sarcomere. Most heart failure
is characterized by decreased contractility and reduced ejection
fraction and the most common underlying process is pressure
overload due to hypertension or cavity dilatation aftermyocardial
infarction acting through the Law of LaPlace. Pressure overload
in turn leads to hypertrophy and loss of contractile function
(Peterson, 2002; Lips et al., 2003). It appears that activation of
the p38 pathway depresses contractility and enhances matrix
remodeling (Kerkela and Force, 2006). In studies involving
the activation of this pathway through gene transfer of the

activated upstream kinases of p38 [mitogen-activated protein
kinase kinase 3/6 (MKK3/6)] or blocking the pathway through
dominant negative p38 mutants and pharmacologic inhibition,
it is evident that p38 activity leads to negative inotropic
effects (Liao et al., 2002; Vahebi et al., 2007). More than one
mechanism has been proposed through which p38 decreases
contractility. Suchmechanisms include prolongation of the decay
phase of the cardiac calcium transient increasing diastolic Ca2+

concentration and relaxation. This is thought to be mediated
through downregulation of sarcoplasmic/endoplasmic reticulum
calcium ATPase (SERCA2), responsible for the translocation of
Ca2+ from the cytosol to the sarcoplasmic reticulum (Andrews
et al., 2003; Kaikkonen et al., 2014). In support of this, tumor
necrosis factor α (TNFα)-induced contractile dysfunction in
isolated hearts is attenuated in MKK3 knockout mice and also by
pharmacologic inhibition (Bellahcene et al., 2006). Furthermore,
other studies suggest that theremay be an additional contribution
through p38 activity diminishing the Ca2+ sensitivity of the
sarcomere (Liao et al., 2002; Kan et al., 2004; Vahebi et al., 2007).

Vascular Tone
p38 is activated in the vessel wall in response to pressure
overload, hypoxia and heart failure (Kyriakis and Avruch,
2001; Hoefer et al., 2010) and also by neurohormonal stimuli
such as angiotensin II or endothelin-1; both associated with
vasoconstriction and ventricular remodeling (Vijayan et al., 2004;
Kumar et al., 2008). Vasoreactivity is improved, and survival is
increased, by pharmacologic inhibition of p38 in several different
models involving these stressors (See et al., 2004; Bao et al.,
2007; Hoefer et al., 2010). In a rat model of heart failure,
inhibition of p38 with SB239063 normalizes vascular p38 activity
and endothelial dysfunction is prevented (Widder et al., 2004).
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Current literature mainly focuses on the activation mechanisms
of p38 during heart failure and less on the downstream
mechanisms which may lead to the pathological features of the
syndrome. Though further investigation is required, it appears
that SB239063 leads to a decrease in vascular superoxide anion
formation, suggesting that p38 plays a role in generation of
reactive oxygen species (ROS) during heart failure (Widder et al.,
2004). Furthermore, one of the main subsets of p38 substrates
are transcription factors, such as myocyte enhancer factor 2A
(MEF2A) and myocyte enhancer factor 2C (MEF2C), that are
implicated in the regulation of vascular tone (Wang et al., 2003;
Hayashi et al., 2004; Olson, 2004), as well as ROS generation.
In summary, the dysfunction mediated in part by p38 appears
to be via ROS generation and possibly an effect on downstream
transcription factors (Ushio-Fukai et al., 1998; Li et al., 2004; Bao
et al., 2007).

Hypertrophy
The data concerning the role of p38 in hypertrophy are difficult to
reconcile; there is evidence both for and against its involvement
(Haq et al., 1998; Nishida et al., 2004; Chahine et al., 2015).
Perhaps due to differences in models and experimental detail,
substantial variability of p38 activity in heart failure and/or
hypertrophy has been observed.

In an adenoviral-mediated overexpression system in
cardiomyocytes expressing upstream activators for p38; MKK3
and MKK6, leads to a pro-hypertrophic response including
increase in cell size and atrial natriuretic factor expression,
suggesting a causative role (Wang et al., 1998). However,
in an in vivo model with transgenic mice expressing the
dominant-negative mutants of MKK3, MKK6, and p38α, cardiac
hypertrophy following aortic banding is enhanced, potentially
through the regulation of nuclear factor of activated T cells
(NFAT) (Braz et al., 2003). In vivo studies, and data acquired
from heart failure patients, suggest that p38 contributes to the
progression of heart failure but that this is not through the
aggravation of hypertrophy (Ng et al., 2003; Nishida et al., 2004;
See et al., 2004; Klein et al., 2005). For example, p38 does not
appear to be activated in hypertrophied hearts, but in failing
hearts a two-fold increase in p38 phosphorylation is observed
(Haq et al., 1998).

Overall, in isolated cardiomyocytes p38 activation appears to
increase hypertrophy and its inhibition, using pharmacological
compounds or genetic methods, attenuates the development of
hypertrophy in response to hypertrophic stimuli (Nemoto et al.,
1998; Wang et al., 1998; Liang and Molkentin, 2003). However,
the picture is more complex in in vivo models and it is not
clear that hypertrophy in the absence of heart failure causes p38
activation in patients.

Apoptosis
Cardiomyocyte death is an integral component of
decompensated cardiac hypertrophy and the dysfunction
leading to heart failure (Diwan et al., 2008). Three systems of cell
death exist, namely; necrosis, apoptosis and autophagy. Cardiac
apoptosis is regulated by an elaborate array of stress-activated
signaling pathways. p38 has been associated with both anti- and

pro-apoptotic downstream effects depending on the upstream
stimulus and cell-type (Chuang et al., 2000; Okamoto et al.,
2000; Kaiser et al., 2004; Kilpatrick et al., 2006). However, in the
cardiac setting, the role of p38 in regulating apoptosis is still
under investigation. The apoptotic effects of anisomycin and
overexpressing activated mitogen-activated protein kinase kinase
1(MEKK1) are reversed by overexpressing constitutively active
MKK6 (Zechner et al., 1998) and a similar result is observed
with the augmentation of norepinephrine-induced apoptosis by
a p38 inhibitor in cardiac myocytes (Communal et al., 2000). It
appears that the protective role of MKK6 overexpression is, in
part, through nuclear factor κB (NFκB) activation, interleukin
6 (IL-6) induction and αB-crystallin phosphorylation (Zechner
et al., 1998; Craig et al., 2000; Hoover et al., 2000; Zhao et al.,
2013).

Nonetheless, there are a few reports contradicting these
findings, suggesting that p38 activation is, in fact, pro-apoptotic
in cardiomyocytes. In transgenic mice with cardiac-specific
expression of a dominant-negative mutant form of p38α after
experimental diabetes; myocardial apoptosis, the number of
caspase-3-positive cells, and the downregulation of antiapoptotic
protein B-cell lymphoma-extra large (Bcl-XL) are all attenuated,
suggesting a pro-apoptotic role for p38 (Thandavarayan et al.,
2009). In addition, it has been previously reported that apoptosis
is reduced by p38 inhibitors; SB203580, SB239063, or FR167653
in cardiac cells in response to several stimuli (Mackay and
Mochly-Rosen, 1999, 2000; Zhu et al., 1999; Kang et al., 2000;
Sharov et al., 2003; Kyoi et al., 2006). In isolated perfused
hearts, p38 inhibitors are also cardioprotective (Meldrum et al.,
1998; Ma et al., 1999; Barancik et al., 2000). In bovine aorta
endothelial cells, p38 involvement on β2AR-mediated caspase-
3 cleavage is suggested via negative regulation by the p38
inhibitor SB203580 (Iaccarino et al., 2005). In Raf-1-knockout
mice which demonstrated left ventricular systolic dysfunction,
heart dilatation and an increase in apoptosis was associated
with an increase in p38 kinase activity (Yamaguchi et al.,
2004). Furthermore, overexpression of p38α or activated MKK3b
in cultured neonatal cardiomyocytes (Wang et al., 1998) and
expression of transforming growth factor-β-activated kinase-1
(TAK1) in the mouse heart by transgenesis, are associated with
increased cardiac apoptosis (Zhang et al., 2000).

The opposing findings on the role of p38 in apoptosis could
be attributed to variation among genetic models and non-specific
effects of pharmacologic compounds. Nonetheless, the literature
in models utilizing more specific methods which are less prone
to off-target effects, such as overexpression of wild-type or
dominant-negative mutants, indicates that its activation plays a
pro-apoptotic role in the cardiac setting.

Fibrosis
As already discussed, in cultured cardiomyocytes p38 activity
is associated with myocyte hypertrophy and apoptosis. It also
appears that p38 activity in cardiomyocytes contributes to
remodeling in the adult heart. In intact mouse hearts although
p38 overexpression/activation does not lead to hypertrophy, it
increases remodeling of the extracellular matrix and diminishes
contractile function (Liao et al., 2001, 2002; Biesemann et al.,
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2015). In a p38α knock out mouse model exposed to pressure
overload, increased interstitial fibrosis is observed (Nishida et al.,
2004) whilst a mouse model expressing dominant-negative p38α
displays resistance to fibrosis in response to pressure overload
(Zhang et al., 2003). Furthermore, p38 activation using cre/loxP-
based gene switch to create transgenic animals expressing the
activated upstream kinases of p38, MKK3b, and MKK6, leads to
the induction of interstitial fibrosis, depresses contractility and
compromises diastolic function (Liao et al., 2001).

In a recent study, overexpression of myostatin, a member
of the TGF-β superfamily that is up-regulated under disease
conditions, is shown to cause interstitial fibrosis via activation
of the TAK1-MKK3/6-p38 pathway suggesting that upstream
effectors also play a role in p38 activation leading to fibrosis.
In addition, mitogen activated protein kinase-activated protein
kinase 2 (MK2) is an important substrate of p38 that is associated
with heart failure; since cardiac fibrosis and dysfunction are
diminished in MK2 knockout mice (Streicher et al., 2010; Scharf
et al., 2013) potentially through an involvement of SERCA2
regulation. Treatment of hamster hearts with SB203580 reduces
the area of fibrosis and heart /body weight ratio, increases LV
ejection fraction and contractility (Kyoi et al., 2006). These
findings provide evidence that p38 activation can contribute to
fibrosis in the failing heart.

Autophagy
Autophagy serves as a double-edged sword with both anti
and pro-apoptotic functions. In patients with heart failure, an
increase in autophagy is observed and is associated with left
ventricular systolic dysfunction (Hein et al., 2003; Vigliano
et al., 2011). There are studies suggesting that autophagy is
a maladaptive process during the progression of heart failure
and others which propose a protective role. In vivo studies
blunting autophagy using 3-metyladenine, an inhibitor of
class III phosphoinositide-3-kinase (PI3K), show heart failure
progression is accelerated with an increase in interstitial
fibrosis, worsening ventricular function and early mortality
(Tannous et al., 2008). In addition, a decrease in autophagy
has been implicated in cardiac hypertrophy whilst an increase
in autophagy in transgenic mouse models has been linked to
cardio-protection (Ceylan-Isik et al., 2013). However, excessive
autophagy has been associated with the progression of cardiac
remodeling and heart failure in response to pressure overload
(Nakai et al., 2007). Molecular studies of biopsy samples of left
ventricular myocardium from patients with idiopathic dilated
cardiomyopathy before the implantation, and after the removal,
of a left ventricular assist device suggest that mechanical
unloading of the heart leads to a decrease in markers of
autophagy (Kassiotis et al., 2009). In this study, it is suggested that
autophagy may serve an adaptive purpose during the progression
of heart failure.

Autophagy-related genes are upregulated in response to H2O2

treatment in myotubes, with a positive correlation with p38
activation. Inhibition of p38 using SB202190 decreases H2O2-
induced expression of Atg7 (McClung et al., 2010). However, in
senescent human CD8+ T cells, p38 inhibition using BIRB796
inhibits autophagy (Henson et al., 2014). In addition, in cultured
neonatal rat cardiomyocytes exposed to 48 h of mechanical

stretch and in mice following transverse aortic constriction,
p38 inhibition causes a decrease in the autophagy marker
microtubule associated protein 1 light chain 3 β II (LC3b-II)
(Lin et al., 2014). As the impact of autophagy in heart failure
itself is controversial, it is difficult to assess whether the effect
of p38 activation is protective or detrimental in heart failure.
Nonetheless, it is apparent that p38 plays a role in the mechanism
of autophagy.

Inflammation and Cytokine Signaling
Increasing evidence indicates that inflammatory cytokines,
including TNF-α, interleukin 1β (IL-1β), and IL-6, are elevated
in, and may contribute to, heart failure. TNF-α levels increase in
patients with advanced heart failure and correlate with prognosis
(Levine et al., 1990; Feldman et al., 2000; Behnam et al., 2005;
Gong et al., 2007). TNF-α is not expressed in the non-failing
heart, but is significantly increased in the end stage failing human
hearts (Torre-Amione et al., 1996). This has been associated with
negative inotropic effects, with the IL-1β-mediated expression
of SERCA and phospholamban prolonging the Ca2+ transient
(McTiernan et al., 1997; Feldman et al., 2000). In addition, TNF-
α induction in failing hearts leads to a further loss of contractility
and worsening of extracellular matrix remodeling (Yokoyama
et al., 1997; Sivasubramanian et al., 2001). Interestingly, a
similar array of pathological alterations is observed in response
to p38 activation (Liao et al., 2001). Due to more than one
inflammatory cytokine being associated with the progression
of heart failure, studies involving manipulation of only one
factor might not be the most effective way to investigate their
summative effect on heart failure. Thus, p38, by regulating varied
inflammatory cytokines, becomes a more attractive therapeutic
target and consequently has been explored in a number of
studies (Marber et al., 2011; Denise Martin et al., 2012). In
SB239063-treated spontaneously hypertensive stroke-prone rats,
pro-inflammatory gene expression is attenuated and survival is
increased (Behr et al., 2001). In transgenic mice expressing active
MKK6, TNF-α and IL-6 induction and extracellular remodeling
is increased (Li et al., 2005). Administration of SB239068 in the
same transgenic model reduces plasma levels of these cytokines,
interstitial fibrosis and cardiac remodeling. In a MKK3 knock
out model, similar results to pharmacologic inhibition of p38
are observed with a reduction in TNF-α-induced contractile
dysfunction (Bellahcene et al., 2006). Furthermore, knocking out
MK2 in mice prevents the TNF-α-induced negative inotropic
response (Bellahcene et al., 2006). Other than the direct induction
of inflammatory cytokine production, p38 is implicated in the
amplification of ROS generation; a principal feature of vascular
inflammation (Hoefen and Berk, 2002; Goettsch et al., 2009;
Aukrust et al., 2011; Elkhawad et al., 2012). These studies suggest
that p38 inhibition in the stressed heart will be beneficial, at least
in part through the suppression of inflammatory cytokines and
consequent improvement in myocardial remodeling.

Clinical Trials

With the detrimental effects observed in in vivo and in vitro
studies, clinical trials using the agents; etanercept, a decoy
approach to block TNF-α interaction with its receptor and
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infliximab, monoclonal antibody to neutralize TNF-α were
performed. Unfortunately, results of either no benefit or harm
are observed (Mann, 2005). A clinical trial for semapimod, an
anti-inflammatory agent which inhibits p38 activity, was started
for heart failure patients, but was apparently terminated upon
the disclosure of the discouraging results of the TNF-α-targeted
clinical trials (Kerkela and Force, 2006).

Currently, there is an ongoing phase 3 clinical trial running
with losmapimod (LATITUDE-TIMI 60, NCT02145468), which
could potentially benefit acute coronary syndrome (ACS)
patients. Losmapimod is an anti-inflammatory medication which
inhibits p38 and may improve vascular function and reduce
subsequent cardiac events following ACS.

Though further research is required on the mechanisms and
consequences of p38 activation in heart failure, this review has
discussed the substantial evidence for an important role of p38 in
the development of heart failure and its potential as a therapeutic
target.
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