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University of Manchester, Manchester, UK

Background: A recent comparison showed the extensive similarities between the

structural properties of metabolites in the reconstructed human metabolic network

(“endogenites”) and those of successful, marketed drugs (“drugs”).

Results: Clustering indicated the related but differential population of chemical space by

endogenites and drugs. Differences between the drug-endogenite similarities resulting

from various encodings and judged by Tanimoto similarity could be related simply to

the fraction of the bitstrings set to 1. By extracting drug/endogenite substructures,

we develop a novel family of fingerprints, the Drug Endogenite Substructure (DES)

encodings, based on the ranked frequency of the various substructures. These provide

a natural assessment of drug-endogenite likeness, and may be used as descriptors with

which to derive quantitative structure-activity relationships (QSARs).

Conclusions: “Drug-endogenite likeness” seems to have utility, and leads to a simple,

novel and interpretable substructure-based molecular encoding for cheminformatics.

Keywords: drug transporters, cheminformatics, endogenites, metabolomics, encodings

Introduction

In a recent study (O’Hagan et al., 2015), motivated by the recognition that drugs do, and
probably have to, hitchhike on metabolite transporters in order to get into cells (Dobson and
Kell, 2008; Dobson et al., 2009a,b; Giacomini et al., 2010; Kell et al., 2011, 2013, 2015; Kell,
2013, 2015; Kell and Goodacre, 2014; Kell and Oliver, 2014), we have used the recent availability
of a curated reconstruction of the human metabolic network, Recon2 (Swainston et al., 2013;
Thiele et al., 2013), to ask the question as to how similar in structural terms marketed drugs
are to the molecules (hereafter “endogenites”) involved in endogenous human metabolism.
While the results depended quite considerably on the exact 2D descriptor used to encode the
structures, it was noted that for the commonly used MACCS166 descriptor (Durant et al.,
2002; Todeschini and Consonni, 2009) in the implementation described (and see http://www.
dalkescientific.com/writings/diary/archive/2014/10/17/maccs_key_44.html), there was at least one
endogenite with a Tanimoto similarity (TS) exceeding 0.5 for more than 90% of marketed
drugs. As noted in those references (Durant et al., 2002; Todeschini and Consonni, 2009), the
MACCS166 descriptor consists of a string of 166 binary elements representing the presence or
absence of 166 (slightly arbitrary and not necessarily druglike) features. We note that not all the
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MACCS keys represent substructures, some are rather simple,
e.g., “has one or more element [x] atoms.” Most of the
cheminformatic tool kits (e.g., RDkit, CDKit) are implemented
using SMARTS queries; these can only approximate the original
MDL MACCS keys. In some cases the intended behavior of
the key (query) was ambiguous, in other cases, a SMARTS
query is unable to replicate the original MDL query as intended.
Nevertheless, the various toolkitMACCS fingerprints are claimed
to be sufficiently close to the original MDL versions. The 166
subset were based on the MDL MACCS key that were made
public. The RDKit implementation is described at http://rdkit.
org/Python_Docs/rdkit.Chem.MACCSkeys-pysrc.html.

It was concluded that while this “does not mean, of course,
that a molecule obeying the rule is likely to become a marketed
drug for humans, it does mean that a molecule that fails to obey
the rule is statistically most unlikely to do so” (O’Hagan et al.,
2015), implying that the degree of endogenite-likeness could
indeed be a useful chemical filter in drug discovery programmes.
Others too have noted the general “natural metabolite-likeness”
of drugs (e.g., Feher and Schmidt, 2003; Karakoc et al., 2006;
Gupta and Aires-De-Sousa, 2007; Dobson et al., 2009b; Khanna
and Ranganathan, 2009, 2011; Peironcely et al., 2011; Zhang
et al., 2011; Chen et al., 2012; Walters, 2012; Hamdalla et al.,
2013; Manallack et al., 2013), often using supervised methods
of machine learning, though in our own work (O’Hagan
et al., 2015), especially to avoid the dangers of overtraining
(Broadhurst and Kell, 2006), we purposely confined ourselves to
using unsupervised methods only. We also noted (O’Hagan et al.,
2015) that a rather smaller fraction of molecules in typical drug
discovery libraries obeyed the rule.

Partly for reasons of space, however, the previous study
(O’Hagan et al., 2015) left a considerable number of questions
rather open. These included, for instance, which fingerprint
method might be most “suitable” (and whether “better” ones
existed), whether similarity measures should be based on a
suitable fusion of the results from using different fingerprints
(e.g., Ginn et al., 2000; Hert et al., 2004; Whittle et al., 2006;

FIGURE 1 | A “mind map” of the manuscript.

Gardiner et al., 2009; Chen et al., 2010; Medina-Franco et al.,
2011;Willett, 2013a,b), which substructures weremost important
in determining endogenite-likeness, which parts of metabolite
space were most fully populated by drugs, whether results
differed markedly if we used other clustering methods, and so
on. The purpose of the present paper is to develop and provide
some of these analyses. It is concluded that drugs are indeed like
metabolites when viewed in a variety of orthogonal ways, and that
the substructures found within endogenites and marketed drugs
provide a novel and useful means of encoding chemical structures
in a simple and easy-to-understand manner. Figure 1 gives an
overview of the paper in the form of a “mindmap” (Buzan, 2002).

Materials and Methods

Molecular Data
We used the same molecules for marketed drugs as before
(O’Hagan et al., 2015); they were provided in their entirety as
Supplementary files to that paper (O’Hagan et al., 2015) and are
not reproduced here. The number of endogenites was lowered to
1057 to remove wildcards in lipids with variable chain lengths,
since for some purposes we were here specifically interested in
molecular weights, but the endogenites were otherwise identical
too. Data for Maybridge fragments and Chembridge molecules
were downloaded from their respective websites, and other data
were downloaded as indicated in the text.

Software
We used the KNIME environment (Berthold et al., 2008;
Mazanetz et al., 2012; Meinl et al., 2012) throughout, along
with a variety of its cheminformatics toolkits such as CDK
(Beisken et al., 2013) and RDKIT (Riniker et al., 2013). Details
were as given previously (O’Hagan et al., 2015) (and note that
the MACCS fingerprints there were not hashed; a correction
has been appended at the journal). Quite a few of the nodes
used R code, written by O’Hagan and incorporated into the “R
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Snippet” KNIME node, with substructure counting via the RDKit
Substructure Counter node.

Results and Discussion

Fingerprints
Even (as in O’Hagan et al., 2015) using just 2D fingerprints, the
apparent closeness of drug and endogenite molecules to each
other (as judged by their Tanimoto similarity coefficients) was
differentially “rugged” (the hierarchical clustering showed many
more small clusters for drugs than for metabolites), and could
differ quite substantially depending on which fingerprint was

used (see also e.g., Eckert and Bajorath, 2007; Leach and Gillet,
2007; Faulon and Bender, 2010; Koutsoukas et al., 2014;Maggiora
et al., 2014; Medina-Franco and Maggiora, 2014). To explore this
further, we decided to compare the drug and metabolite spaces,
alone and with each other, using a modification of the approach.
Because, of course, the nearest metabolite to itself has a TS of 1,
we decided to proceed as follows:

1. For each queryingmolecule (whether a drug or an endogenite)
rank the queried molecules (whether drug or endogenite) and
determine the TS of the 90th percentile of closeness.

2. Do this for each fingerprint encoding.

FIGURE 2 | Tanimoto similarities ranked according to the query target

closest at the 90th percentile, for different fingerprint types. (A)

Endogenites vs endogenites. (B) Drugs vs drugs. (C) Drugs (query) vs.

endogenites. (D) Endogenites (query) vs. drugs. Consensus (MAX) refers to

the “maximum” TS (Gardiner et al., 2009) among the different fingerprints

when only the nearest metabolite is returned.
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3. For each query molecule and each queried molecule, find the
maximum value of the TS among the eight fingerprints tested.

4. Plot the TS of the 90th percentile of the queried molecule
against the fraction of the querying molecules tested.

Considering first the endogenites (as compared to each other),
we see (Figure 2A) that the RDKIT encoding shows the greatest
similarities for metabolites that are ranked as being the most
similar, but that MACCS and Layered encoding preserve the

FIGURE 3 | Distributions of fingerprint properties of drugs. (A)

Distributions of Tanimoto similarities between drugs and endogenites

using eight different encodings, shown as probability densities (upper)

and boxplots (lower); the boxplots show the median and interquartile

range, with the end of the “whiskers” being at 1.5 times the

interquartile range, and with extreme examples being given as dots. (B)

Variation of the probability density of the number of bits set to 1 in the

various encodings in (A).
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greater appearances of similarity as the overall similarities
decrease. Using these encodings, 40–50% of molecules still had
molecules whose TS at the 90 th percentile was 0.5 or above. By
contrast (Figure 2B), these fractions were uniformly lower for
drugs vs drugs, consistent with the rather spikier or “patchy”
population of the normalized chemical space relative to that of
endogenites (many of which, especially CoA and steroid/sterol
derivatives, share many structural similarities) (O’Hagan et al.,
2015). The drug-endogenite comparison (Figure 2C, with the
drugs being the query molecules) gives data broadly similar
to those shown in Figure 2A of O’Hagan et al. (2015) where
closeness to only the very nearest metabolite was plotted,
consistent with a view that a querying drug is more commonly
close in structural terms not just to a single endogenite but to
many such that occupy that part of endogenite space. Figure 2

also shows the data for the “maximum” TS (Gardiner et al.,
2009) among the different fingerprints when only the nearest
metabolite is returned. Finally, the complementary endogenite-
drug comparison, with the endogenite being the query molecule,
shows similar but complementary behavior (Figure 2D). One
conclusion, given the fact that more than 90% of marketed drugs
are seen to be similar to at least some metabolites, and that one
might therefore wish to use this as a filter in the analysis of
candidate drug libraries, is that for these kinds of comparisons
the MACCS, RDKit, Layered or “maximum” fingerprint choice is
most likely to return such a result.

Another way of looking at such data is to compare the
distributions of the nearest Tanimoto similarities between
marketed drugs and metabolites for the different encodings
(Figure 3A). It is clear from such a plot (Figure 3A) that not

FIGURE 4 | Differences between marketed drugs, Recon2 and library

compounds. (A) Variation of bit density for the three classes of compound

(based on sampling 1000 of each from the three classes). (B) Variation of

Tanimoto similarity to Recon2 for eight encodings of marketed drugs and

library compounds (from Chembridge and from the ZINC database). In each

case drugs are more similar to metabolites than are library compounds. (C)

Variation of Tanimoto similarity of Chembridge library compounds to two

subsets [ZINCDB and ZINCDB(2)] of ZINC database compounds and to

marketed drugs. In each case library compounds are more similar to each

other than to marketed drugs. (D) Topological polar surface area and

molecular weight distributions of drugs, Recon2 compounds and five

“rule-of-3”-compliant (Congreve et al., 2003) libraries of 500 fragments each

that are sold for drug screening purposes. The inset is scaled to show all

marketed drugs.
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only is the closeness of the “nearest” metabolite different for
the different encodings but that the encodings cover metabolite
space differentially. At least for the Morgan and Feat Morgan
encodings, that resemble ECFP and FCFP (Landrum et al., 2011),
this can be ascribed in part to the much smaller number of bits in
the encoding that have the value 1 (Figure 3B), since the value
for the TS is partly a function of this (Flower, 1998; Godden
et al., 2000; Holliday et al., 2002, 2003; Wang et al., 2007; Al
Khalifa et al., 2009). [In a similar vein, we also looked at the use
of a strategy that doubles the length of the bitstring encoding by
adding its complement (Knuth, 1986), such that 50% of the bits
are 1 and 50% 0. This was not beneficial, as the high density of
zeroes in the original merely doubled the number of similar bits
(data not shown).]

We also observed previously that the distribution of
metabolite- (endogenite-) likenesses differed significantly
between marketed drugs and (many of) the kinds of molecules
typically found in drug discovery libraries. A convenient
way of encoding these is simply to look at the distribution
of bitstring densities (of 1 s) for the appropriate encoding
between the molecules (Flower, 1998). Thus, Figure 4A shows
that these differ very significantly for random samples taken
from Recon2, from marketed drugs, and from the ZINC

(Irwin et al., 2012) databases, with drug candidates typically
being less like metabolites than are drugs (see also Chen
et al., 2012; Walters, 2012), regardless of the database used
(Figures 4B,C). The distributions of topological polar surface
area (TPSA) and molecular weight (see Abad-Zapatero et al.,
2010, 2014) are shown (Figure 4D) for endogenites (Recon2),
for marketed drugs, and for 5 libraries of small molecule
“fragments” (Maybridge “Ro3”-compatible, Congreve et al.,
2003, libraries). For a given molecular weight, endogenites are
typically significantly more polar than are marketed drugs or
fragments, especially for lower molecular weights. Thus, when
compounds are ranked by molecular weight (MW), the median
MW for drugs, endogenites and fragments are 335, 291, and
179–185 (depending on the library). For these molecules the
TPSA values are 69, 124, and 30–69Å2. A noteworthy point (see
also Gopal and Dick, 2014), however, is that fully one quarter
of marketed drugs are not in fact larger than typical fragments
(Figure 4D); indeed when ranked by increasing molecular mass,
the 500th marketed drug (of 1383) has a MW of just 297.

We also looked to see whether metabolites that were known
substrates (from the Recon2 map) for known transporters (see
also Sahoo et al., 2014; Kell et al., 2015) exhibited any greater
likelihood to be those with the nearest TS to the query drug;

FIGURE 5 | Relationships between endogenite and marketed drug

spaces as judged by self-organizing feature maps trained on

marketed drugs as encoded with the MACSS encoding. (A) A

self-organizing map with 100 nodes and 10 clusters, trained to convergence

(3000 iterations) (left), along with a projection of endogenites onto the trained

network (right). (B) The data in A replotted as a contour plot. (C) A plot as in

(A) but the network was trained using the Recon2 endogenite data. (D)

Contour plot of the data in (C).
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no significant evidence for or against this was found (data
not shown), and of course they may be, and may need to be,
endogenite-like at their targets too.

Clustering Using Self-organizing Maps

Teuvo Kohonen’s Self Organizing (Feature) Map (Kohonen,
1989, 2000; Oja and Kaski, 1998) is a well-known unsupervised
learning method of clustering data according to a measure of
their similarity. It was therefore of interest to see how “drug”
and “endogenite” spaces were organized when represented as
such a map. To this end, we used the MACCS encoding for
marketed drugs, with 10 × 10 nodes and 10 clusters (numbers
chosen to give a reasonable but not excessive degree of clustering,
given the number of drugs). Figure 5A (left side) shows the
distribution of the different numbers of drugs as clustered (by
color, based on the similarity of their weight vectors) into the
different nodes (circles), while the right hand side of the same
figure represents a projection of Recon2 metabolites as projected
onto the trained network. The number of circles for each cluster

varies quite significantly, from 2 to 15, while the heterogeneous
distribution of metabolites shows clearly that some parts of
drug space are much less close to multiple metabolites than are
others (e.g., the “orange”- and “lemon”-colored clusters). This
is especially obvious when the data are displayed as a contour
map (Figure 5B). In the converse approach, we trained a self-
organizing map (SOM) on Recon2; in this case (Figure 5C) the
number of nodes per cluster varied from 1 to 21, showing again
that metabolite space has some significantly larger clusters than
does drug space, while the projection of drugs onto metabolite
space (Figure 5D) shows a highly significant clustering into a
particular area of metabolite space, consistent with the finding
that there was a significant preference for some metabolites
(O’Hagan et al., 2015).

Substructural Basis for Drug-endogenite
Likenesses

Our previous analyses of drug-endogenite likenesses looked at
the molecules “as a whole.” However, it is obvious that some

FIGURE 6 | Distribution of the frequency of appearance different atoms between the classes endogenites, marketed drugs and of 10,000 randomly

chosen molecules from the ZINC database. To maximize visibility, numbers are not plotted if off the ordinate scale.
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substructures may be more common in endogenites than in
marketed drugs and vice versa, a simple example being the
recognition that human endogenites do not contain halogen
atoms while various drugs do (e.g., of the 1381 marketed drugs,
148 of them contain at least one fluorine atom). Thus, Figure 6
shows the distribution of atom types for the three classes drugs,
endogenites, and library compounds.

Starting arguably with (Bemis and Murcko, 1996, 1999), a
number of papers have analyzed the frequency of occurrence
in FDA-approved, marketed drugs of various substructures,
including heterocycles (Vitaku et al., 2014), rings (Aldeghi et al.,
2014; Taylor et al., 2014), the chronological (and relatively
recent) appearance of S and F in drugs (Ilardi et al., 2014),
and even metallodrugs (Mjos and Orvig, 2014). Papers also exist
in which fingerprinting methods have been used to distinguish
drugs from metabolites (e.g., Khanna and Ranganathan, 2009,
2011; Peironcely et al., 2011; Walters, 2012; Hamdalla et al.,
2013). However, while Chen et al. (2012) did note that human
metabolites and natural products tended to have fewer terminal
rings than do marketed drugs, no one has compared the
substructures found in marketed drugs with those found in the
human endogenites represented in Recon2, which is what we now
do here.

Using the Indigo substructure analyser in KNIME, we
extracted relevant substructures from both endogenites and
marketed drugs, and ranked them according to the normalized
frequency of their appearances. The top 60 substructures in
each clade are shown in Figure 7, while all are illustrated
diagrammatically in the inset to Figure 7A, with the full Table
of data being supplied as Supplementary Information. It is
clear from Figures 7A,B that while there are indeed some
clear similarities between drugs (blue) and endogenites (red)
(Figure 7A), with a greater frequency of more substructures in
drugs (Figure 7B), there are also some substantial differences
(Figure 7C) in the frequency of various substructures between
endogenites and present marketed drugs (those substructures
that occur frequently in drugs are sometimes referred to
as “privileged,” Tounge and Reynolds, 2004; Costantino and
Barlocco, 2006; Schnur et al., 2006). It is probably also worth
noting that in some sense substructures may be related to the
fragments that have proved so useful in drug screening (e.g.,
Hall et al., 2014), and that proposals exist that one might
concentrate on those that are metabolite-like (Davies et al., 2009)
or natural-product-like (Over et al., 2013).

Use of Drug/endogenite Substructure
Presence as an Encoding Strategy

While some encodings, such as MACCS (Durant et al., 2002),
use the presence or absence of particular substructures as the
basis for their binary scoring, the substructures so chosen are
somewhat arbitrary (or at least not necessarily based on any
knowledge of the structures of marketed drugs nor endogenites).
Armed with the substructures of Figures 7A–C (Supplementary
Information) we used each of the substructures found (whether
in endogenites, drugs or both) as a 1419-bit presence/absence
encoding, on the basis that these substructures ought at least to

FIGURE 7 | Frequency of representation of different substructures in

endogenites and marketed drugs. Self-organizing maps were run as in

Figure 5 for 10 separate occasions. For each SOM node, using the MCS

(maximum common scaffold) analyser from Indigo within KNIME, we extracted

all substructures for each SOM node; this was performed 10 times, and

duplicates removed. (A) Substructures were ranked according to their

frequency of appearance in either drugs or endogenites, normalized to the

total number of either. (B) Difference plot of the data in (A). (C) Distribution of

three properties of drug and endogenite substructures.

form the basis of useful drugmolecules in the future, as theymust
include or contribute to the concept of “drug-likeness” (Muegge,
2003; Lipinski, 2004; Oprea et al., 2007; Abad-Zapatero et al.,
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FIGURE 8 | Drug-endogenite similarities as judged using the DES

encoding. (A) Heat map of endogenites vs. drugs with full DES encoding.

(B) As A but with the most frequent 600 substructures (1DES600 ). (C)

Cumulative plot of endogenite-likeness using DES encodings based on the

fraction of total substructures ordered (from right to left) from the most

frequent to least frequent. (D) Boxplots of nearest Tanimoto similarities of

drugs to endogenites or to ZINC database subsets as the fraction of the DES

encoding was varied.

2010, 2014; Camp et al., 2012; Garcia-Sosa et al., 2012; Yusof and
Segall, 2013), not least since approved drugs occupy only a rather
particular subset of the chemical Universe (Ruddigkeit et al.,
2012, 2013). We refer to this encoding as the Drug-Endogenite-
Substructure (DES) encoding.

Given its origins and basis, the DES encoding is necessarily
likely to indicate more clearly than many encodings the drug-
metabolite similarities, and such data are given in Figure 8, both
for the full set of substructures so extracted (Figure 8A) and for
truncated versions decreased as per the ranking order in the full
Supplementary Information (Figures 8B–D). In this case, it is
clear that there are advantages in not being too comprehensive,
and that using the DES encoding with the top 10% of drug-
endogenite substructures results in a drug-endogenite similarity

even greater than that found previously [1] using the MACCS
encoding; this again would seem to reflect the fraction of bits
set to 1 in the bitstring that results from the encoding. This is
also true for molecules taken at random from the ZINC database
(Figure 8D). The KNIME element that calculates the bitstring
from the molecular structure encoded in SMARTS strings was
mainly written in R, and is provided as Supplementary File 2
(Scaffold2DES-Fingerprint.7z).

Given the supplementary information it is possible to cut
substructures from both the most and least frequently found
substructures in the list. We suggest that these encodings might
also be useful for various purposes, andmight usefully be referred
to as XDESY where X and Y are numbers referring to the first
and last of the substructures used. [We note that one might also
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use something like an evolutionary algorithm for subset selection
(e.g., Broadhurst et al., 1997) and other kinds of optimization
(Kell and Lurie-Luke, 2015), but as noted above we have chosen
to avoid supervised methods for these purposes here.]

A common use of these kinds of encodings is in the calculation
of quantitative structure-activity relationships (Geldenhuys et al.,
2006; Tropsha, 2010; Stålring et al., 2011; Warr, 2011; Ruusmann
et al., 2014). We assessed the ability of the DES and other
encodings to predict the binding of various drugs to three
candidate targets, using data taken from the internet. Thus,
Figure 9A shows the out-of-bag prediction from a random
forest-based (Breiman, 2001; Svetnik et al., 2003; Knight
et al., 2009) QSAR using data on the dopamine D2 receptor
downloaded from http://www.bindingdb.org/. In this case we
used a random forest learner that was based on the “ensemble
tree learner” KNIME node and the full DES encodings, and
compared it with the other encodings. The DES encoding was
of comparable utility to the other encodings used, although
we note that these are log-log plots and that the slope of the
lines are rather less than unity, so there would be inaccuracy
in linear plots (Kell et al., 2011, 2013; Kell and Oliver, 2014).
Figure 9B shows the same QSAR, using only the fractions of the
DES encodings indicated. Clearly one can learn very effectively
using just the commonest 20% of substructures. Figures 9C,D
show a similar analysis for factor Xa inhibition (Fontaine et al.,

2005) using data downloaded from http://www.cheminformatics.
org/datasets/, while Figure 9E split the data (as did the original
authors) into training (out of bag predictions) and test sets as is
arguably preferable (Broadhurst and Kell, 2006; Kell and Oliver,
2014). Lastly here (Figure 9F), those data were also split into
two output classes based on whether the molecule was a “good”
or “poor” inhibitor for factor Xa; obviously the DES encoding
admits a highly accurate classifier.

Finally, to show the generality of the utility of the
new encodings (Figure 10), we used the various encodings
to devise quantitative structure-activity relationships for two
datasets from the ChEMBL bioactivity database (Bento et al.,
2014), here using partial least squares (Wold et al., 2001)
and the regression error characteristic (Bi and Bennett,
2003; Mittas and Angelis, 2010) to indicate that reasonable
predictions could be obtained by methods other than random
forests.

Conclusions

The concept of drug-endogenite likenesses continues to appear
to have utility, and substructure analyses of drugs and
endogenites (for which we provide all the data) show both
similarities and differences that have led us to implement
here a simple substructure-based cheminformatics encoding

FIGURE 9 | QSAR and classifier analyses of drug binding using

various encodings of drug structures. (A) A random forest model was

learned using the data for drug binding to the dopamine D2 receptor at

http://www.bindingdb.org/bind/ByMonomersTargets.jsp?nBindingData=9349

&submit=Search. The out-of-bag predictions were made after 2000 trees

were added. (B) Same as (A) save that we used only the fractions of the DES

encodings indicated. (C) Same as (A) save that the data were for factor Xa

inhibition (Fontaine et al., 2005) using data downloaded from

http://www.cheminformatics.org/datasets/. (B) Same as (C) save that we

used only the fractions of the DES encodings indicated. (E) Same as (C)

save that data were split into training (out of bag predictions) and test sets as

per the data at http://www.cheminformatics.org/datasets/. (F) Classification

of data (using a Receiver Operator Characteristic curve) from (C) to (D)

based on whether the molecule was a “good” or “poor” inhibitor.
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FIGURE 10 | DES and MACCS encodings predict receptor binding in

ChEMBL datasets. PLS Prediction of (A) the ChEMBL 4333 and (B) the

ChEMBL 245 dataset pIC50 values using DES Fingerprints (for various

fractions, N, of scaffolds used) and MACCS Fingerprints. Scaffolds were

sorted according to maximum of their (frequency of occurrence in Drugs,

frequency of occurrence in Recon2 metabolites). Datasets were split 60:40

into training and test sets, and training data were pre-processed using a low

variance filter, and a correlation filter prior to PLS (5 latent variables). The test

data were used for plotting the scatter plot and the REC curve. PLS was

carried out using the R plsdepot package using the Knime R Integration and

Scripting Nodes. The REC curve plot also shows the curve for using the

mean value as predictor; this is taken as a reference worst-case method.
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family, DES, that has a clear and interpretable basis. We
note a strong tendency for the Tanimoto similarity metric
to favor bitstrings (and hence encodings that lead to them)
that are highly populated with ones, and this will bear
further analysis. However, we anticipate that variants of
the DES encoding may provide useful filters for assessing
drug- and endogenite-likenesses and for other cheminformatics
purposes.
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