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Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The

circadian clock is thought to have evolved as a time keeping system for the cell

to optimize the timing of metabolic events according to physiological needs and

environmental conditions. Circadian rhythms temporally separate incompatible cellular

processes and optimize cellular and organismal fitness. A modern 24 h lifestyle can run at

odds with the circadian rhythm dictated by our molecular clocks and create desynchrony

between internal and external timing. It has been suggested that this desynchrony

compromises metabolic homeostasis and may promote the development of obesity

(Morris et al., 2012). Here we review the evidence supporting the association between

circadian misalignment and metabolic homeostasis and discuss the role of feeding time.
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Life on earth has adapted to our world of days and nights by evolving molecular mechanisms
anticipating the most advantageous time of day for biological processes. In mammals, these
daily rhythms are maintained by autoregulatory transcriptional and translational feedback
loops involving the basic helix loop helix PER-ARNT-SIM (bHLH/PAS) transcription factors
BMAL1, CLOCK, and NPAS2. BMAL1 heterodimerizes with either CLOCK or NPAS2 and drive
transcription through E-boxes located within the promoters of numerous target genes. Among
the target genes are Period homolog (Per1-3), Cryptochrome (Cry1-2) and Rev-erbα that encode
repressors of the BMAL1: CLOCK/NPAS2 transcriptional activity. After a delay, the translated PER
and CRY proteins heterodimerize, translocate to the nucleus, and repress BMAL1: CLOCK/NPAS2
heterodimers. The PER and CRY heterodimers are progressively degraded, allowing the circuit to
start again. This negative feedback leads to a cycle in gene expression that takes approximately
24 h to complete (Ukai and Ueda, 2010). Post-translational modifications of the proteins of the
circuit generate the essential time delay that maintains the period of the cycle at approximately
24 h (Crane and Young, 2014). As a result, BMAL1: CLOCK/NPAS2 bind to DNA in a rhythmic
manner leading to rhythmic expression of target genes (Koike et al., 2012). Additional feedback
pathways by nuclear receptors retinoid-related orphan receptor alpha (RORα) (Sato et al., 2004),
peroxisome proliferator–activated receptor gamma (PPARγ) (Yang et al., 2012) and peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) (Liu et al., 2007) provide
further robustness to the circuit. The circadian system is organized in a hierarchical manner with a
master clock located at the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives
photic input through direct retinal innervation that initiates gene expression in the SCN (Hastings
and Herzog, 2004). In this way, light exposure entrains the SCN clock to solar time, adjusting the
oscillator to a precise 24 h cycle (Khalsa et al., 2003). The master clock of the SCN communicates
day-night information to the rest of the body. Through neuronal and humoral signals, the SCN
sends this information to peripheral circadian clocks that exist in almost all cells of the rest of the
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body and synchronize them to the same phase (Mohawk et al.,
2012). Whereas light is the dominant timing cue for the
SCN oscillator, the clocks of the periphery respond to other
environmental cues such as temperature (Glaser and Stanewsky,
2007) and food intake (Damiola et al., 2000) and alter their phase
accordingly.

The notion that running at odds with the timing imposed by
the master pacemaker (the term “circadian clock” will be used
for the rest of the manuscript) results in inefficiency in energy
expenditure and obesity has been supported by epidemiological
studies. Circadian misalignment has been associated with an
increased prevalence of obesity and diabetes. The prevalence
of obesity is higher among night-shift workers compared to
day workers, and chronic shift work is positively associated
with body mass index (BMI) (Karlsson et al., 2001; Parkes,
2002; Di Lorenzo et al., 2003; Ostry et al., 2006; Pan et al.,
2011). Prospective studies of healthy volunteers undergoing a
6-day simulated shiftwork protocol show a reduction of energy
expenditure in response to the shiftwork (Mchill et al., 2014).
Certain sleep disorders also generate misalignment between the
rhythms imposed by the circadian clock and behavioral rhythms.
Patients with sleep disorders have a higher risk for developing
obesity (Phillips et al., 2000; Liu et al., 2013), and the duration
of sleep is inversely correlated with body weight in healthy men
and women (Patel et al., 2006, 2008; Cappuccio et al., 2008; Chen
et al., 2008; Mozaffarian et al., 2011). Prospective study of sleep
deprivation shows an increase in body weight after 5 days of
insufficient sleep, characterized by an increase in food intake at
night (Markwald et al., 2013). A 12-h shift of the sleep/wake and
fasting/feeding cycle compared with the central circadian system,
while maintaining an isocaloric diet, reduces glucose tolerance,
increases blood pressure, and decreases the satiety hormone
leptin (Scheer et al., 2009). Exposure of human volunteers to a
28 h day as a mean for circadian disruption in combination with
sleep deprivation results in reduced resting metabolic rate and
increased post-prandial glycemia as a result of reduced pancreatic
insulin secretion (Buxton et al., 2012).

The metabolic impact of circadian misalignment has been
studied in animals. The link between the circadian clock and
metabolism first emerged from transcriptome analysis of mouse
suprachiasmatic nuclei and liver (Panda et al., 2002). Panda
et al. showed rhythmically expressed genes encoding regulators
and enzymes from multiple metabolic pathways, especially
cholesterol synthesis and gluconeogenesis, and suggested that the
expression of these genes is under the control of the circadian
clock (Panda et al., 2002). Since that study, amino acids and
fatty acids were found to oscillate in both mouse liver (Eckel-
Mahan et al., 2012) and human plasma (Dallmann et al., 2012).
Studies in animal models of circadian clock disruption provide
evidence for the requirement of circadian rhythms for metabolic
fitness. Early studies showed that gluconeogenesis is impaired
in Bmal1 knockout mice and Clock 119 mutants, resulting in
loss of the circadian variation in the recovery of blood glucose
in response to insulin (Rudic et al., 2004). Zhang et al. showed
that Cry1 inhibits hepatic gluconeogenesis by blocking adenyl
cyclase signaling in response to glucagon (Zhang et al., 2010).
Hepatic overexpression of Cry1 improves sensitivity to insulin in

db/db pro-diabetic mice (Zhang et al., 2010). On the other hand,
deletion of Cry1 and Cry2 results in impaired glucocorticoid-
receptor-mediated repression of glucocorticoid synthesis (Lamia
et al., 2011). This in turn results in increased gluconeogenesis in
the Cry1, Cry2 double knockout animals and increased levels of
blood glucose in response to both feeding and fasting (Lamia
et al., 2011). Deletion of Bmal1 in the liver results in reduced
blood glucose levels during the rest period of the daily cycle
and increased glucose clearance from the circulation (Lamia
et al., 2008). Pancreas-specific deletion of Bmal1 leads to reduced
ability of the pancreas to secrete insulin in response to glucose
during the active period of the daily cycle (Marcheva et al., 2010).
As a result, mice with a dysfunctional pancreatic clock showed
impaired glucose tolerance and increased ad libitum plasma
glucose levels (Marcheva et al., 2010).

The circadian clock has a profound effect on overall energy
homeostasis. Exposure of mice to constant light disrupts their
rhythms in locomotor activity and leads to obesity without
an increase in total food intake (Shi et al., 2013). Clock119
mutant mice on the C57BL/6J background are obese due to
hyperphagia and an attenuation of the regular diurnal feeding
rhythm (Turek et al., 2005). Mice deficient in Per2 have no
glucocorticoid rhythm, lose diurnal feeding rhythm and develop
obesity when fed a high fat diet (Yang et al., 2009). Mutation
of the core clock gene Per1 that alters the phosphorylation site
of PER1 results in a phase advance of food intake by several
hours into the rest/sleep period and in obesity (Liu et al., 2014).
Further to support the findings in mice with mutations of clock
genes, SCN lesions in mice leads to increased body weight and
hepatic insulin resistance (Coomans et al., 2013). This suggests
that the increased body weight found in mice carrying mutations
of clock genes is due to the disruption of the circadian clock
and not because of developmental defects. However, the possible
developmental effects of mutations/deletions of clock genes have
to be formally tested experimentally with the use of post-natal
genetic manipulations. A common parameter in all the above
animal models of clock disruption that develop obesity is the
increase in food intake during the rest/sleep phase, a phase of
the daily cycle when mice normally consume little food. Adding
further support to the role of food intake timing, disruption of
the circadian clock specifically in adipocytes results in obesity
also due to attenuation of the normal feeding rhythm (Paschos
et al., 2012). Mice with no functional adipocyte clocks eat more
than normal during the rest period of the 24 h cycle, without
an increase in total daily food intake. Adipocyte clock controls
de novo fatty acid synthesis and release to the circulation,
which serves as a signal to the hypothalamus to regulate feeding
activity (Paschos et al., 2012). Taken together, the studies in clock
deficient mice suggest involvement of the circadian clock in the
regulation of feeding. Several studies provide support for the role
of the time of food intake in body weight homeostasis (Masaki
et al., 2004; Fonken et al., 2010; Salgado-Delgado et al., 2010;
Hatori et al., 2012; Stucchi et al., 2012; Chaix et al., 2014). Rats
forced to eat opposite to their normal eating time develop obesity
(Salgado-Delgado et al., 2010). Similarly, a shift of feeding time
to the rest phase in a genetic model of irregular feeding behavior
(Masaki et al., 2004) or by exposure to light during nighttime
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increases body weight (Fonken et al., 2010). An increase in the
amount of calories consumed during the rest/sleep phase of the
daily cycle is causal for the development of obesity during high fat
diet feeding (Stucchi et al., 2012; Hatori et al., 2012; Chaix et al.,
2014).

Time of day of food consumption appears to be important
for energy homeostasis however the mechanisms under which
feeding at inappropriate time leads to obesity are not yet
understood. Feeding rhythms drive rhythms in liver triglycerides
and proteins independent of the circadian clock (Adamovich
et al., 2014; Mauvoisin et al., 2014). Feeding at “inappropriate”
time entrains those rhythms into a phase opposite to the phase
of other physiological rhythms dictated by the master clock.
This circadian misalignment may result to inefficiency in energy
expenditure and obesity (Mattson et al., 2014). In support of this
hypothesis, correction of the feeding time in mice fed a high
fat diet rescues the onset of obesity and restores the phase of
rhythms in serum metabolites (Chaix et al., 2014). The clinical

relevance of the findings in animal studies is highlighted by
the increased prevalence of obesity in the human Night Eating
Syndrome (Gallant et al., 2012), characterized by a delayed
pattern of food intake such that more than 25% of the total
daily intake takes place after dinner and into the rest/sleep period
(Allison et al., 2010). Some first evidence in humans show that
volunteers on a weight loss diet lost 25 percent more weight when
they consumed their largest meal earlier in the day (Garaulet
et al., 2013). In another study, consuming half of the total daily
calories during breakfast as part of a weight loss diet led to
greater weight loss compared to high caloric intake during dinner
time (Jakubowicz et al., 2013). Further studies are required to
elucidate the therapeutic implications of feeding time on energy
homeostasis and body weight regulation.
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