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Elevated levels of oxidants in biological systems have been historically referred to as
“oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive
oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a
contemporary view is that oxidants are also crucial for the maintenance of homeostasis or
adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved
in part by them inducing oxidative post-translational modifications of proteins which may
alter their function or interactions. Such mechanisms allow changes in cell oxidant levels
to be coupled to regulated alterations in enzymatic function (i.e., signal transduction),
which enables “redox signaling.” In this review we focus on the role of cGMP-dependent
protein kinase (PKG) Iα disulfide dimerisation, an oxidative modification that is induced
by oxidants that directly activates the enzyme, discussing how this impacts on the
cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate
with or differ from classical activation of this kinase by cGMP is also considered.
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Introduction

Post-translational modification of proteins is a well-recognized mechanism of regulating their
function. Such modifications include phosphorylation, glycosylation, acetylation, palmitoylation,
sulfation, hydroxylation, proteolytic cleavage, as well as various oxidative modifications that
are integrally involved in maintenance of homeostasis and adaptation. Of course these control
mechanisms can become dysregulated during diseases, including those of the cardiovascular
system. Perturbations in post-translational oxidative modification of proteins may be causal in the
pathogenesis of such diseases.

Oxidation is a major class of protein post-translational modifications. These modifications result
from reactions between protein amino acids and reactive oxygen species (ROS) or reactive nitrogen
species (RNS). Methionine can be reversibly oxidized to the sulfoxide state by a range of ROS as
well as irreversibly by forming a sulfone (Hoshi and Heinemann, 2001). Tyrosine can react with
peroxynitrite to form 3-nitrotyrosine, with some evidence it is reversed by a denitrase enzyme (Irie
et al., 2003). As the nitrotyrosinemodification can potentially be reversed, this affords the theoretical
prospect of reversible post-translational regulation. The amino acid cysteine contains a thiol (−SH)
group on its side chain which in some proteins can react with oxidants to generate reversible
modifications. Oxidants preferentially react with deprotonated (S−) thiols, referred to as thiolates.
Most protein thiols are not in this ionized, thiolate state, and so do not commonly react with oxidants
to form post-translational modification. However, some thiols are found in this reactive state and
these are more readily susceptible to oxidative modification; this basal ionized state is a typical
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feature of many redox-active proteins. A protein thiolate (PS–)
can react to form a number of different oxidation states such
as sulfenic (PSOH), sulfinic (PSO2H) or sulfonic (PSO3H) acids,
nitrosothiols (PSNO), as well as various disulfides (PSSR; Reddie
and Carroll, 2008).

Disulfides can be formed within a protein (intradisulfide),
between protein subunits (interdisulfide), with low
molecular thiol-containing molecules such as glutathione (S-
glutathionylation) or hydrogen sulfide (sulfhydration or sulfation;
Rudyk and Eaton, 2014). Reversible protein modifications such
as disulfide formation can be analogous to well-established post-
translational modifications such as phosphorylation (Schroder
and Eaton, 2008). Disulfide bond formation in proteins is
a widely recognized cysteine modification. It can influence
catalytic activity (Cremers and Jakob, 2013), protein—protein
interactions (Banky et al., 2003) and subcellular localization
(Brennan et al., 2006). Of course disulfide bonds also play crucial
roles in maintaining the structural integrity and correct folding of
many proteins (Betz, 1993). Redox proteomic studies searching
for proteins that form disulfide bond have shown that a multitude
of proteins involved in wide-ranging biological processes
including redox homeostasis, chaperone activity, metabolism,
transcriptional regulation, and protein translation (Leichert
et al., 2008; Reddie and Carroll, 2008; Paulsen and Carroll, 2010)
are potentially regulated in this way. When disulfides form in
signaling proteins such as phosphatases or kinases, this allows
changes in redox state to be integrated with regulation involving
protein phosphorylation.

A broad range of protein phosphatases can be regulated by
modulation of their thiol redox state, such as low molecular
weight protein tyrosine phosphatase (LMW-PTP), phosphatase
and tensin homolog (PTEN), cell division cycle dual-specificity
phosphatase (Cdc25), protein tyrosine phosphatase 1B (PTP1B),
protein tyrosine phosphatase 2α (PTP2α), Src homology region
two domain-containing phosphatase-1 and -2 (SHP-1/2),
(Salmeen and Barford, 2005; Chen et al., 2009; Paulsen and
Carroll, 2010; Tanner et al., 2011). In the case of PTP, the
reason disulfide or other modes of oxidation are inhibitory to
their activity is because they have a catalytic thiolate that is
integral to the dephosphorylation. This is because the thiolate
enables a nucleophilic attack on its phospho-tyrosine substrates
(Tonks, 2006). A number of kinases have also been shown to be
redox regulated, including stress-activated MAPK/thioredoxin
peroxidase 1(Sty1/Tpx1), Src tyrosine kinase, apoptosis signal-
regulated kinase-1 (ASK1; Paulsen and Carroll, 2010). Such
redox regulation can also involve disulfide bond formation
as occurs with protein kinase A RIα (Brennan et al., 2006),
and the focus of this review, namely cGMP-dependent protein
kinase—also known as protein kinase G (PKG; Burgoyne et al.,
2007).

PKG—isoforms, Structure, and Activation

PKG is amember of the serine/threonine kinase family. Mammals
have two PKG genes, prkg1 and prkg2, that encode PKG type
I and type II, respectively. PKG I and PKG II are homodimers
of two identical subunits (≈75 or ≈85 kDa, respectively) and

have similar domain architecture. PKG contains three functional
domains (Francis et al., 2010; Figure 1).

The N-terminal domain contains an α-helix with a
hydrophobic leucine/isoleucine zipper motif that is responsible
for the basal dimerisation of the kinase and its interaction with so-
calledG-kinase anchoring proteins (GKAPs; Scholten et al., 2008).
The regulatory domain on each subunit contains one high affinity
and one low affinity cyclic guanosine monophosphate (cGMP)
binding site. The catalytic domain, consisting of an ATP/Mg2+

and a substrate binding site, catalyzes the transfer of the γ

phosphate of ATP to the hydroxyl group of a serine/threonine
side chain of the target protein. Binding of cGMP to both cGMP
binding domains induces a conformational change that relieves
the inhibition of the catalytic core by the N-terminus and allows
the phosphorylation of substrate proteins (Feil et al., 2003;
Scholten et al., 2008). The N-terminus (approximately amino
acids 1–100) of PKG I is encoded by two alternatively used exons
resulting in the production of two PKG I isoforms, namely PKG
Iα and PKG Iβ. Although PKG Iα and Iβ do not differ much in
sequence beyond the N-terminus, PKG Iα has more than 10-fold
higher affinity for cGMP than PKG Iβ (Ruth et al., 1991; Lee et al.,
2011).

PKG isoforms also differ in their tissue and cellular
distributions. PKG I is predominantly localized in the cytoplasm,
whereas PKG II is typically anchored to the plasma membrane
by N-terminal myristoylation (Vaandrager et al., 1996). The PKG
Iα isozyme is mainly found in lung, heart, dorsal root ganglia,
and cerebellum. In contrast, the Iβ isozyme is highly expressed
in platelets, as well as hippocampal and olfactory bulb neurons.
Smooth muscle cells, for example, within the uterus, blood
vessels, intestine or the trachea, contain both Iα and Iβ isozymes
(Geiselhoringer et al., 2004). PKG II was found mainly in kidney,
cerebellum and mucosa (Jarchau et al., 1994).

PKG Iα contains 11 cysteine residues (Takio et al., 1984),
five of which have been suggested to contribute to oxidation-
induced activation (Figure 1). Oxidant-induced PKG Iα disulfide
bond formation and activation was proposed as a complimentary
mechanism to cyclic nucleotide-mediated regulation of kinase
activity. Oxidants induce interprotein disulfide bond formation
between C42 on each of the adjacent chains in the PKG Iα
homodimer complex, rendering the kinase catalytically active
independently of cGMP (Burgoyne et al., 2007). Two potential
intradisulfide bonds have also been reported to form within PKG
Iα in response to metal ion-induced oxidative stress. It was likely
that one interdisulfide forms between C117 and C195 and the
other between C321 and C516, although it was unclear if both
can be present simultaneously within the same monomeric chain
(Landgraf et al., 1991; Osborne et al., 2011). The redox state of
C42 mediating targeting of PKG Iα would appear rationale as
it is within the established leucine zipper motif that mediates
its interaction with substrates (Michael et al., 2008; Scholten
et al., 2008). Perhaps C117-C195 disulfide, which is within
a cGMP binding domain and was present within crystallized
PKG (Osborne et al., 2011), is a more logical candidate for
mediating catalytic competence induced by oxidants. Although
it is also notable that C312, which is located within the other
cGMP binding pocket, can also form interdisulfide bonds. One
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FIGURE 1 | PKG Iα contains three functional domains—an N-terminal leucine zipper, a regulatory and a catalytic. There are three pairs of cysteines, which
may form disulfide bridges: C117-C195, C312-C518, and C42-C42.

possibility is that oxidants induce separate targeting and activating
disulfides, with genetic or pharmacological interventions that
prevent either of their formation limiting PKG signaling responses
to oxidants. Studies with metal ion-induced oxidation identified
the intraprotein disulfides, whilst those with H2O2 (Landgraf
et al., 1991; Osborne et al., 2011), nitrosocysteine (Burgoyne and
Eaton, 2009), or H2S (Landgraf et al., 1991; Osborne et al., 2011)
identified the interprotein disulfide. It is possible that each of these
oxidants simultaneously induced all of the several disulfides that
can form, but they were not reported in some studies because
they could not be determined or were not specifically assessed.
Conceptually it is possible that there is selectivity in the precise
modification different oxidants induce. This is due to different
oxidants having distinctive physicochemical properties, together
with individual protein thiols having disparate reactivity and
solvent accessibility due to their specific environments. Further
work would be required to define if a specific ROS species can
indeed selectively induce a particular disulfide bond in PKG.

It is evident that PKG Iα can be activated by cGMP
binding to the kinase (“classical activation”) or alternatively by
disulfide bond formation (“oxidant activation”), although the two
mechanisms may have some positive cooperativity (Dou et al.,
2012). However, cGMP binding to PKG Iα promotes resistance to
C42 interprotein disulfide bond formation. Accordingly, cGMP
depletion sensitizes PKG Iα to oxidation (Burgoyne et al., 2012).

Similarly, a cGMP mimetic attenuated H2O2-induced kinase
interprotein disulfide formation (Muller et al., 2012). In contrast,
pre-oxidation of the kinase with H2O2 slightly impaired its
activation by cGMP (Muller et al., 2012).

The Role of PKG Iα Disulfide Dimerisation
in Blood Vessels

The oxidative activation of PKG Iα by C42 interprotein disulfide
formation is an important mechanism contributing to blood
pressure homeostasis, being a component of endothelium-
derived hyperpolarizing factor (EDHF)-dependent vasodilation
(Figure 2). This regulatory mechanism was explored using a
knock-in (KI)mouse expressing only aC42S “redox-dead” version
of PKG Iα which is unable to form the active disulfide dimer.
This subtle, single atom substitution abrogated the vasodilatory
action of H2O2 on resistance vessels and resulted in hypertension
in vivo (Prysyazhna et al., 2012b). Such oxidative activation
of PKG Iα decreases vascular smooth muscle cell Ca2+, a
mechanism that likely contributes to vasodilation induced by
oxidants (Muller et al., 2012). PKG IαC42 interdisulfide activation
has been rationalized as an end-effector of EDHF-dependent
blood pressure lowering that is mediated by H2O2 derived
from uncoupled NOS (Shimokawa, 2014). This mechanism also
contributed to human coronary arteriole vasodilation mediated
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FIGURE 2 | An overview of how PKG Iα disulfide dimerisation
integrates a variety of stimuli to induce vasodilation and blood
pressure lowering.

by oxidant-activated PKG opening of smooth muscle voltage and
Ca2+ activated potassium (BK) channels (Zhang et al., 2012).
Activation of these plasma membrane proteins is consistent with
H2O2 promoting the translocation of PKG Iα from the cytoplasm
to the membrane in porcine coronary arteries. This event was
associated with potentiated PKG activity as well as vasodilation
of porcine coronary arteries to a nitric oxide donor or 8-Br-
cGMP (Dou et al., 2012). This contrasts evidence that PKG Iα
oxidation leads to its impaired activation by cGMP in embryonic
fibroblasts or vascular smooth muscle cells (Muller et al., 2012),
although these differences may simply be due to the different
models studied. Disulfide activation of PKG Iα by dimerization
mediates relaxation of bovine coronary arteries to hypoxia,
which was also associated with oxidation of cytosolic NADPH
and phosphorylation of the PKG substrate protein vasodilator-
stimulated phosphoprotein (VASP; Neo et al., 2011; Figure 2).
Although these data support PKG Iα oxidation as a mechanism
of EDHF-dependent vasodilation, it is notable that the evidence
for other factors such as epoxyeicosatrienoic acids (EETs) being
a principal mediator is especially robust (Fromel and Fleming,
2015). Although it is interesting to note that the epoxide moiety
present in EETs can have thiol reactivity, leading to the idea that
these lipid species could potentially react with C42 of PKG Iα to
activate it.

Interestingly, PKG Iα disulfide dimerisation also in part
mediates H2S-induced blood pressure lowering, consistent with
this established vasodilator being implicated as an EDHF and
coupling to the opening of potassium channels (Zhao et al.,
2001; Mustafa et al., 2011). Induction of PKG Iα in response to
H2S is perhaps counterintuitive, as this molecule is an electron
donor that is fully anticipated and capable of reducing disulfide
bonds. Oxidation was rationalized by the demonstration that in
the presence of oxygen or other oxidants, H2S rapidly forms
polysulfides, which promote the oxidation of PKG via thiol-
disulfide exchange reactions (Stubbert et al., 2014; Figure 2). This
rapid oxidation ofH2S is explained by the fact that at physiological
pH, it principally exists in the oxidant-reactive deprotonated
thiolate state considered above. PKG Iα disulfide formation also
significantly mediates vasodilation and blood pressure-lowering

induced by the commonly use drug nitroglycerin (GTN). GTN is
metabolized to generate several reaction products, including some
with thiol-oxidation capability. A redox-dead C42S PKG Iα KI
mouse hadmarkedly impaired blood pressure reduction following
GTN treatment, (Rudyk et al., 2012) pointing to its important
role for this mechanism in vivo (Figure 2). Over-activation of
PKG Iα by disulfide induction occurs during sepsis in mice.
Consistent with this, C42S PKG Iα KI mice are resistant to the
hypotension and organ injury associated with sepsis (Rudyk et al.,
2013; Figure 3).

Vascular smooth muscle cells of blood vessels in the airways
are abundant in PKG Iα, with disulfide-activation mediating their
responses to H2O2, hypoxia, hyperoxia, and some drugs used
in the treatment pulmonary hypertension (Neo et al., 2010).,
Both cGMP-dependent and a disulfide-dependent activation of
PKG appear to contribute to hypoxic vasoconstriction in bovine
pulmonary arteries (Neo et al., 2011; Figure 2). During hypoxia
there is an increase in cellular reducing equivalents that couple to
a reduction in disulfide-active PKG Iα. Loss of this vasodilatory
mechanism leads to constriction of the pulmonary vessel (Neo
et al., 2013). PKG Iα disulfide activation is a major contributing
factor to the vasodilator actions of dehydroepiandrosterone,
a steroid hormone with pulmonary vasodilator activity used
to treat pulmonary hypertension. Dehydroepiandrosterone or
hypoxia may each inhibit glucose-6-phosphate dehydrogenase,
promoting NADPH oxidation and PKG disulfide activation.
These vasodilatory responses were deficient in pulmonary arterial
vessels from a C42S PKG Iα KI mouse (Patel et al., 2014).
Disulfide-activation of PKG Iα is involved in the development
of hyperoxia-induced lung injury (Figure 3). Compared to wild-
type controls, C42S PKG Iα KI mice were protected from
right ventricular hypertrophy, vascular remodeling and decreased
vascularization associatedwith chronic hyperoxia (Lee et al., 2014;
Figure 3).We conclude, drugs that modulate the redox-controlled
activity of PKG activity may be of therapeutic value in the setting
of airway diseases, such as chronic pulmonary hypertension or
associated pathologies such as bronchopulmonary dysplasia.

The Role of PKG Iα Disulfide Dimerisation
in the Heart

Classical activation of PKG Iα is known to play an important
role in the regulation of cardiac function in physiological and
pathophysiological conditions. In contrast, a lot less is known
about the impact of redox regulation of this kinase on the
myocardium, especially compared to our understanding of its role
in the vascular system, as considered above.

Classical cGMP-dependent activation of PKG is well known to
regulate cardiac contractile function (Shah et al., 1995). PKG Iα
disulfide-activation also appears important for the maintenance
of myocardial relaxation. For example, diastolic dysfunction was
observed by echocardiography in C42S PKG KI mice. Hearts
from KI mice had a reduced diastolic volume, which could be
an indicator of impaired relaxation (Prysyazhna et al., 2012b).
Furthermore, a decreased ratio of the early (E) to late (A)
ventricular filling velocities (E/A ratio), indexed by pulse wave
Doppler analysis of mitral inflow velocity, in C42S PKG KI mice
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FIGURE 3 | Overview of the roles of PKG Iα disulfide dimerisation in the development of pathologies in the cardiovascular system.

suggests their myocardium is stiffer and cannot relax with the
same speed and efficiency as those of wild-type mice (Prysyazhna
et al., 2012a). Additionally, studies in isolated, perfused hearts
showed that hypoxia- or ischemia-induced elevations in end
diastolic pressure were exacerbated in C42S PKG compared
to wild-type controls. Thus, PKG Iα disulfide dimerisation is
important for maintaining diastolic relaxation basally and during
myocardial hypoxia or ischemia (Prysyazhna et al., 2012a).

The role of PKG Iα disulfide dimerisation in the development
of heart failure was investigated using trans-aortic constriction
(TAC), which significantly increases after-load and results
in cardiac hypertrophy and failure. The C42S PKG KI mice
were protected from TAC-induced hypertrophy compared to
wild-types. Oxidized PKG Iα was largely located in the cytosol
whereas classically-activated and non-oxidisable C42S PKG
Iα translocated to the plasma-membrane where it suppressed
transient receptor potential channel-6 to block adverse signaling
during TAC (Nakamura et al., 2015; Figure 3). Like TAC,
the widely used chemotherapy agent doxorubicin induces
oxidative stress, and is associated with apoptotic cell death
and decreased heart contractility. These maladaptive events
induced by doxorubicin were significantly mediated by PKG
Iα disulfide-activation as the redox dead C42S KI mice were
resistant to the toxic effects of chemotherapy observed in wild-
type controls. Loss of otherwise cardioprotective RhoA Ser188
phosphorylation when PKG Iα is oxidized was identified as a
mechanistic link between interprotein disulfide formation in
the kinase and apoptosis (Prysyazhna et al., 2013). Thus, PKG
Iα disulfide activation in the myocardium appears maladaptive

during scenarios that induce oxidative stress, such as TAC or
doxorubicin chemotherapy (Figure 3). These observations may
explain why there was a lack of hypertrophy or heart failure in
the C42S PKG Iα transgenics despite them living chronically with
significant hypertension (Prysyazhna et al., 2012b). We conclude
that therapies that prevent this PKG Iα disulfide formation may
have therapeutic value. The oxidant-activation of PKG Iα is not
restricted to smooth muscle cells or cardiomyocytes. For example,
PKG Iα underwent interprotein disulfide bond formation in
response to exogenous H2O2 in cultured rat podocytes. This,
potentially causatively, induced changes in the actin cytoskeleton
organization and increased albumin permeability across the
podocyte filtration barrier. Thus, redox modulation of PKG Iα
may regulate renal filtration (Piwkowska et al., 2012).

The NO-cGMP-PKG pathway is known to be anti-apoptotic
(Kim et al., 1999; Fiscus, 2002; Fiscus et al., 2002). PDE5 inhibitors
(for example Sildenafil or Tadalafil), which increase cGMP levels,
are protective against heart failure in different animal models
and also in humans (Fisher et al., 2005; Takimoto et al., 2005;
Nagayama et al., 2009; Guazzi et al., 2011; Blanton et al., 2012).
The observation that cGMP blocks PKG oxidation was made in
two independent studies (Burgoyne et al., 2012; Muller et al.,
2012), leading to the hypothesis that the protective effects of PDE5
inhibitors could be explained by cGMP-elevation limiting PKG Iα
oxidation. That would suggest that PKG disulfide bond formation
in the myocardium is maladaptive, leading to apoptosis and heart
failure (Figure 4).

The PDE5 inhibitor Vardenafil was found to be
protective against noise-induced hearing loss through a
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FIGURE 4 | Overview of the complex interaction between cGMP- and oxidant-induced PKG Iα activation mechanisms in the heart.

cGMP/PKG-dependent increase of poly ADP ribose polymerase,
a protein which promotes DNA repair, activity. Stimulation of
this mechanism prevented noise-induced hair-cell dysfunction
and cell death. Mice with deletion of PKG I were found to have a
higher vulnerability to noise-induced hearing loss and were not
protected by PDE5 inhibition, consistent with PKG I mediating
protection (Jaumann et al., 2012).

The C42 residue within PKG Iα that can form the interprotein
disulfide is located within the N-terminal leucine zipper, which
is known to be responsible for the kinase targeting to substrates
such as myosin phosphatase (Surks et al., 1999). It is rationale
to suggest that alterations in this important targeting domain,
such as disulfide formation, may modulate the interaction of
the kinase with GKAPs or substrates. However, this possibility
remains largely unproven.

The role of the leucine zipper in PKG binding to RhoA was
demonstrated by studies in which subtle alterations to the kinase
amphipathic helix prevented their binding. Thus phosphorylation
and inactivation of RhoA requires cGMP-activated PKG Iα with
an intact leucine zipper (Kato et al., 2012). Several studies
have demonstrated the importance of the N-terminal leucine

zipper targeting domain for correct kinase function through
the use of leucine zipper mutant (LZM) mice. These LZM
transgenics, engineered to have a mutation in the PKG Iα
N-terminal domain to prevent it binding to targets like the
myosin-binding subunit of myosin phosphatase (Surks et al.,
1999), displayed vascular smooth muscle cell abnormalities,
impaired vasorelaxation and increased systemic blood pressure.
This was at least in part due to impairment of PKG Iα-mediated
RhoA/Rho kinase inhibition (Michael et al., 2008). The same
LZM mice had enhanced RhoA-GTPase activity in their lungs,
which resulted in pulmonary constriction and a consequential
progressive increase in right ventricular systolic pressure and
right heart hypertrophy during normoxia. These adverse events
due to pulmonary hypertension were exacerbated by chronic
hypoxia compared to wild-type controls, and could not be
corrected by the PDE5 inhibitor Tadalafil (Ramchandran et al.,
2014). These LZM mice also had potentiated pathologic cardiac
hypertrophic responses to pressure overload. Furthermore, the
zipper mutant mice lacked the Sildenafil-mediated protection
from TAC afforded to wild-type controls (Blanton et al.,
2012).
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Weconclude that PKG Iαdisulfide dimerisation is an important
regulatory mechanism, involved in the maintenance of health
(e.g., blood pressure regulation, diastolic relaxation, kidney
filtration), but these processes can be dysregulated to causatively
contribute to cardiovascular pathologies (e.g., sepsis, hypoxia,
heart failure). Drugs that modulate the redox state of PKG Iα may
have therapeutic potential.
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