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Understanding of drug binding to the human biogenic amine transporters (BATSs) is
essential to explain the mechanism of action of these pharmaceuticals but more
importantly to be able to develop new and improved compounds to be used in the
treatment of depression or drug addiction. Until recently no high resolution structure was
available of the BATs and homology modeling was a necessity. Various studies have
revealed experimentally validated binding modes of numerous ligands to the BATs using
homology modeling. Here we examine and discuss the similarities between the binding
models of substrates, antidepressants, psychostimulants, and mazindol in homology
models of the human BATs and the recently published crystal structures of the Drosophila
dopamine transporter and the engineered protein, LeuBAT. The comparison reveals
that careful computational modeling combined with experimental data can be utilized
to predict binding of molecules to proteins that agree very well with crystal structures.

Keywords: leucine transporters, dopamine transporter, serotonin transporter, norepinephrine transporter, LeuBAT,
antidepressant, psychostimulants

Introduction

The human biogenic amine transporters (BATs) represent important drug targets for the treatment
of many psychiatric diseases such as depression, anxiety, obesity, drug abuse, obsessive compulsive
disorder, attention deficit hyperactive disorder, and schizophrenia (Jimerson et al., 1997; Hahn and
Blakely, 2002; Gainetdinov and Caron, 2003; Murphy et al., 2004; Delorme et al., 2005; Sutcliffe
et al., 2005; Mazei-Robison and Blakely, 2006; Garfield and Heisler, 2009). They are also the target
of psychostimulants such as amphetamine, cocaine, and ecstasy (Ritz et al., 1987; Rudnick and
Wall, 1992; Eshleman et al., 1994). The BATs includes the serotonin (SERT), dopamine (DAT), and
norepinephrine (NET) transporters, responsible for re-uptake of the neurotransmitters SERT, DAT,
and NET, respectively and they function by terminating synaptic signaling (Rudnick and Clark,
1993; Reith, 2002; Kristensen et al., 2011). When blocking these proteins, the concentration of the
neurotransmitter within the synapse is elevated hereby relieving the symptoms of many psychiatric
diseases.

Rational design of drugs targeting the BATSs has been difficult due to the lack of high resolution
structural information. However, since 2005, when the first protein crystal structure of a protein
belonging to this family of transporters, the bacterial leucine transporter from Aquifex aeolicus, LeuT,
was published (Yamashita et al., 2005), homology modeling of the monoamine neurotransmitter
transporters has been possible. The structure of LeuT revealed an architecture consisting of 12
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transmembrane a-helixes (TMs) with both the N- and C-terminal
placed intracellular and a centrally placed substrate binding site
(known as S1) in the transmembrane part of the proteins, close
to two sodium ion binding sites, Nal and Na2, respectively
(Yamashita et al., 2005). The structure furthermore revealed a
structural repeat between TM1-TM5 and TM6-TM10 linked by a
pseudo C2-rotation axis perpendicular to the membrane normal.
This inverted repeat (Forrest et al., 2008) is now commonly known
as the LeuT-fold and is found in a broad class of proteins, which
in addition to BATs also include Mhpl (Weyand et al., 2008;
Shimamura et al., 2010), BetP (Ressl et al., 2009), CaiT (Schulze
et al,, 2010; Tang et al., 2010), AdiC (Fang et al., 2009), vSGLT
(Faham et al., 2008), and ApcT (Shaffer et al., 2009).

Later, new crystal structures of LeuT have provided some
insight into how inhibitors and antidepressants might bind to
this bacterial transporter (Singh et al., 2007, 2008; Zhou et al,,
2007, 2009; Quick et al., 2009). Crystal structures of LeuT co-
crystallized with the inhibitor tryptophan showed two tryptophan
molecules bound, one in S1 and the other in the extracellular
vestibule, also known as the S2 site. In comparison to LeuT
crystal structures with bound substrate, such as alanine or leucine,
the Trp-LeuT complex has the protein in an outward-open
conformation in which the solvent has access to the substrate
molecule in S1, caused by a rotation of the two aromatic residues,
otherwise guarding the substrate binding site, and a small tilt
in TM4 (Singh et al, 2008). Several structures of LeuT have
later confirmed the presence of the S2 site in the outer vestibule,
and they show that many different types of molecules can bind
here, e.g., detergents (Quick et al, 2009) and inhibitors, such
as the amino acid tryptophan (Singh et al., 2008) as well as
antidepressants (Singh et al, 2007; Zhou et al.,, 2007, 2009).
The relevance of these binding models in relation to how the
human BATs are being inhibited has, however, been strongly
debated (Rudnick, 2007; Piscitelli et al, 2010; Quick et al.,
2012).

The first high-resolution insight to drug binding to the
BATs was elucidated in 2013 through the publication of crystal
structures of engineered LeuT, LeuBAT (Wang et al., 2013), and
the Drosophila DAT (dDAT; Penmatsa et al., 2013). LeuBAT
is an engineered version of LeuT where the key residues
within the central binding site have been mutated to resemble
the pharmacology of the BATs. Twelve structures of LeuBAT
with various antidepressants co-crystallized were published. The
structures included LeuBAT in complex within selective serotonin
reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake
inhibitors (SNRIs), and tricyclic antidepressants (TCAs) with
varying amount of point mutations (A5, A6, and Al3). The
crystal structures included the binding of mazindol in the A5
and A6 structures, whereas seven structures were obtained in the
A13 LeuBAT including the binding of the TCA clomipramine
(CMIL; Wang et al.,, 2013). The dDAT structure published in 2013
contained the TCA nortriptyline within the central binding site
(Penmatsa et al., 2013) in the same binding mode as found for
CMI in LeuBAT (Wang et al., 2013), revealing that the previous
LeuT crystal structures with co-crystallized antidepressants in the
S2 site most likely do not reflect the relevant binding mode of these
drugs in the BATs.

Importantly, in May 2015 an arsenal of new crystal structures of
dDAT with various ligands bound were published (Penmatsa et al.,
2015; Wang et al,, 2015). These new crystal structures included
the substrate DAT, the psychostimulants D-amphetamine, (+)-
methamphetamine, cocaine and the cocaine analog RTI-55 as
well as SNRIs, NET-specific reuptake inhibitors (NRIs) and SSRIs
bound. For the first time it is accordingly possible to directly
compare the binding of substrates to that of different types of
inhibitors in a DAT structure.

Several models have been published describing the binding
of substrates, antidepressants, psychostimulants and mazindol to
either of the human BATs using homology models constructed
based on the structure of the bacterial homolog LeuT (Forrest
et al, 2007; Huang and Zhan, 2007; Jorgensen et al., 2007a,b;
Beuming et al., 2008; Celik et al., 2008; Indarte et al., 2008;
Andersen et al., 2009, 2010, 2014; Huang et al., 2009; Tavoulari
et al, 2009; Combs et al., 2010; Gedeon et al., 2010; Koldse
etal, 2010, 2011, 2013a,b; Sarker et al., 2010; Sinning et al., 2010;
Schlessinger et al., 2011; Shan et al., 2011; Merchant and Madura,
2012; Severinsen et al., 2012, 2014; Dahal et al., 2014; Wilson et al.,
2014).

Herein, we compare the binding of drugs to dDAT (Penmatsa
et al, 2013; Wang et al, 2015) and LeuBAT (Wang et al,
2013) obtained from the crystal structures to previously built
homology models that have been constructed based on the
bacterial homolog LeuT (Yamashita et al., 2005). The comparison
clearly illustrates that it is possible to predict the binding of drugs
to the human BATs through carefully calculated computer models
in combination with experimental validation.

Comparison Between dDAT, LeuBAT, and
Homology Models of Human BATs

Substrate Binding

The structure of the dDAT protein compared to a homology
model of the human DAT previously published (Koldso et al.,
2013b) is shown in Figure 1A. The general agreement between
the homology model of hDAT and the crystal structure of dDAT
is very good and the principal differences are observed within
TM12, which is slightly kinked in the dDAT structure. One of
the largest differences observed between LeuT and dDAT is also
TM12 as described previously (Penmatsa et al., 2013) and the
differences observed here is therefore not surprising since the
hDAT model has been based on the LeuT structure, in which
TM12 is not kinked.

The homology models of hDAT, hNET, and hSERT are
compared with the dDAT crystal structure by alignment of
the central binding site residues (Figure 1). For the alignment,
residues within 5 A of the co-crystallized nortriptyline in the
dDAT structure are selected (Penmatsa et al., 2013). The residues
used from dDAT are S320, F319, L321, D46, G322, A44, F43,
F325, S421, V327, G425, S426, S422, A117, D121, 1116, V120,
Y123, Y124, A479, and the Ca atoms of the corresponding
residues within the other transporters based on structural and
sequence alignment (Beuming et al., 2006). The location of the
DAT substrate within dDAT from the crystal structure strongly
resembles the location of DAT proposed by Koldse et al., 2013b;
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FIGURE 1 | Similarities in dDAT and hDAT structures and substrate binding. (A) The overall structure of dDAT (Wang et al., 2015) and the homology model of
hDAT (Koldse et al., 2013b) based on an outward occluded LeuT structure are almost identical with the largest difference being in TM12 where a kink is observed
within the dDAT structure. (B) Comparison of the binding mode of the substrate dopamine (DA) within the dDAT crystal structure (gray; \Wang et al., 2015) and two
binding modes obtained from modeling (Koldse et al., 2013b) shown in light and dark blue. Italic residue numbers are from the hDAT homology model and normal
labels belong to dDAT. (C) Comparison of the binding mode of the substrate DA within the dDAT crystal structure (gray; \Wang et al., 2015) and the substrate
norepinephrine (NE) in two binding modes obtained from homology model of hNET (Koldse et al., 2013b) with the models shown in light and dark green. Italic residue
numbers are from the hNET homology model. (D) Comparison of the binding mode of the substrate DA within the dDAT crystal structure (gray; Wang et al., 2015)
and the substrate serotonin (5-HT) in the experimental validated binding mode within a homology model of hSERT (Koldso et al., 2013b) with the model shown in

Figure 1B) and also proposed by others (Beuming et al., 2008;
Shan et al., 2011). The position of the binding site residues is also
very similar with only small deviations at a few positions. Similarly
the binding of NET in hNET obtained by homology modeling
(Koldso et al., 2013b) strongly resembles the position of the very
similar substrate DAT within dDAT (Figure 1C). Additionally
the experimental validated orientation of SERT within hSERT
(Celik et al., 2008) overlay with the position of DAT within dDAT
(Figure 1D). There are accordingly excellent agreements between

the substrate-bound dDAT structure and the substrate binding
modes predicted based on homology modeling (Beuming et al.,
2008; Celik et al., 2008; Koldse et al., 2011, 2013b; Schlessinger
etal, 2011; Shan et al., 2011).

Psychostimulants Binding

Since drug addiction is an enormous burden to society and human
health, it is extremely important to understand the molecular
mechanism of how these compounds interact with the BATS.
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Drugs of abuse include inhibitors like cocaine and a class of
compounds such as amphetamine, which are able to reverse the
direction of transport in BATs by a mechanism that is still not
fully understood. This class of molecules is termed “releasers”
and includes amphetamine, methamphetamine and some phenyl-
piperazine (PP) derived compounds. The binding of PP and an
analog has been studies computationally using homology models
of hDAT and hSERT (Severinsen et al., 2012). The recently
published crystal structure of dDAT included structures that have
D-amphetamine and (4)-methamphetamine bound (Wang et al.,
2015). In Figure 2A an overlay of the two releasers from the crystal
structures are displayed along with the position of PP within a
hDAT model (Severinsen et al., 2012). As can be observed, there
is a pronounced agreement with the position of the releasers
within the S1 binding site of DAT. The orientation of PP in
hDAT has been observed to be identical to the one observed
within hSERT and similar to the orientation of the substrate SERT
(Severinsen et al., 2012). The binding of amphetamine described
by Beuming et al. (2008) additionally shows this same orientation
of amphetamine to a hDAT homology model (Beuming et al,,
2008). This could indicate that the substrates and releasers, which
are all expected to be transported by the BATs, occupy a similar
space within the central binding site and that the orientation is
conserved amongst the BATS.

The binding of cocaine has previously been studied through
homology modeling both of hDAT (Beuming et al., 2008) and
hSERT (Koldsg et al., 2013a). An overlay of the recently published
crystal structures of dDAT with cocaine and the cocaine analog
RTI-55 (Wang et al., 2015) and the binding model of cocaine
in hSERT (Koldso et al.,, 2013a) is seen in Figure 2B. Again
we observe that the computer models are able to predict the
binding of molecules to hSERT and that the orientation and
overall position is the same in the model and the crystal structure
with a small displacement of the N group, most likely caused
by subtle differences of the phenylalanine within the aromatic
lid. The overall location of cocaine in Beuming et al. (2008) is
additionally similar to what is also observed in the dDAT crystal
structure, further supporting that homology models are indeed
able to be predictive of drug binding to proteins. Additionally,
the benztropine JHWO007 (Desai et al., 2005) has been shown to
occupy the same site as cocaine within DAT (Beuming et al., 2008)
indicating that benztropines could bind in a similar fashion as
cocaine in the dDAT structure.

Binding of Antidepressants and Mazindol

The binding of the SSRI S-citalopram was previously
biochemically validated to bind in the central S1 site of hSERT
(Koldsg et al., 2010). The recently published dDAT structures by
Penmatsa et al. (2015) has revealed that the NRIs nisoxetine and
reboxetine bind to the central binding site of dDAT. Figure 2C
illustrates that the SSRI S-citalopram and the NRIs nisoxetine
and reboxetine occupy the same space within the central binding
pocket as assessed by comparing the hSERT homology model
(Koldsg et al., 2010) and the dDAT crystal structures (Penmatsa
etal., 2015). The pharmacology profile of dDAT resembles that of
hNET more than hDAT which could suggest that the orientation
of NRIs in dDAT is representative of binding to hNET. This

further hints to SSRIs and NRIs as possibly binding in a similar
fashion in hSERT and hNET respectively.

Numerous SSRIs have been co-crystallized with the LeuBAT
structures (Wang et al., 2013). Figure 2D illustrates the overlay
between SSRIs bound to LeuBAT and the SSRIs fluoxetine
(Andersen et al., 2014) and S-citalopram (Koldse et al., 2010)
within a hSERT homology model in addition to nisoxetine
bound to dDAT (Penmatsa et al, 2015). Again we see high
degree of overlap in spatial orientation of these antidepressants
within the central binding site. Some discrepancies are observed
between the binding of fluoxetine (Prozac) obtained through
modeling (Andersen et al., 2014) and a LeuBAT crystal structure
(Wang et al,, 2013; Figure 2D). As discussed in details in
Andersen et al. (2014) this difference in orientation of the
large antidepressant fluoxetine in the model and the engineered
LeuBAT can potentially be assigned to the fact that the LeuBAT
structure is only partly representing the binding site of hSERT.

Mazindol has been shown to be an anorectic agent (Aeberli
et al., 1975) and like cocaine, mazindol binds to all human BATs.
The LeuBAT structures published in 2013 revealed the binding of
mazindol both to the A5 and the A6 structures (Wang et al., 2013).
In both structures mazindol was found in the same orientation.
A comparison of the binding of R-mazindol in the A6 LeuBAT
crystal structure (Wang et al., 2013) with the mode obtained
through homology modeling and docking in a hSERT and a
hDAT model (Severinsen et al., 2014) is seen in Figure 2E. We
observe excellent agreement between the binding modes obtained
through the computational studies and the crystal structure of
the engineered LeuT protein. Only a small reorientation of the
chlorophenyl group is observed between the two crystal structures
and the models.

Lastly we have compared the binding mode of TCAs between
the LeuBAT structure (Wang et al., 2013) and models obtained
through computational studies (Sinning et al., 2010). The TCA
CMI was co-crystallized in the A13 LeuBAT structure (Wang
et al., 2013). The first dDAT structure was also crystallized with
a TCA, nortriptyline, and the orientation of this drug is the
same in dDAT as CMI in LeuBAT (Penmatsa et al., 2013; Wang
et al,, 2013). The binding of the TCA imipramine and analogs
binding to a hSERT homology model has previously been explored
(Andersen et al., 2009; Sarker et al., 2010; Sinning et al., 2010).
We observe that the tricyclic ring structure of the antidepressants
overlays within the central binding site of hSERT (Sinning et al.,
2010) and LeuBAT (Wang et al., 2013). Additionally both the 3-
position chlorine substituent in CMI from the crystal structure
and 3-cyano imipramine within the hSERT model are orientated
toward the aromatic lid of the central binding site (Figure 2F).
Again, this illustrates excellent agreement between computational
models and subsequent crystal structures as seen both for LeuBAT
and dDAT.

Discussion

We have displayed excellent agreement between the binding
modes of numerous types of ligands to homology models
of the human BATs and crystal structures of dDAT and
the engineered LeuBAT. We have explored and compared
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FIGURE 2 | Comparison of psychostimulants, mazindol and antidepressant binding between the dDAT and LeuBAT crystal structures and human BAT
homology models. (A) Comparison of releaser binding. D-amphetamine (gray) and (4)-methamphetamine (light brown) from dDAT crystal structures (Wang et al.,
2015) and PP (cyan) within a hDAT homology model (Severinsen et al., 2012). hDAT labels are shown in italic. (B) Comparison of cocaine and analogs binding.
Cocaine (light gray) and RTI-55 (white) from dDAT crystal structures (Wang et al., 2015) and cocaine (yellow) within a hSERT homology model (Koldso et al., 2013a).
hSERT labels are shown in italic. (C,D) Comparison of NRI and SSRI binding. (C) Nisoxetine (gray) and reboxetine (light purple) from dDAT crystal structures
(Penmatsa et al., 2015) and S-citalopram (green) within a hSERT homology model (Koldso et al., 2010). hSERT labels are shown in italic. (D) Sertraline (light gray),
R-fluoxetine (orange), paroxetine (yellow), fluvoxamine (purple) within LeuBAT crystal structures (Wang et al., 2013) and nisoxetine (blue) within dDAT (Penmatsa et al.,
2015) compared to S-citalopram (green; Koldso et al., 2010) and R-fluoxetine (brown; Andersen et al., 2014) from hSERT homology models. LeuBAT labels are
shown in normal font, dDAT labels are underlined and hSERT labels are shown in italic. (E) Comparison of mazindol binding. Mazindol in LeuBAT crystal structure
(white; Wang et al., 2013). Mazindol binding to a hDAT homology model (light purple) and a hSERT homology model (dark purple; Severinsen et al., 2014). hDAT
labels are underlined and hSERT labels are italic. The view has been rotate 180 degrees compared to (A-D). (F) Comparison of the tricyclic antidepressant binding.
Clomipramine (white) in LeuBAT crystal structure (Wang et al., 2013). Imipramine (light orange) and 3-cyano imipramine (dark orange) binding to a hSERT homology
model (Sinning et al., 2010). hSERT labels are italic. The view has been rotate 180 degrees compared to (A-D).
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the binding of several classes of ligands ranging from the
substrates over psychostimulants, including the releasers PP
and amphetamines and the inhibitor cocaine, SSRIs, NRIs, to
the anorectic drug mazindol and the TCA imipramine and
analogs. Binding of several other compounds to BATs has been
studied computationally including the anti-abuse drug ibogaine
(Koldsg etal., 2013a) and SERT-binding fluorescent drugs (Wilson
et al, 2014), however, these still remain to be elucidated by
high-resolution structures. The agreement between the crystal
structures and computational models illustrate that it is possible
to obtain informative and useful models of drug binding to
homology models through careful modeling in conjugation with
experimental validation. Particularly the structures of dDAT has
opened up for a great revenue to use in the exploration of drug
binding, while LeuBAT has additionally shown to be illustrative
of drug binding modes in the case of SSRIs, mazindol and TCAs.

Interestingly, in the novel structures of dDAT one of the
significant conformational changes between an occluded and
outward facing state is the rotation of the aromatic lid residues
F319 (equivalent to F253 in LeuT, F335 in hSERT, F320 in hDAT,
and F317 in hNET). A large number of published homology
models of the human BATs (Celik et al., 2008; Koldso et al.,
2010, 2011, 2013a,b; Sinning et al,, 2010; Severinsen et al,
2012, 2014; Andersen et al., 2014) have been constructed based
on the first crystal structure of LeuT which was found in an
outward occluded state (Yamashita et al., 2005). Not surprisingly,
the largest difference in the binding site residues between the
homology models and the dDAT crystal structures are accordingly
the position of the phenylalanine within the aromatic lid (F317 in
dDAT; F335 in hSERT, F320 in hDAT, and F317 in hNET) as seen
in Figures 1B-D and Figures 2A-D.
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