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Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe and dose-limiting
side effect of antineoplastic drugs. It can cause sensory, motor and autonomic system
dysfunction, and ultimately force patients to discontinue chemotherapy. Until now,
little is understood about CIPN and no consistent caring standard is available. Since
CIPN is a multifactorial disease, the clinical efficacy of single pharmacological drugs is
disappointing, prompting patients to seek alternative treatment options. Complementary
and alternative medicines (CAMs), especially herbal medicines, are well known for
their multifaceted implications and widely used in human health care. Up to date,
several phytochemicals, plant extractions, and herbal formulas have been evaluated
for their potential therapeutic benefit of preventing the onset and progression of CIPN
in experimental models. Clinical acupuncture has also been shown to improve CIPN
symptoms. In this review, we will give an outline of our current knowledge regrading the
advanced research of CIPN, the role of CAMs in alleviating CIPN and possible lacunae
in research that needs to be addressed.

Keywords: chemotherapy-induced peripheral neurotoxicity, complementary and alternative medicine, herbal
medicine, acupuncture, Pathogenesis

INTRODUCTION

Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect of antineoplastic
drugs like taxanes, platinum drugs, vinca alkaloids as well as proteasome inhibitors bortezomib
(Miltenburg and Boogerd, 2014). These regimens affect sensory nerves and lead to slow action
potential, considerable pain, functional loss, and ultimately chemotherapy withdrawal (Jaggi and
Singh, 2012). Generally, CIPN is characterized by pain, tingling, numbness, and impaired sensory
function in hands and feet (Miltenburg and Boogerd, 2014). In some cases, motor nerves and
autonomic nervous system may also be involved, depending on the antineoplastic agents used
(Argyriou et al., 2014). Over the past decades, many valuable strategies such as OPTIMOX (stop
and go) have been proposed for CIPNprevention (Hershman et al., 2014). However, dose reduction
or cessation can increase cancer-related morbidity and mortality. Hence, an alternative or novel
approach is required to treat or prevent CIPN.

Complementary and alternative medicine (CAM), differing from medical mainstream, is
historic and widely utilized to treat health conditions throughout the world. Based on recent
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literatures, several CAM methods exhibiting promising effects
on CIPN or a putative influence on mechanisms of CIPN
have been identified. Due to its multilevel, multitarget, and
coordinated intervention effects, CAM seems to be a promising
and viable choice for CIPN prevention. In this review, we will
focus on the new insights on the molecular mechanisms of
CIPN, and highlight the importance of CAM in alleviating
CIPN. Additionally, the strategies for the future research are also
proposed in this paper.

PATHOGENESIS OF CIPN

Although CIPN have been well explored with the advent of
rodent models over the past decade, its exact pathogenesis
still remains unclear (Han and Smith, 2013; Carozzi et al.,
2015). Recent studies showed that multiple mechanisms
including structural changes in peripheral nerves, DNA damage,
mitochondria changes, increased oxidative stress, alterations in
ion channels, and neuroinflammation activation contributed to
the peripheral neurotoxicity development (Figure 1, Miltenburg
and Boogerd, 2014; Carozzi et al., 2015). In this paper, the main
mechanisms involving in CIPN development were reviewed.

Structural Changes in Peripheral Nerves
Peripheral nervous system is susceptible to the neurotoxins
accumulation due to the absence of vascular barrier and lymph
drainage. After exposured to chemotherapeutic agents, the

longest axons and myelinated fibers are damaged, accompanying
reduced sensory nerve conduction velocity and intraepidermal
nerve fiber (IENF) loss (Bennett et al., 2011; Boyette-Davis et al.,
2011; Zheng et al., 2012). Peripheral nerve degeneration or
progressive IENF loss are considered as the key neuropathologies
of CIPN. Usually, the structural changes in peripheral nerves may
lead to the development of clinical symptoms in the feet and
hands, as described as a “stocking and glove” distribution (Han
and Smith, 2013). The decrease in IENF density is correlated
with the severity of painful neuropathy and hyperexcitability.
In CIPN, Aδ (cool specific) and C fibers (warm specific) losses
are also observed from nociceptors, resulting in cold-allodynia
(Polomano et al., 2001; Flatters and Bennett, 2004). In general,
the structural damage extent of peripheral nerves depends on the
type of antineoplastic drugs and the dosing regimen, as needs
to be further investigated systematically and confirmed in the
rodent models.

Mitochondrial Dysfunction and Oxidative
Stress
Accumulating evidences suggest mitochondrion is a key target
of CIPN (Poratz et al., 2011; Zheng et al., 2012). After
exposure to toxic concentrations of antineoplastic drugs, a
reduction in functional mitochondria and a loss of mitochondrial
membrane potential and ultra-structural changes were observed
in cultured DRG sensory neurons, suggesting subcellular
vacuolar degeneration (Melli et al., 2008). In vivo studies,

FIGURE 1 | Summary of the mechanisms of chemotherapy-induced peripheral neurotoxicity (CIPN) and experimental evidence-based applications of
complementary and alternative medicines (CAMs) for its prevention or treatment. All the icons in this figure were obtained from http://image.baidu.com.
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histological observations on peripheral nerve of CIPN animals
show swollen and vacuolated mitochondria (Melli et al., 2008).
The incidence of vacuolated mitochondria in sensory nerve
fibers of paclitaxel- or oxaliplatin-treated rats are greatly higher
than that in vehicle control group (37.3 and 152%, respectively;
Xiao and Bennett, 2012). In patients with CIPN induced by
vincristine and bortezomib, the expression of genes controlling
the mitochondrial function is significantly changed (Broyl
et al., 2010). Anticancer drugs induce mitochondria damage
mainly through impairments of ATPase-dependent Na/K pumps
and calcium homeostasis alterations. Reducing mitochondrial
impairment or suppressing mitochondrial electron transport
chain and ATP synthesis was shown to attenuate neurotoxicity
symptoms, supporting the important role of mitochondrion
in CIPN development (Melli et al., 2008). Accumulation of
dysfunctional mitochondria would lead to an increase in
oxidative stress, which is also involved in peripheral nerve
damage (Sandireddy et al., 2014). In CIPN animals, oxidative
stress markers such as oxidative lipid, protein, and DNA damage
are dramatically increased in sciatic nerve and lumbar spinal
cord (Florea and Büsselberg, 2011; Wang et al., 2011; Di
Cesare et al., 2012). Compounds with antioxidant property
are demonstrated to relieve the CIPN symptoms (Fidanboylu
et al., 2011; Kim et al., 2011). Recently, Nrf2 and NF-
κB have been revealed to be co-ordinated for maintenance
of redox homeostasis in healthy cells (GaneshYerra et al.,
2013). A decline in Nrf2 activity and a persistent increase in
NF-κB activity can lead to neuroinflammation and increase
oxidative stress, which further result in the development of
peripheral neuropathy (GaneshYerra et al., 2013). Hence, agents
that can regulate the crosstalk between Nrf2 and NF-κB
might be promising to prevent or treat CIPN (Negi et al.,
2011).

Ion Channels
Ion channels including voltage gated Na+ and TRP channels
have significant roles in CIPN development (Goswami, 2012;
Argyriou et al., 2013). Changes in Na+ channel induce ectopic
activity in primary afferent neurons and result in paraesthesia
and fasciculations (Webster et al., 2005). In a previous study,
oxaliplatin was found to increase Na+ current in DRG neurons.
However, in another work oxaliplatin slowed inactivation kinetics
of Na+ channel, shifted the voltage dependence of gating, and
reduced overall Na+ current (Sittl et al., 2012). Paclitaxel-
induced peripheral neuropathy is also associated with Na+
channels (Zhang et al., 2014). Tetrodotoxin, a Na+ channel
blocker, was able to ameliorate paclitaxel-induced pain (Nieto
et al., 2008). Besides Na+ channels, transient receptor potential
channels such as TRPV1, TRPA1, and TRPM8 play a pivotal
role as sensors for cold, mechanical (TRPA1 channels) and
heat (TRPV1 channels) stimuli in CIPN models (Goswami,
2012; Hara et al., 2013; Sałat et al., 2013; Quartu et al., 2014).
Cisplatin or oxaliplatin can increase expression of TRPA1,
TRPM8, and TRPV1mRNA in DRG neurons. TRPV1 is essential
for the generation of thermal hyperalgesia caused by cisplatin
(Gauchan et al., 2009a; Anand et al., 2010). Compared to
wild-type mice, only mechanical allodynia without heat-evoked

pain responses is observed in cisplatin-treated TRPV1-null
mice (Ta et al., 2010). Oxaliplatin induces neuropathy partly
through regulating TRPA1 and TRPM8 (Gauchan et al., 2009b).
Administration of ADM-09, a TRPA1 blocker, is able to
effectively abolish oxaliplatin-induced neurotoxicity in mice
(Nativi et al., 2013). Besides TRPV1, TRPA1, and TRPM8, TRPV4
may be involved in chemotherapy-evoked peripheral neuropathy.
In vincristine- or paclitaxel-treated mice lacking TRPV4, the
occurrence of mechanical hyperalgesia was significantly reduced
(Alessandri-Haber et al., 2008). Moreover, after spinal intrathecal
administration of antisense oligodeoxynucleotides to TRPV4,
the reduction of mechanical hyperalgesia was also observed. To
date, studies of TRP channels remains limited and should be
extended for seeking novel therapeutic strategies to management
CIPN.

Neuroinflammation
Chemotherapy-induced peripheral neurotoxicity development
is accompanied by a neuroinflammatory response. Once
chemotherapy-induced injury occurs, numbers of inflammatory
cells accumulate around damaged nerves, in response to the
activation of Schwann cells and resident macrophages, and
produce multiple cytokines and chemokines, such as TNF-
α, IL-1β, IL-6, IL-8, CCL2, and CXC family. These secreted
inflammatory mediators can up-regulate the expression levels
of ion channels like Na+ and Ca2+, or directly activate
nociceptors implicated in mechanical and thermal hyperalgesia,
and cause peripheral sensitization (Schafers and Sorkin, 2008;
Mangiacavalli et al., 2010;Wagner et al., 2011). Studies conducted
by Ledeboer and his collaborators demonstrated an increase in
pro-inflammatory cytokine gene expressions in paclitaxel-treated
lumbar DRG (Ledeboer et al., 2007). Inhibition of inflammatory
cytokines has been considered as a useful method for CIPN
prevention (Wolf et al., 2006). In an animal model of paclitaxel-
induced neuropathy, the mechanical allodynia response could be
significantly reversed after IL-10 gene therapy through reducing
the production of IL-1β and TNF-α in the DRG (Ledeboer et al.,
2007). Toll-like receptors TLR2 and TLR4 in periphery may
be involved in mechanical allodynia associated with anticancer
drugs. Once stimulated with neurotoxic compounds, TLR2 and
TLR4 were activated and then initiated inflammation and caused
the elevation of proinflammatory cytokines (Akira and Takeda,
2004). Intrathecally delivered TLR4 receptor antagonists reversed
the established mechanical allodynia evoked by paclitaxel
(Hutchinson et al., 2008).

Drug Transporters
A recent study suggested that the neurotoxicity of platinum
drugs was correlated with several classes of drug transporters
(Ceresa and Cavaletti, 2011). Copper transporters (CTR1)
and organic cation transporters (OCT2) have been recognized
to be responsible passage for platinum drugs entering into
DRG neurons (Ciarimboli et al., 2010; Liu et al., 2013).
CTR1 and OCT2 expression was confirmed in the DRG
neurons (Cavaletti et al., 2014). OCT2 overexpress can largely
improve the uptake of oxaliplatin by 16- to 35-fold (Sprowl
et al., 2013). In OCT2-knockout mice, oxaliplatin-induced cold
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hypersensitivity or mechanical allodynia were totally reversed,
suggesting that oxaliplatin-induced peripheral neurotoxicity is
dependently mediated by drug transporters, expecially OCT2. So
far, knowledge about distribution and activity of platinum drug-
related transporters are still very limited, the co-expressions of
these different drug transporters and their interplay should be
carefully assessed.

TREATMENT OPTIONS FOR CIPN AND
LIMITATIONS

So far a variety of pharmacological strategies have been
tested to improve the neurological symptoms of CIPN. These
promising drugs include PARP inhibitors, Ca/Mg, vitamin E,
amifostine, glutathione, glutamine, N-acetylcysteine, acetyl-L-
carnitine, recombinant human leukemia inhibitory factor, and
venlafaxine (Flatters et al., 2006; Cavaletti, 2011; Gobran, 2013; Ta
et al., 2013). Although these medications have been proven to be
effective in preventing CIPN, their therapeutic potential is limited
due to contradictive conclusions and unexpected side effects
(Wolf et al., 2008; Ceresa and Cavaletti, 2011). For example,
Ca/Mg decreased neuropathy by about 50% compared with a
historical control group (Gobran, 2013). However, Ca/Mg can
interfere with the response to oxaliplatin-based chemotherapy,
and is shown to be ineffective in a large phase III clinical
trial (Gamelin et al., 2008; Loprinzi et al., 2014). Glutathione
is useful for preventing CIPN in patients undergoing cisplatin-
based chemotherapy (Leal et al., 2014). But glutathione may also
diminish the antitumour activity of cisplatin through increasing
the elimination of cisplatin from kidney (Wolf et al., 2008). To
date, no agent has available evidence sufficient to recommend its
clinical use for CIPN treatment.

COMPLEMENTARY AND ALTERNATIVE
MEDICINES FOR CIPN TREATMENT

The lack of effectively curative strategies for CIPN promotes
the urgent need to seek help from CAM. As a key complement
for conventional medical therapy, CAM has been paid attention
by the western country because of its less invasive, safe,
effective, economical, and convenient therapeuticals benefits.
CAM emphasizes on both disease prevention and treatment and
has become an important method in treating chronic disease.
Most recently, several CAMmethods including traditional herbal
medicines and acupuncture have been described to be beneficial
on CIPN. In present review, clinical and experimental evidence
supporting CAMs application for CIPN treatment have be
summarized with a special focus on herbal medicines (Figure 1
and Table 1).

Herbal Medicines
Curcumin
Curcumin is the major active ingredient of turmeric and
ginger, with strong antioxidant and anti-inflammatory activities.
Curcumin has been shown to be a neuroprotective agent

against neurological disorders, including diabetic neuropathy
and alcoholic neuropathy (Ataie et al., 2010; Attia et al., 2012;
Kandhare et al., 2012). In CIPN rat model, curcumin reduced
plasma neurotensin and platinum uptake in sciatic nerve, and
profoundly improved histopathological damages induced by
oxaliplatin and cisplatin (AlMoundhri et al., 2013). In PC12 cells,
curcumin could largely reversed the cisplatin-induced reduced
neurite outgrowth of cells, without compromising anticancer
activity (Mendonça et al., 2013). Curcumin ameliorated altered
non-enzymatic and enzymatic antioxidants and complex
enzymes of mitochondria, thus holding promise as agent that can
potentially reduce platinum -induced peripheral neurotoxicity
(Waseem and Parvez, 2015).

Quercetin
Quercetin is a flavonoid widely distributed in many plants
and fruits including Bupleurum chinense DC., Morus alba L.,
Crataegus pinnatifida Bunge, red grapes, and citrus fruit, and
has been reported to have powerful antioxidant, antinociceptive
as well as anti-inflammatory properties. With several animal
models, this compound showed remarkable antinociceptive
and neuroprotective effects in alcohol and diabetic induced
neuropathies (Wang et al., 2011; Raygude et al., 2012) threshold,
prevented the shrinkage of neurons and inhibited light edema
formation (Azevedo et al., 2013). Additionally, marker of
neuroplasticity c-Fos was lower in quercetin pretreatment groups
(25, 50, and 100 mg/kg) than that of oxaliplatin-treated rats. The
action mechanism of quercetin is associated with its attenuation
of mitochondrial dysfunction induced by oxaliplatin (Waseem
and Parvez, 2015).

Ginkgo biloba Extract
Ginkgo biloba extract (GBE), the leaf extract of Ginkgo biloba
L., is a popular herbal product used for a variety of ischemic
and neurological disorders. Growing studies have reported
the antioxidant, anticancer, angiectatic, and neuroprotective
potentials of GBE. The evidence for the protective role of GBE
in ameliorating CIPN is also available in several in vivo studies
(Oztürk et al., 2004; Park et al., 2012). In mice with peripheral
neuropathy induced by cisplatin, oral administration of GBE
(100 mg/kg/d) for 4.5 weeks was demonstrated to promote
axonal growth from DRG, and prevent the reduction in sensory
nerve conduction velocity. Furthermore, reductions of length of
outgrowing axons, and somatic and nuclear sizes of neurons were
also reversed (Oztürk et al., 2004). In a rat model of vincristine-
induced peripheral neuropathy, GBE significantly increased
the paw-withdrawal threshold to mechanical stimulation and
reduced withdrawal latency to cold stimuli (Park et al., 2012).
The antihyperalgesic effect of GBE may be associated with its
antioxidative actions, suppression of NF-κB, NO, and TNF-α
production, inhibition of myelinated axons degradation and
improvement of axonal transport.

Green Tea
Green tea is a popular beverage with attractive flavor, aroma,
and health effect. The major bioactive compounds presented
in green tea are catechins. Numerous published studies
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TABLE 1 | Summary of the proved effects of herbal medicines in chemotherapy-induced peripheral neurotoxicity (CIPN) model and neuropathy
symptoms.

Herbal medicines Dose Animal model Mode of action Reference

Ginkgo biloba 100 mg/kg Cisplatin-induced CIPN
in mice

Preventing the reduction in NCV, number of migrating cells, and
length of outgrowing axons caused by cisplatin

Lee et al., 2012

50–150 mg/kg Vincristine-induced
CIPN in rats

Increased the paw withdrawal threshold to mechanical stimuli,
reduced withdrawal frequency to cold stimuli

Park et al., 2012

Green tea 300 mg/kg Oxaliplatin-induced
CIPN in rats

Alleviate sensory symptoms such as allodynia, but did not prevent
morphometric or electrophysiological alterations induced by
oxaliplatin

Wang et al., 2008

Ocimum sanctum (L.) 100–200mg/kg Vincristine-induced
CIPN

Attenuated vincristine-induced painful neuropathic state along with
decrease in oxidative stress and calcium levels

Kaur et al., 2010

Matricaria chamomilla 25 mg/kg Cisplatin-induced CIPN Decrease of pain responses in the first and second phase Namvaran Abbas Abad
et al., 2011

Butea monosperma 400 mg/kg Vincristine-induced
CIPN

Attenuated vincristine-induced painful behavioural,
histopathological changes and alterations of oxidative stress marker

Thiagarajan et al., 2013

Walnut 6% Cisplatin-induced CIPN
in rats

Improved memory and motor abilities in cisplatin treated rats,
reduced latency of response to nociception

Shabani et al., 2012

Xylopia aethiopica 30–300 mg/kg Vincristine-induced
CIPN

Exhibited anti-hyperalgesic, tactile, and cold anti-allodynic
properties

Ameyaw et al., 2014

Curcumin 10 mg/kg Oxaliplatin and cisplatin
neurotoxicity in rats

Reversed the alterations in the plasma neurotensin and sciatic
nerve platinum concentrations, and markedly improved sciatic
nerve histology in the platinum-treated rats

Al Moundhri et al., 2013

Auraptenol 0.05–0.8 mg/kg Vincristine-induced
CIPN in mice

Dose-dependently reverted the mechanical hyperalgesia Wang et al., 2013

Quercetin 50 mg/kg Oxaliplatin-induced
CIPN in mice

Prevented oxaliplatin induced painful peripheral neuropathy,
prevented lipid peroxidation and tyrosine nitrosylation

Azevedo et al., 2013

Goshajinkigan 0.3–1 g/kg Oxaliplatin-induced
CIPN in rat

Prevent oxaliplatin-induced cold hyperalgesia but not mechanical
allodynia and axonal degeneration of the rat sciatic nerve

Andoh et al., 2014

1 g/kg Paclitaxel-induced
CIPN in mice

Prevent paclitaxel-induced allodynia without affecting the anticancer
action

Kono et al., 2011

Guilongtongluofang 200 mL/day A randomized,
double-blind,
placebo-controlled trial

Reduce the incidence of neurotoxicity without reducing the efficacy
of chemotherapy

Liu et al., 2013

have reported that catechins possess potent antioxidant
and anti-inflammatory activities, and have been shown
to prevent cancer and improve chemotherapy-induced
side effects (Zaveri, 2006). The beneficial effect of green
tea in ameliorating experimental CIPN was assessed in
oxaliplatin-treated rats (Lee et al., 2012). Coadministration
of green tea at 300 mg/kg for 6 weeks effectively alleviated
mechanical allodynia and thermal hyperalgesia induced by
oxaliplatin. However, the exact mechanisms responsible for
antiallodynic and antihyperalgesic activity of green tea are not
clear.

Goshajinkigan
Goshajinkigan (GJG) is a widely used Kampo medicine
containing 10 different herbs (Rehmannia viride radix,
Achyranthis bidentatae radix, Corni fructus, Dioscorea opposita
rhizoma, Plantaginis semen, Alismatis rhizoma, Moutan cortex,
Cinnamomi cortex, Aconiti lateralis praeparata tuber, and Poria
alba). Prescription of GJG to diabetic patients can improve
neuropathy symptoms such as numbness, cold sensation, and
limb pain (Uno et al., 2005). In recent years, the effect of GJG on
CIPN has been extensively explored. In CIPN rats, GJG treatment
was able to reduce cold hyperalgesia and mechanical allodynia,

and no regeneration was found in histological examination
(Ushio et al., 2012; Bahar et al., 2013; Andoh et al., 2014). More
importantly, GJG showed little effect on the antitumour activity
of anticancer drugs. The neuroprotection of GJG has also been
supported by clinical studies. In a retrospective analysis included
45 patients with colorectal cancer, 22 received GJG during their
FOLFOX regimen, while 23 did not get this additional therapy.
After 10 courses of chemotherapy, the prevalence of grade 3
peripheral neuropathy in the GJG group was 0%, while 12% in the
control group. After 20 courses, the incidence in the GJG group
increased to 33%, significantly lower than that in patients without
GJG administration (75%; Kono et al., 2011; Nishioka et al.,
2011). Results from large clinical trials enrolling patients with
colorectal, breast, and gynecological cancers further support the
protective effect of GJG (Yamamoto et al., 2009). Although GJG is
effective for treating CIPN, its underlying molecular and cellular
mechanisms remain poorly understood. Several laboratory
studies indicated that GJG improved peripheral nociception
and circulation through promoting NO production, increasing
hippocampal c-Fos and nerve growth factor expression, and
suppressing functional alteration of TRP channels such as
TRPA1 and TRPM8 (Yamamoto et al., 2009; Mizuno et al.,
2014).
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Other Herbal Medicines
In addtion to the phytochemicals and herbs mentioned
above, several other compunds or herbal mixtures also
presented positive effect on CIPN treatment. For example,
auraptenol, a coumarin component isolated from Angelicae
Dahuricae Radix, was reported to protect mice from vincristine-
induced neuropathic pain (Wang et al., 2013). After auraptenol
treatment (0.8 mg/kg), mechanical hyperalgesia was totally
suppressed. African pepper may inhibit p38 and/or ERK1 and
ERK2 pathways, and prevent pain stimuli propagation in the
degenerated C-, Aδ-, and Aβ-fibers, thereby reversing mechanical
hyperalgesia and cold allodynia (Ameyaw et al., 2014). In
vincristine-induced neurotoxicity of rat model,Ocimum sanctum
(L.) lowered the level of oxidative stress and calcium, thus
helping to prevent CIPN symptoms (Kaur et al., 2010). Guilong
tongluo formula (GLTLF) has also been shown to reduce CIPN
symptoms. After four cycles of treatment, the percentage of
neurotoxicity in GLTLF-treated group was 51.7% compared with
70.0% for placebo-treated group (Liu et al., 2013). In addition,
the onset of sensory neurotoxicity was much later in patients who
received GLTLF.

Acupuncture
Cancer patients often seek CAM help for treatment-related
side effects. Acupuncture, stimulating the special body points
by the thin needles, is one of the most frequently used
remedies, and effective for various adverse reactions resulting
from chemotherapy or radiation therapy (Dean-Clower et al.,
2010). Recently, acupuncture has been tested for CIPN in
experimental models and clinical trials (Schroeder et al., 2012).
The results demonstrated that intervention with acupuncture
can increase limb blood flow, promote nerve repair, inhibit
peripheral nerves degradation and induce a normalization of
histological morphology (Litscher et al., 2002; Xu et al., 2010).
The benifical role of acupuncture on CIPN may be mediated by
the enhancement of spinal/central GABA-ergic, serotoninergic,
and adrenergic neurotransmission, as well as the parallel decrease
in sensory neurons hypersensitization (Park et al., 2010; Silva
et al., 2011). With cDNA microarray analysis, it was found
that the ation of mechanism of acupuncture involved signal
translation, gene expression, and nociceptive pathways (Ko et al.,
2002). Acupuncture seems promising because of its safety and
low cost. According to American College of Chest Physicians
evidence-based clinical practice guidelines for lung cancer,
complementary acupuncture is recommended when pain is
poorly controlled or neuropathy is clinically significant (Cassileth
et al., 2007). However, for extensive application in CIPN, the
efficacy of acupuncture still needs to be confirmed by more
rigorous randomized controlled clinical studies.

CONCLUSION AND FUTURE
PROSPECTS

As a prominent dose-limiting side effect in chemotherapy, CIPN
is attached great importance. Due to multiple mechanisms
of neuronal demage, a combination of components focusing
on multiple targets of CIPN might be promising. Recently,
CAM therapies including herbal medicines and acupuncture
have been intensively studied for CIPN prevention and show
promising results. However, the scientific evidence supporting
their efficacy is strikingly limited. Furthermore, the dosages
of some herbal medicines used in rodent models seem quite
high, and some herbs still cause hepatic or renal toxicity
at high dosages. Therefore, it is necessary and important
to confirm whether the dosages could be interpretated to
clinical settings and determine the toxicity dosage of herbal
preparation. Acupuncture in CIPN management has been
pomising, yet, the studies quality conducted is low. The postition,
depth, and angle of the needle insertion are not cosistent,
which need to be improved in interpreting the findings. In
summary, when considering CAMs use in the treatment of
CIPN, the therapeutic potential of alternative therapies still
needs to be rigorously investigated with large scale randomized
controlled trials. Additionally, the interactions of CAMs with
chemotherapy, potential toxicities associated herb medicines,
as well as molecular mechanisms and bioactive compounds
responsible for the neuroprotective effects should also be further
investigated.
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