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Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the
central nervous system (CNS) over a century ago. MS remains incurable today, and
treatment options are limited to disease modifying drugs. Over the years, significant
advances in understanding disease pathology have been made in autoimmune and
neurodegenerative components. Despite the fact that brain is the most lipid rich organ
in human body, the importance of lipid metabolism has not been extensively studied
in this disorder. In MS, the CNS is under attack by a person’s own immune system.
Autoantigens and autoantibodies are known to cause devastation of myelin through
up regulation of T-cells and cytokines, which penetrate through the blood–brain barrier
to cause inflammation and myelin destruction. The anti-inflammatory role of high-
density lipoproteins (HDLs) has been implicated in a plethora of biological processes:
vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However,
it is not known what role HDL plays in neurological function and myelin repair
in MS. Understanding of lipid metabolism in the CNS and in the periphery might
unveil new therapeutic targets and explain the partial success of some existing MS
therapies.

Keywords: HDL, ApoA-I, multiple sclerosis, CNS, ATP- binding cassette transporter A1, sphingosine 1 phosphate,
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CHOLESTEROL SYNTHESIS
Lipoproteins contain triacylglycerols, cholesterol esters, cholesterol and phospholipids. They exist
in two main forms: high- and low-density lipoproteins (LDLs). These hydrophobic aggregates
covalently bind to apoproteins to form apolipoproteins. As major components of lipoproteins,
apoproteins determine their structure, metabolism, receptor interaction and function. The primary
apolipoprotein of high-density lipoprotein (HDL) is apolipoprotein A-I or ApoA-I, while major
component of LDL is ApoB.

In mammals peripheral cholesterol is produced in the liver and the small intestine. Cholesterol
biosynthesis involves as many as 30 enzymatic steps. Cells produce cholesterol from acetyl-
CoA, which is reduced to mevalonate by 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
Through a series of reactions, mevalonate is converted to squalene and lanosterol and then to 7-
dehydrocholesterol, 7-dehydrocholesterol reductase produces a cholesterol molecule. Cholesterol
can be hydroxylated to 24-, 25-, and 27-hydroxycholesterol (27-OHC) by the CYP46 hydroxylase.
Healthy cholesterol homeostasis is necessary formembrane formation, function of steroid hormones,
vitamin D, and adequate brain function. Cholesterol is also an important myelin component and a
precursor of oxysterols, steroid hormones and bile acids.
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FIGURE 1 | ApoA-I reduces inflammation in the CNS by preventing contact between the T cells and macrophages. HDL produced in the periphery has
access to the CNS whereas LDL has no ability to enter the CNS from the circulation. The membrane associated ATP-binding cassette subfamily A member 1
(ABCA1) and ABCA G1 act as the primary sterol transporters for ApoA-I/HDL. HDL associated ApoA-I is then recognized by the lipoprotein receptors (LDL, SR-BI) in
the CNS. Brain cholesterol homeostasis is supported by the reverse cholesterol transport and efflux of 24 (24S-OH) and 27 (27-OH) hydroxysterols through the
blood–brain barrier (BBB).

Excess cholesterol is removed from tissues through a process
known as reverse cholesterol transport, during which cholesterol
from the periphery is returned to the liver for biliary excretion.
In plasma a membrane associated ATP-binding cassette
transporter A1 (ABCA1) promotes efflux of free cholesterol
(FC), sphingomyelin (SM), glycerophosphocholine (PC) to
ApoA-I to form nascent HDL (nHDL; Sorci-Thomas et al., 2012).
This process regulates HDL levels in the periphery (Figure 1).
ABCA1 also functions to contain cholesterol within lipid rafts
(Vedhachalam et al., 2007; Fessler and Parks, 2011). Lipids rafts
were first described as membrane microdomains consisting of
both protein and lipid components (de Chaves et al., 1997).

In the central nervous system (CNS), lipid rafts are present
in neurons and glia and are believed to play a role in neuronal
signaling, cell adhesion and axonal guidance (de Chaves et al.,
1997; Tsui-Pierchala et al., 2002). Cholesterol being at the core of a
lipid raft formations, plays an important structural and functional
role. In addition to cholesterol, lipid rafts contain sphingolipid
enriched microdomains that regulate membrane trafficking, cell
migration, and variety of signaling pathways (Simons and Ikonen,
1997).

Lipoproteins, apoproteins, and apolipoproteins can be found
in circulation in free or nascent form, but lipid rafts are
always associated with cellular membranes. It is unclear whether
apolipoproteins require any scaffolding support of the raft for their
function, but it is certain that lipid rafts need the presence of
cholesterol, lipids, and proteins.

The exact role of lipid rafts in the pathogenesis of multiple
sclerosis (MS) and other diseases remains to be discovered.
Different brain regions have diverse cholesterol requirements and
enrichment in membrane rafts (Ko et al., 2005). In addition,
lipid rafts play an important role in receptor signaling. Because
the brain is the most lipid rich organ in the human body it has
large amounts of lipid rafts associated with brain cell membranes,
lymphatic vessels and CNS vasculature (Bjorkhem and Meaney,
2004; Orth and Bellosta, 2012; Vance, 2012; Louveau et al., 2015).

HDL AFFECTS SPHINGOSINE RECEPTORS
Sphingolipids are metabolized to generate ceramide and
sphingosine. Sphingosine can be phosphorylated by sphingosine
kinase to generate S1P (sphingosine 1-phosphate; Scanu and

Frontiers in Pharmacology | www.frontiersin.org November 2015 | Volume 6 | Article 2782

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Gardner and Levin Importance of Apolipoprotein A-I in Multiple Sclerosis

Edelstein, 2008). S1P is enriched in platelets, erythrocytes,
vascular endothelial cells, and plasma (Scanu and Edelstein,
2008). HDL carries biologically active S1P as part of its
composition (Al-Jarallah et al., 2014). S1P receptors play a key
role in lymphocyte function, which might explain the efficacy of
FTY720 (fingolimod, brand name Gilenya) an oral treatment for
MS. Clinical trials of FTY720 showed reduction in relapses, brain
magnetic resonance imaging (MRI) lesion activity, disability
progression, and brain volume loss (Kappos et al., 2006, 2010;
Cohen et al., 2010). The exact mechanism of action of FTY720
in MS is not known (Cohen and Chun, 2011). However, it is
presumed that FTY720 reduces infiltration of inflammatory cells
through blood–brain barrier (BBB) by inhibition of lymphocyte
egress from the lymph nodes. FTY720 is a synthetic sphingosine
analog, which activates the S1P receptor (Mansoor and Melendez,
2008). FTY720 reduces the count of circulating lymphocytes by
inducing S1P receptor internalization and degradation, which
may contribute to its success in MS treatment (Pacheco et al.,
2003; Spiegel and Milstien, 2003). FTY720 also affects production
of IL-17 expressing T-cells and trafficking of B-cells, which has
been shown to contribute to the pathogenesis of MS (Brinkmann,
2009; Mehling et al., 2010).

In addition to reducing lymphocyte quantity, S1P activates
many signaling pathways including PI3K-Akt, PKC, p38MAPK,
ERK1/2, and AKT-mTOR (Liu et al., 2010; Al-Jarallah et al.,
2014). FTY720 reduced cholesterol toxicity in primary human
macrophages, increased levels of ABCA1 and consequently efflux
of endosomal cholesterol to ApoA-I, and stimulated 27-OH
production (Blom et al., 2010). This and other studies highlighted
the pleiotropic effect of FTY720. FTY720 might have direct
CNS effects since it lowered disability progression and brain
volume loss in MS patients (Cohen and Chun, 2011). S1P is
produced in the CNS by astrocytes and neurons. The S1P1 and
S1P3 receptors are activated in active and chronic MS lesions
(Van Doorn et al., 2010). Endothelial cells and astrocytes of the
BBB also express S1P receptors and FTY720 has been shown
to reduce the effects of the cell death induced by inflammatory
cytokines (Prager et al., 2015; Spampinato et al., 2015). Moreover,
the neuroprotective effect of FTY720 could be explained by the
fact that S1P receptors involved in HDL-induced inhibition of
adhesion molecules [intercellular adhesion molecule 1 (ICAM-
1) and vascular cell adhesion molecule 1 (VCAM-1)] expression
under inflammatory conditions (Kimura et al., 2006).

REGULATION OF LIPID METABOLISM
IN THE CNS
The CNS has it’s own cholesterol production and transport
system. For the most part, it operates independently from
peripheral cholesterol synthesis (Bjorkhem and Meaney, 2004;
Orth and Bellosta, 2012; Vance, 2012). However, in diseases
such as MS, the BBB is often compromised and apolipoproteins
can easily carry cholesterol synthetized in the periphery to the
CNS; thus altering cholesterol homeostasis behind the barrier.
Brain cholesterol is synthetized by astrocytes, oligodendrocytes
and neurons. Step-by-step CNS cholesterol biosynthesis is not
entirely understood. However, studies have shown that enzymes

responsible for cholesterol formation such as HMGCR and 7-
dehydrocholesterol reductase have high expression in cortical
cholinergic and hippocampal neurons (Ong et al., 2010).

The majority of the CNS cholesterol is present in unesterified
form within myelin sheaths, plasma membranes of glial and
neuronal cell (Bjorkhem and Meaney, 2004).

It is worthy to note that myelin lipid-protein composition is
different from other cell membranes. Myelin’s dry weight is about
70% lipid and 30% protein, while other membranes have 30%
lipid and 70% protein in their dry weight (Bjorkhem and Meaney,
2004). In MS, neurological symptoms are the result of loss of
myelin sheaths around axons, which prevents transmission of
nerve impulses. More than 95% of brain cholesterol is synthetized
de novo from acetate (Dietschy and Turley, 2001). The HMGCR
mediates the rate-limiting step of cholesterol biosynthesis. Excess
cholesterol is converted into cholesterol ester by acyl CoA:
cholesterol acyltransferase or to 24S-hydroxysterol (24-OH) by
CYP46 expressed in neurons (Lund et al., 1999). The efflux of
brain-produced cholesterol can be quantified based on the 24S-
OH present in the mammalian system (Locatelli et al., 2002;
Mailman et al., 2011).

In brain, oxidation of the steroid chain at position 24
is a primary mechanism of elimination of cholesterol excess
(Figure 1). Outside of the brain, the oxidation occurs at position
27 by CYP27A1, expressed primarily on macrophages (Heverin
et al., 2005). MS patients have decreased serum levels of both
sterols: 24S-OH and 27-OH (van de Kraats et al., 2014). This
suggests that disturbances in cholesterol homeostasis might
relate to the neurodegeneration and disease pathology. 27-OHC
produced in the periphery can penetrate through the BBB and be
taken up by scavenger class B type I (SR-BI) receptors (Figure 1).
The levels of 27-OHC are different in cerebrospinal fluid (CSF)
of healthy adults and patients with compromised BBB (Leoni
et al., 2003). SR-BI was identified as an HDL receptor in 1996
(Acton et al., 1996). SR-BI is predominantly localized to astrocytes,
microglia, and macrophages (El Khoury et al., 2003; Song et al.,
2015). The two most important types of receptors involved in
cholesterol homeostasis are the LDL and HDL receptors. LDL
receptors are highly expressed in the brain white matter and
in astrocytes and their function has been extensively studied in
health and disease (Kim et al., 2009; Castellano et al., 2012). The
structure and property of HDL receptors continues to evolve in
scientific literature (Acton et al., 1996; Webb et al., 1998; Al-
Jarallah et al., 2014; Kartz et al., 2014; Chadwick et al., 2015; Song
et al., 2015).

Other receptors such as peroxisome proliferator-activated
receptors (PPAR) are expressed in the CNS and are involved
in regulation of lipid metabolism, control of inflammation, and
cholesterol transport (Bocher et al., 2002; Hulshagen et al., 2008;
Chrast et al., 2011; Varga et al., 2011). PPARs form heterodimers
with retinoid X receptor (RXR) and regulate inflammatory
responses, myelin synthesis, neuronal cell proliferation and
differentiation, energy and lipid homeostasis, and reactive oxygen
species. Among the three subtypes of PPARs, PPARα, and
PPARγ are present on macrophages, T cells, foam cells, and
smooth muscle cells (Harris and Phipps, 2001; Yang et al.,
2008). Activation of PPARα up regulates HDL production and
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ApoA-I expression (Mikael et al., 2006). PPARβ/δ is involved in
control of brain lipid metabolism and epidermal cell proliferation
(Heneka et al., 2000; Schmidt et al., 2004). The use of PPAR
agonists in MS and its mouse model known as experimental
autoimmune encephalomyelitis (EAE) has been explored with
some positive results. For example, PPARγ ligands reduced
leukocyte infiltration into the brain parenchyma and decreased
both inflammation and axonal degeneration in EAE (Niino et al.,
2001; Feinstein et al., 2002; Smith et al., 2004; Polak et al., 2005).
PPAR antagonist GW347845 suppressed T-cell proliferation
and reduced secretion of tumor necrosis factor alpha (TNFα)
and interferon gamma (INFγ) in peripheral mononuclear cells
(PBMCs) from MS patients (Schmidt et al., 2004). However, these
effects were accompanied by reduced cell viability and induced
apoptosis of inactivated lymphocytes. These studies suggest
that activation of PPARs, and specifically PPARα can increase
synthesis of HDL and ApoA-I to aid cholesterol biosynthesis and
reverse transport.

MAJOR PLAYERS OF REVERSE
CHOLESTEROL TRANSPORT
Apolipoproteins play a major role in cholesterol recycling
process—reverse cholesterol transport within the CNS and in
the periphery. Production of cholesterol in the brain peaks
during myelogenesis, when glial cells and neurons produce it.
Mature neurons seems to loose cholesterol-producing capacity
and rely instead on cholesterol delivering lipoproteins to maintain
ongoing needs. Several studies indicate a role for apolipoproteins
in cholesterol transfer and lipid metabolism in the CNS (Lewis
et al., 2010; Takechi et al., 2010; Song et al., 2012). Among
six major classes of Apolipoproteins (A, B, C, D, E, and H)
only apolipoprotein E (ApoE) has been studied extensively in
neurobiology. ApoE is produced by astrocytes and glial cells,
and is overexpressed in human brain. ApoA-I is prevalent in the
CSF but not in the brain. Abundant evidence implicates ApoE
and specifically its E4 allele involvement in Alzheimer’s disease
(Corder et al., 1993; Puglielli et al., 2003; Canevari and Clark,
2007). ApoA-I levels were decreased in serum, plasma and CSF
of patients with Alzheimer’s disease compared to healthy controls
(Kawano et al., 1995; Liu et al., 2006; Roher et al., 2009). Levels of
ApoA-I decline with age, however levels below 110 mg/dL might
indicate predisposition to neurodegenerative diseases. Several
studies have shown that overexpression of ApoA-I prevented
the development of age-related learning and memory deficits in
transgenic mice (Kawano et al., 1995; Liu et al., 2006; Roher et al.,
2009; Lewis et al., 2010). These studies indicate the importance of
ApoA-I in the neurodegenerative diseases of the CNS.

ApoA-I is not synthetized in the brain, however it has the
ability to penetrate the BBB and solicit anti-inflammatory and
neuroprotective effects in the brain (Figure 1).

In addition to participating in the CNS reverse cholesterol
transport, ApoA-I blocks macrophage interactions with T-cells.
This results in reduction of the Th1 and Th17 associated
cytokines (Figure 1). Both ABCA1 and ABCAG1 are highly
expressed on astrocytes, microglia, neurons, macrophages and
T cells, which indicates that there is an active cholesterol

turnover between multiple components. The brain is a highly
compartmentalized organ with different regions expressing
different need in cholesterol synthesis and transport.

The liver X receptor (LXR) is a transcription factor expressed in
the liver, macrophages, and neurons. It is noteworthy that 24S-OH
is a ligand for LXRs, which activates expression of ABCA1, ApoA-
I, and ApoE.Mice lacking LXRs had impaired cholesterol removal
(Joseph et al., 2003). Murine deficiency in ABCA1 resulted in
greater ApoA-I retention in the CNS compared to the periphery
(Stukas et al., 2012). Moreover, LXR agonist GW3965 increased
ApoA-I production in the brain independent from ABCA1. Thus
indicating that ApoA-I may serve to integrate peripheral and
CNS metabolism (Stukas et al., 2012). Overall, lipid abnormalities
and cholesterol metabolism play important roles in neurological
diseases (Dietschy and Turley, 2001; Bjorkhem and Meaney,
2004). Two additional apolipoproteins ApoJ and ApoD have been
found in the CNS. Their function is poorly defined, beyond of
proposed role as transporter proteins.

THE ROLE OF APOA-I IN MULTIPLE
SCLEROSIS
ApoA-I is the most abundant component of HDL (Sorci-Thomas
et al., 2012). HDL-associated ApoA-I may play a role in neuronal
regeneration by acting as a constitutive anti-inflammatory factor
(Hyka et al., 2001; Pfrieger, 2003; Jimenez et al., 2005). Several
studies pointed out a possible protective role of ApoA-I in
inflammation and autoimmunity (Panin et al., 2005; Vollbach
et al., 2005; Koutsis et al., 2009; Wilhelm et al., 2009; Robciuc
et al., 2010; Serban et al., 2010; Shiga et al., 2010). Differential
ApoA-I expression was recognized in the CSF and serum of MS
patients (Gandhi et al., 2010). In addition, ApoA-I may play a
role in neuronal regeneration by acting as a constitutive anti-
inflammatory factor (Burger and Dayer, 2002; Vollbach et al.,
2005). However, there are major gaps in our understanding of
ApoA-I regulatory mechanisms and its involvement in MS.

ApoA-I has been described as a putative clinical biomarker
for interferon beta (INFβ) treatment (Gandhi et al., 2010). Study
subjects, who had high levels of serum ApoA-I, responded better
to INFβ therapy, a common immunomodulatory treatment for
relapsing remitting MS patients. This was possibly due to the
reduced inflammation associated with increased HDL levels.
ApoA-I has been shown to play a role in the cognitive abilities
of MS patients (Koutsis et al., 2009). Cognitive impairment is
associated with a lack of APOA1 allele. Specifically, carriers
of this allele performed significantly better on semantic verbal
fluency and Stroop interference tests (Koutsis et al., 2009). This
study evaluated 138 MS patients and 43 controls and the authors
concluded that there is an association of the APOA1-75G/A
promoter polymorphism with cognitive performance.

We discovered that advanced MS patients have lower plasma
ApoA-I levels in comparison to patents with stable relapsing
remitting disease and healthy age-matched controls (Meyers et al.,
2014). Patients with primary and secondary progressive MS had
the lowest levels of ApoA-I. A negative correlation between the
amount of this protein and disease symptomworsening inMSwas
also noted. In addition, mice deficient in murine ApoA-I protein
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developed more severe EAE disease compared to the wild type
animals with normal ApoA-I levels (Meyers et al., 2014). Our
data indicate that ApoA-I levels decline with disease progression
(Gardner et al., 2013; Meyers et al., 2014). Therefore, preventing
ApoA-I levels from decreasing might prove beneficial for MS
patients.

Another group assessed serum lipid profiles of 492 MS patients
for associations with disability and MRI outcomes (Weinstock-
Guttman et al., 2011). The authors reported that higher HDL was
associated with lower levels of acute inflammation and worsening
in the expanded disability status scale (EDSS). High EDSS was
associated with higher baseline LDL and total cholesterol. A
prospective population–based cohort study found an association
between adverse lipid profile and high levels of MS disability
and disease progression (Tettey et al., 2014). The authors
shown that total cholesterol, ApoB and ApoB/ApoA-I ratio were
independently associated with higher EDSS.

Given the fact that ApoA-I is expressed at high levels in spinal
fluid, and perturbations in lipid metabolism negatively affect
myelin, factors that control ApoA-I production and turnover
should receive special consideration (Hulshagen et al., 2008;
Chrast et al., 2011; Levin et al., 2014). Levels of ApoA-I could
be raised with statins, however use of statin medication in MS
patients delivered conflicting results (Vollmer et al., 2004; Lock,
2008; Maier et al., 2009; Markovic-Plese et al., 2009; Chataway
et al., 2012).

A pilot study of 30 MS patients demonstrated a significant
decrease in the number and volume of contrast enhancing lesions
with 80 mg of simvastatin treatment (Vollmer et al., 2004). A large
safety and efficacy of natalizumab in combination with INFβ-1A
in patents with relapsing remittingmultiple sclerosis (SENTINEL)
study did not indicate any effect of statins on relapse rate, disability
progression or the number of contrast enhancing lesions (Rudick
et al., 2009). Simvastatin treatment combined with INFβ did
not provide benefit for MS patients (Sorensen et al., 2011). A
recent double blind, placebo-controlledMS-STATclinical trial has
shown that high dose simvastatin attenuates brain atrophy, the
main reason of which is believed to be a decreased neuroaxonal
loss (Chataway et al., 2014). This study, recruitedMS patients with
secondary progressive disease, who did not receive other disease
modifying drugs. Reduction in total cholesterol levels correlated
with reduction in brain atrophy in this trial. The authors did not
directly measure ApoA-I levels in MS patients, however because
of the known effects of simvastatin on cholesterol metabolism

(Matthan et al., 2003), the data strongly suggest that HDL andApo
A-I levels were higher in simvastatin group, where cholesterol was
reduced from 5.5 to 4.1mmol/L and brain atrophy was reduced by
43% (Chataway et al., 2014).

Low ApoA-I presence in progressive patients’ plasma as we
discovered in our study (Meyers et al., 2014) could explain success
of high dose simvastatin treatment in this large placebo controlled
phase 2 trial (Chataway et al., 2014). The controversial results
of statin use in MS could be partially elucidated by the fact that
statins increase reactive oxygen species, elevate lipid peroxidation
and induce oxidative DNA damage in human peripheral blood
lymphocytes (Gajski et al., 2008; Qi et al., 2013). Increased
lipid peroxidation is associated with disease exacerbation periods
and lesion pathogenesis in MS patients (Toshniwal and Zarling,
1992; Levin et al., 2013). Therefore different type of drugs,
which stimulate ApoA-I production, might prove beneficial for
progressive MS patients.

CONCLUSION
Apolipoproteins are important players in cholesterol homeostasis.
ApoA-I acting as a major HDL component is involved in
both HDL biosynthesis and transport. In CNS diseases with
compromised BBB, healthy cholesterol turnover becomes
extremely important for neuronal homeostasis and regeneration.
In as much as the S1P receptor agonist fingolimod, Apo-I’s
function is not completely understood in MS. However, data
suggests a positive neuroprotective effect of this apolipoprotein
on the immune and the CNSs. Reduction in ApoA-I levels has
not been shown to cause MS. However for progressive patients,
maintaining normal levels of ApoA-I might result in better
neuronal health. Agents designed to improve ApoA-I production
should be considered for therapeutic purposes. For example,
PPAR agonists are one class of medications that regulate ApoA-
I and subsequently HDL synthesis. Therefore, studies aimed at
compounds responsible for ApoA-I expression during periods
of inflammation could provide important information about the
mechanisms of HDL regulation and its role in MS pathogenesis.
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