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Growth factors mediate their diverse biologic responses (regulation of cellular
proliferation, differentiation, migration and survival) by binding to and activating cell-
surface receptors with intrinsic protein kinase activity named receptor tyrosine kinases
(RTKs). About 60 RTKs have been identified and can be classified into more than 16
different receptor families. Their activity is normally tightly controlled and regulated.
Overexpression of RTK proteins or functional alterations caused by mutations in
the corresponding genes or abnormal stimulation by autocrine growth factor loops
contribute to constitutive RTK signaling, resulting in alterations in the physiological
activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors:
the EGFR (also known as ErbB1/HER1), ErbB2 (neu, HER2), ErbB3 (HER3) and ErbB4
(HER4). ErbB family members are often overexpressed, amplified, or mutated in many
forms of cancer, making them important therapeutic targets. EGFR has been found to
be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are
seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other
tumor types. Several data have shown that ErbB receptor family and its downstream
pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion
by modulating extracellular matrix (ECM) components. Recent findings indicate that
ECM components such as matrikines bind specifically to EGF receptor and promote
cell invasion. In this review, we will present an in-depth overview of the structure,
mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and
migration. Furthermore, we will describe in a last part the new strategies developed in
anti-cancer therapy to inhibit ErbB family receptor activation.

Keywords: ErbB receptors, cancer, epithelial-mesenchymal transition, migration, cell signaling

Extracellular matrix (ECM) plays an essential role in the tumor progression. As part of the tumoral
cell microenvironment, it contributes in the cell proliferation and migration, promoting tumoral
growth and metastasis. Active migration of cancer cells from the primary tumor via lymphatic
or blood vessel routes is an indispensable prerequisite for metastasis formation. Regulation of
cancer cell migration processes is dependent upon many different signaling pathways as well
as molecules of various classes and origins such as ECM components. Cytokines and growth
factors, which regulate receptor kinases and related receptors with associated kinases play an
important role in this regulation (Kedrin et al., 2007). Indeed, the ErbB family of receptor tyrosine
kinases (RTK) includes epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4 which
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are expressed ubiquitously in epithelial, mesenchymal, cardiac,
and neuronal cells. They are involved in a variety of cellular
processes, including proliferation, survival, angiogenesis, and
metastasis in many cancers. This review attempts to give an
overview of current knowledge about structure, regulation and
cell signaling of ErbB receptors. Finally, we summarize some of
the recent developments in understanding the role of EGFR/ErbB
signaling in epithelial mesenchymal transition and in cancer
cell migration, its contribution to cancer progression, and the
possibilities and challenges in targeting EGFR/ErbB signaling in
cancer therapy.

STRUCTURE OF ErbB FAMILY
RECEPTORS

Epidermal growth factor (EGF) was one of the first growth factors
discovered in the early 1960s. It was shown to be a polypeptide
able to stimulate growth and differentiation of cells of epidermal
and mesodermal origin (Cohen, 1983). Subsequent studies
identified the receptor and the receptor’s intrinsic kinase activity.
EGF was shown to bind with high affinity to a specific receptor
located in the cell membrane and stimulate rapid activation of a
protein kinase activity. The EGFR was purified and characterized
as a∼170 kDamolecular weight integral membrane glycoprotein,
bearing ligand-inducible kinase activity. The EGFR kinase
activity was shown to result in phosphorylation of tyrosine
residues, the first such demonstration for any receptor. It was
also found that ligand binding induces receptor clustering and
that antibody cross-linking mimics the effects of EGF, indicating
the importance of receptor dimerization/oligomerization in its
activation. Cloning of the human receptor was performed
in Ullrich et al. (1984). Analysis of the sequence confirmed
previous data, confirming the glycoprotein nature of EGFR,
and the presence of a tyrosine-specific protein kinase sequence.
Molecular cloning of EGFR also revealed a close similarity with
the viral v-erbB oncogene, yielding the first indication of a link
between growth factor receptors and cancer. Cloning techniques
also revealed the existence of three related membranes receptors,
which were called ErbB2–4, or Human EGF Receptor (HER)
and share the overall primary structure of EGFR. Furthermore,
during activation mechanism, the four members of the family
can form various heterodimers, potentially yielding a wide array
of signaling outcomes. Subsequent work allowed for a more
precise delineation of the different domains composing the
receptor (Figure 1A) (Ceresa and Peterson, 2014; Roskoski,
2014).

Based upon the primary amino acid structure of EGFR, the
four ErbB receptors consist of a large extracellular domain, a
single hydrophobic transmembrane segment, and an intracellular
domain consisting of a juxtamembrane domain, a typical tyrosine
protein kinase segment, and a tyrosine-rich carboxyterminal tail.
Upon receptor activation, a number of these C-terminal tyrosines
are phosphorylated. The extracellular domain itself is made of a
tandem repeat of two types of subdomains: domains I and III,
which are leucine-rich segments that make up the ligand binding,
and cysteine-rich domains II and IV. Domain II participates in

homo and heterodimer formation with ErbB family members
(see below).

The first crystallographic view of the EGFR kinase domain
confirmed its likeness with previous published protein kinase
structures, with two lobes defining an ATP-binding cleft. But this
provided little insight into how the kinase is activated by receptor
dimerization. Analysis of additional crystal structures of the
active EGFR kinase domain revealed a characteristic asymmetric
dimer (Zhang et al., 2006). In this dimer, the large carboxy lobe of
one kinase binds the small amino lobe of the other kinase domain
(Figure 2B). This is reminiscent of the activation mechanism of
the cyclin-dependent kinases (CDKs) and Src family kinases.

NMR structures have also been published for the dimeric
transmembrane segments of the ErbB receptors, and their
importance in the ligand-induced activation of the EGFR has
been confirmed very recently in a series of papers by the
Kuriyan group (reviewed in Endres et al., 2014). In this work, an
assymetric interaction of the juxtamembrane domains was also
described upon ligand-induced rearrangements of the receptor
structure, leading to kinase domains interactions and activation.

Regulation of ErbB Activity: Mechanisms
of Dimerization and Activation
As previously described (see above), in the general case,
growth factors bind RTKs, as ErbB receptors, which induce
their dimerization and subsequent activation (Ullrich and
Schlessinger, 1990). A multitude of extracellular polypeptide
ligands can bind ErbB receptors. Indeed, numerous growth
factors have been described as ligands for this receptor family,
and these polypeptides are divided into four group. EGF
receptors bind to EGF, epigen, transforming growth factor, and
amphiregulin. Betacellulin, heparin-binding EGF-like growth
factor, and epiregulin bind to EGFR and ErbB4. The third
group -which binds to ErbB3 and ErbB4- includes neuregulin-
1 and neuregulin-2. The last group of ligands binds to ErbB4
and consists of neuregulin-3 and neuregulin-4 (Roskoski, 2014).
ErbB2 has no known ligand. These ligands exist usually
in a proform as transmembrane precursors which submit a
proteolytic processing to release the soluble, active N-terminal
ectodomains (Massague and Pandiella, 1993; Singh and Harris,
2005).

Deeper insights in the structure-function relationship of the
ErbB receptors were published in the early 2000s with a series
of crystal structures of the EGFR extracellular region with and
without bound ligand (Figure 1B). The EGFR extracellular
region dimerization is mediated entirely by receptor–receptor
contacts, by a “dimerization arm” that projects from domain
II (Lemmon and Schlessinger, 2010). In fact, two different
conformational states have been described for the extracellular
region of EGFR, ErbB3, and ErbB4 (Figure 2) (Cho and Leahy,
2002; Bouyain et al., 2005; Dawson et al., 2005). The first one is the
inactive conformation: in the absence of ligand, the EGFR adopts
a monomeric, compact, “tethered” conformation (Figure 2A)
which presents an intramolecular tether between domains II and
IV of the extracellular region (Figure 2A). This autoinhibited
state prevents interaction between subregions I and III to form
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FIGURE 1 | Structural organization of the ErbB/HER receptors. (A) Shows a schematic representation of the different domains. The extracellular part of the
receptors is composed of four domains: I and III = ligand-binding domain (dark blue); II and IV = cysteine-rich domains (light blue). The domain II contains the
dimerization arm (purple). It is followed by the single transmembrane domain (yellow), a juxtamembrane domain (green), the tyrosine kinase domain (red) and a
C-terminal tail which contains the main tyrosines that are phosphorylated upon receptor activation (dotted line). (B) Presents the structures of different domains of
the human EGFR which have been established through X-ray crystallography or solution RMN. Color coding is identical to (A). Protein Data Bank (PDB) accession
codes are as follows: ectodomain (in closed unliganded conformation), 3QWQ, transmembrane region, 2KS1, juxtamembrane domain, 1Z9I; kinase domain, 3W32.
No structure is available for the C-terminal tail.

FIGURE 2 | Schematic of the current view of main structural events in the activation of the EGF receptor. In (A) the receptor is depicted in its monomeric,
unliganded, inactive form. The dimerization arm of the extracellular domain II binds to domain IV, and the juxtamembrane domain interacts with membrane
phospholipids. In (B) binding of EGF to one monomer to domains I and III induces a conformation change which makes the dimerization arm available for interaction
with another extended ligand-bound monomer, and causes dimerization. This conformational change is accompanied by the formation of an anti-parallel interaction
between the two juxtamembrane domains, and thus an asymmetric “head to tail” interaction of the two kinase domains, resulting in allosteric activation of the kinase,
and C-terminal tail tyrosine phosphorylation.
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a ligand-binding pocket which holds the extracellular domain in
a closed conformation (Riese et al., 2007; Fuller et al., 2008). In
the active conformation, the crystal structures reveal a dimeric,
extended conformation where the ligand bridges domains I and
III, thereby opening the structure. The subregions I and III
rearrangement results in the ligand-binding pocket formation
that permits interactions between a single ligand molecule and
these domains I and III (Figure 2B) (Burgess et al., 2003; Jorissen
et al., 2003). The main focal point of movement resides in a
“hinge” domain at the junction of domains II and III (Burgess
et al., 2003). Thus, in the presence of ligand, there are no more
intramolecular interaction between domains II and IV, resulting
in exposure of the dimerization arm of domain II. This allows
receptor dimerization via intermolecular contacts that involve
mostly the dimerization arm in subregion II (Figure 2B). A small
region, C-terminal of the dimerization arm, in domain II as
well as part of domain IV are also involved in the dimerization,
albeit to a lesser extent (Dawson et al., 2005). ErbB2 differs
significantly from this scheme, in that it has no known ligands,
but the structure of its extracellular domain shows an extended
configuration, seemingly poised for hetero-interactions with
other ErbB family members.

Thus, the model for receptor activation which has been
proposed is as follows: unliganded EGFR, ErbB3 and ErbB4
receptors exist in an autoinhibited form that undergoes domain
rearrangement to an active form after ligand binding. This
rearrangement juxtaposes domains I and III breaking the domain
II–IV tether and unmasking the domain II to participate in
receptor dimerization and activation of signal transduction.

After homo- or heterodimerization, the activation of intrinsic
protein kinase activity at the intracellular c-terminus results
in the stimulation of the intrinsic catalytic activity of the
receptor and phosphorylation of specific tyrosine residues of
the receptors (Bennasroune et al., 2004b). These molecular
mechanisms associated with RTK activation have been described
by biochemical and structural studies, and imply structural
modifications (Hubbard, 1999; Hubbard and Till, 2000). The
precise molecular mechanism vary somewhat between the
different families of RTKs. In many cases (insulin receptor,
Eph, PDGF receptor, . . .), it is the autophosphorylation of an
activation loop in the kinase domain which is responsible for the
transition to the active kinase conformation. This is not the case
for ErbB receptors for which the transition to the active form is
rather due to the formation of an asymmetric dimer of the kinase
domains, in which one kinase allosterically activates the other
one. The kinase domains then catalyze the phosphorylation of
tyrosine residues (outside the kinase domain in the C-terminal
tail) creating docking sites for adaptor proteins or enzymes
involved in downstream signal transduction.

Several downstream signaling pathways are activated
after specific ErbB receptor activation (by homo- or
heterodimerization) resulting notably in actin polymerization
and intracellular organization necessary for migration and
invasion of epithelial cells (Feigin and Muthuswamy, 2009).
When ligands bind to ErbB receptors, they trigger a cascade
of biochemical events inducing stimulation of rich signaling
pathways. This intracellular signaling involves a variety of

molecules known as adaptors and scaffolding proteins (Pawson
and Scott, 1997). For example, Grb2 is an important adaptor
in the activation of the ras/raf/MAPK pathway. These adaptors
often feature several motifs that mediate interactions between
intracellular proteins: Phosphotyrosine-binding (PTB) and Src
homology 2 (SH2) domains specifically bind to phosphotyrosine,
whereas SH3 domain binds to proline-rich sequences of target
proteins. Thus, these adaptor molecules permit to recruit specific
proteins to establish signaling networks particular to a cascade
and a cell location.

Among these signaling cascades, ErbB receptor activation is
associated (i) with the phosphatidylinositol 3-kinase (PI3K)/Akt
(PKB) pathway which plays a key role in cell survival, (ii) and
with the Ras/Raf/MEK/ERK1/2 and the phospholipase C (PLCγ)
pathways mediating cell proliferation (Yarden and Pines, 2012).
In the following chapter, we will focus on the role of ErbB
family receptors in epithelial-mesenchymal transition (EMT),
migration, and tumor invasion of cancer cells.

ROLE OF ErbB RECEPTORS IN CANCER
AND NEW STRATEGIES DEVELOPED IN
ANTI-CANCER THERAPY

ErbB receptors were linked to human cancer pathogenesis by
about three decades ago. For example, EGFR and ErbB2 are
mutated in many epithelial tumors and clinical studies suggest
that they play an important role in cancer development and
progression. These receptors have been largely studied, not
only to understand the mechanisms underlying their oncogenic
potential, but also to exploit them as putative therapeutic targets.
In this part, we will focus on the role of ErbB receptors in EMT,
migration and tumor invasion. Then, we will summarize the
new therapeutic approaches to inhibit ErbB receptor activation
in cancer.

Role in Epithelial-mesenchymal
Transition, Migration, and Tumor
Invasion by Modulating Extracellular
Matrix Components
ErbB receptors influence cell proliferation, differentiation, and
migration. Not surprisingly, alterations of ErbB familly play a
role in the development and progression of several epithelial
tumors (Yarden and Sliwkowski, 2001). Cancer cell migration
and invasion allow tumor spread into surrounding tissues and
circulation which generates metastasis, a significant hallmark of
poor prognosis (Friedl and Wolf, 2003). Overexpression of EGF
and its receptors has been demonstrated in many breast cancers
and was associated with a higher incidence of distant metastases
(De Luca et al., 2008; Giltnane et al., 2009).

Two types of cell migration exist: mesenchymal-
and amoeboid-type migration (Friedl and Wolf, 2003).
Mesenchymal-type cell migration is characterized by protrusion
formation such as filopodia and lamellipodia at the leading
edge of migrating cells and by adhesions of these protrusions
linking the actin cytoskeleton to the extracellular matrix (ECM;
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Parsons et al., 2010). Adhesion disassembly at the cell rear and
the contraction of actomyosin then allows the cell to achieve
cellular movement (Parsons et al., 2010). In carcinoma, the
most prevalent form of all human cancers (80–90%), malignant
transformation is associated with the loss of differentiated
epithelial characteristics and a coinciding increase of less-mature
mesenchymal characters during EMT. In cancer, EMT induces
tumor progression by affording properties such as invasiveness,
the ability to metastasize, resistance to therapy, and possibly the
generation of stem-like cancer cells (Mallini et al., 2014).

Members of the ErbB receptor family play prominent
roles during carcinogenesis, and most induce EMT when
overexpressed both in vitro and in vivo (Al Moustafa et al., 2012).
In line with the hypothesis that EGF family members play a
fundamental role in the initial steps of EMT, transformation
by HER2/neu resulted in increased CD44high/CD24low
immortalized human mammary epithelial cells with many of
the stem-like properties of the initial steps of EMT (Morel
et al., 2008). In oral squamous cell carcinoma cells, inhibition of
EGFR induced a transition from a fibroblastic morphology to a
more epithelial phenotype with an accumulation of desmosomal
cadherins at cell–cell junctions (Lorch et al., 2004). These studies
suggest that EGFR signaling mediates the initial steps of EMT,
and that EGFR inhibition may restrain EMT in some cellular
contexts. In fact, ligand-independent, constitutively active forms
of EGFR can increase motility and invasiveness of tumor cells,
and EGFR inhibitors block cancer cell migration in vitro. Cellular
migration and invasion is inhibited by blocking EGFR and
consequently its pathways, by a monoclonal antibody (mAb)
or a tyrosine kinase inhibitor (TKI), suggesting a crucial role
for EGFR inhibitors in the control of cancer metastasis (Yue
et al., 2012; Liu et al., 2014). Furthermore, Jeon et al. (2015)
demonstrated that HER2 expression level plays an important role
in the induction of fibronectin expression, a major component
of ECM, in breast cancer cells that triggers cell adhesion and cell
invasion.

Several studies have revealed that HER2 is expressed in
circulating tumors cells of early and metastatic breast cancer
patients. The consequences of HER2 expression are usually
more severe in circulating tumors cells in comparison to the
corresponding primary tumors (Kallergi et al., 2008; Fehm et al.,
2010). Indeed, circulating tumor cells and metastases of breast
cancer present a dynamic in vivo pattern of EMT (Bonnomet
et al., 2012). CD44+/CD24− subpopulation of tumor cells which
overexpressed RAS or HER2 have a phenotype with increased
EMT potential (Wang et al., 2012; Bhat-Nakshatri et al., 2013).
The CD44+/CD24−/low gene expression signature, identified as
a “claudin-low” molecular subtype (Creighton et al., 2009), is
characterized by expression of many EMT-associated genes, such
as FoxC2, Zeb, and N-cadherin (Morel et al., 2008; Creighton
et al., 2009). EMT in breast cancer stem cells could play an
important role in the metastatic phenomenon (Korkaya et al.,
2012; Wang et al., 2012). Furthermore, several studies have
highlighted that HER2 regulates the stem cell population and
then contributes tomammary carcinogenesis (Bedard et al., 2009)
and that HER2 overexpression in multiple breast cancer cell lines
results in an increase of ALDH1+ cell fraction, which has a

greater capacity to invade and form tumors in immunodeficient
mice (Korkaya et al., 2008).

Integrins, focal adhesion kinase (FAK), and Rho GTPases
(Rho, Rac, Cdc42) are important regulators in mesenchymal-
type migration (Parsons et al., 2010) and may be influenced by
EGFR signaling. Indeed, ErbB signaling induces cell adhesion
and migration by modulation of e.g., FAK or Rho GTPases
(Fichter et al., 2014). For example, Fichter et al. (2014) showed
that inhibition of EGFR signaling in esophageal squamous
cell carcinomas rearranges the actin cytoskeleton, induces focal
adhesions, and limits esophageal cancer cell migration by rapid
inhibition of ERK1/2, Akt, STAT3, and RhoA activity. However,
as (i) Zhan et al. have shown that only EGFR/ErbB2 heterodimers
increased the invasive potential of mammary epithelial cells
which is not observed with homodimers (Zhan et al., 2006), and
as (ii) Guy et al. (1992) described that EGFR overexpression
in mice was not associated with transformation of the entire
mammary epithelium, but provoked only focal mammary tumors
(sometimes metastatic), these results suggest that additional
mechanisms are probably involved in ErbB activation effects on
EMT and cell invasion.

Cancer cells secrete EGF-like, growth factors that can play
a role directly on endothelial cells (Kuo et al., 2012). The
microenvironment can also act on tumor cells. Indeed, EGF-
like peptides and angiogenic growth factors that can both act
on endothelial cells and activate EGFR in cancer cells are
produced by bone marrow stromal cells (Fidler, 2002). EGFR
activation in human carcinoma cell lines also increases matrix
metalloproteinase-9 (MMP-9) activity, which increases in vitro
cell invasion by facilitating disintegration of ECM barriers to
tumor invasion (Zuo et al., 2011).

During the mesenchymal mode of invasion, the presence
of proteases in ECM that can degrade the surrounding ECM
(Sahai and Marshall, 2003; Wolf et al., 2003) will cause the
liberation of small peptides originating from the fragmentation
of ECM proteins. These molecules called matrikines limit EGFR
signaling to the perimembrane area of the cytosol, a mode that is
preferential for motility (Iyer et al., 2008) and cell survival (Fan
et al., 2007; Rodrigues et al., 2013). Tenascin C (TNC) establishes
interactions between the epithelium and the mesenchyme during
embryonic development, tissue differentiation and wound repair
but persistent high levels of TNC are present in various tumor
tissues, including brain, bone, prostate, intestine, lung, skin, and
breast (Pas et al., 2006). TNC is a hexameric glycoprotein of
which each subunit contains: the N-terminal assembly domain,
a domain composed of 14.5 EGF-like repeats (EGFL), a domain
composed of a varied number of fibronectin type III-like repeats,
and a fibrinogen-like sequence on the C terminus (Orend and
Chiquet-Ehrismann, 2006). The EGF-like repeats of TNC also
have counter-adhesive properties (Spring et al., 1989; Prieto et al.,
1992) and have been shown to bind and signal through the EGFR
(Swindle et al., 2001; Iyer et al., 2007). Interestingly, the binding
of TNC EGFL to EGFR preferentially promotes cell migration by
limiting receptor signaling to the perimembrane space (Iyer et al.,
2008). Indeed, the binding of TNC EGFL to the receptor does not
induce ligand-induced internalization of the receptor (Iyer et al.,
2007). Thus, essentially all of the EGFR signaling occurs from

Frontiers in Pharmacology | www.frontiersin.org 5 November 2015 | Volume 6 | Article 283

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Appert-Collin et al. Role of ErbB Receptors in Cell Migration

the plasma membrane locale. Based on the results obtained on
the signaling, authors propose that plasma membrane-associated
signaling of EGFR is preferential for motility. Others matrikines
derived from Thrombospondin 1 and Laminin-332 feature EGFL
domains that have been shown to bind and activate EGFR
(Schenk et al., 2003; Liu et al., 2009).

This section has highlighted the importance of the ErbB family
receptors in regulating EMT during cancer. Understanding
and defining the initial molecular signals leading to the EMT
switch in tumor cells would absolutely participate to the earliest
possible clinical detection and therapeutic strategies. While the
use of inhibitors delivered individually to ErbB/EGF targets
seems reasonable, limited effect suggests that a combinatorial
approach could permit substantial improvements in clinical
outcome. Enlightening the steps that induce the re-activation of
embryonic processes and signaling pathways in cancer, such as
those involved in EMT, and best understanding the interactions
between cells and their microenvironment, will lastly lead to
more rational strategies in our arsenal for targeting cancer.

New Strategies Developed in Anti-cancer
Therapy to Inhibit ErbB Family Receptor
Activation
Advances in genetic engineering and fundamental research
applied to a better understanding of the biology of ErbB signaling
in cancer have led to the development of many therapeutic
agents including monoclonal antibodies (mAbs), small-molecule
TKIs and other agents like peptides, affibodies, nanobodies, etc.
(Bennasroune et al., 2004b; Alaoui-Jamali et al., 2015). In this
paragraph, we present a partial overview of current development
of drugs targeting ErbB receptors. Table 1 presents several
examples of drugs, their targets and their current status in term
of clinical trials.

Cetuximab and Panitumumab are mAbs that bind to
EGFR, possessing anti-tumor activity. They are frequently used
in treatment of metastatic colorectal and head/neck cancer.
Cetuximab is a chimeric human: murine immunoglobulin G1
(IgG1) mAb. It binds to EGFR with higher affinity that EGF
(Kim et al., 2001) and also binds to the mutant receptor
EGFRvIII. The cetuximab promotes EGFR internalization
(Sunada et al., 1986). Panitumumab (ABX-EGF), fully human
mAb with high EGFR affinity, blocks ligand-binding and
induces EGFR internalization (Yang et al., 2001). Activity
of Panitumumab has been demonstrated against variety of
advanced cancer patients, including renal carcinomas and
metastatic colorectal cancer in clinical trials (Douillard et al.,
2010). Another antibody against a second member of ErbB
receptor family has been developed. Trastuzumab or Herceptin
selectively binds to the extracellular domain of HER2 receptors
and inhibits downstream signaling pathways. This inhibition
results in decreased proliferation of tumor cells. Trastuzumab
identifies tumor cells for immune destruction, and then,
promotes an antibody-dependent cellular cytotoxicity, causing
apoptosis of tumor cells (Molina et al., 2001). Trastuzumab
is predominantly used in the treatment of the ErbB2-positive
breast cancer subtype where its combination with conventional

chemotherapy, had a significant effect on disease free survival
of patients with early stage ErbB2+ breast cancer (Hudis,
2007).

Currently, small molecule inhibitors under clinical trials or
approved by the US Food and Drug Administration (FDA)
are reversible or irreversible inhibitors. They bind to the
ATP-binding site in the kinase domain of ErbB receptors
and next inhibit their intracellular kinase activity. Most of
the existing small molecule TKIs which target RTK are
multi-targeted and inhibit a variety of molecules in a non-
specific manner. This characteristic has been demonstrated
to have several disadvantages. It’s why only a few specific
and selective TKIs have been approved by authorities for
cancer treatment. Several approaches have been developed:
TKI that targets a specific member of the ErbB family
or TKI that inhibit multiple members of the ErbB family.
These last inhibitors bind their targets irreversibly and are
currently under evaluation for the treatment of cancer.
Erlotinib or gefitinib are the first-generation reversible EGFR-
TKIs and are approved first-line therapies for patients with
non-small cell lung cancer (NSCLC) presenting activating
EGFR mutations. Unfortunately, despite these agents have
demonstrated improvement in progression-free survival, patients
present resistance to these agents and tumors rapidly regrow
(Hirsh, 2015).

Lapatinib (Tykerb/Tyverb R©), developed in Xia et al. (2002),
is an orally active reversible dual TKI of EGFR/HER2. It
binds covalently to the Cys 773 of EGFR and Cys 805
of HER2 (Howe and Brown, 2011). Studies in vitro and
in vivo using xenografted mice with cell lines over-expressing
EGFR and HER2 have shown that lapatinib inhibits tyrosine
phosphorylation in catalytic domain of EGFR and HER2 and
prevents ERK1/2 and AKT activation which induces apoptosis
of tumor cells (Xia et al., 2002). In 2007, Lapatinib was
approved by the FDA for patients with breast cancer as second-
line treatment. Lapatinib, in combination with an aromatase
inhibitor, was also used as first-line therapy for treatment of
postmenopausal women with estrogen/HER2 receptor-positive
breast cancer. Another inhibitor, Dacomitinib (PF-00299804,
PF299), is currently under development. Dacomitinib is a
selective, quinazalone-based irreversible pan-HER inhibitor
of EGFR/ErbB1, ErbB2/HER2, and ErbB4/HER4–TKI and is
in phase III of clinical development for the treatment of
NSCLC. Furthermore, other small molecule inhibitors targeted
against ErbB receptors are currently in clinical trials (Hirsh,
2015).

Recently, anticancer strategies that involve smaller antibody
fragments such as Fragment antigen-binding domain (Fabs),
single-chain variable fragment (ScFvs) and nanobodies are in
development (Holliger and Hudson, 2005). Nanobodies consist
of single-domain antigen-binding fragments derived from the
camelids heavy-chain only antibodies (Muyldermans, 2001).
Nanobodies have several advantages: they are significantly
smaller in size (15 kDa) than scFv (28 kDa) or Fab (55 kDa),
and then potentially providing higher tissue dispersion and
superior tissue penetration than their counterparts (Holliger
and Hudson, 2005); they are also significantly more stable
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TABLE 1 | Some examples of drugs targeting ErbB receptor family.

Drug Company Receptor Description Status Indication

Cetuximab
(Erbitux)

ImClone Systems EGFR mAb directed against EGFR First approval by FDA in 2004 Colorectal, head, neck and pancreas
cancers

Panitumumab
(Vectibix)

Amgen EGFR mAb directed against EGFR First approval by FDA in 2006 Metastatic colorectal cancer

Erlotinib
(Tarceva)

Roche/Genentech/OSI EGFR Inhibitor of EGFR signaling First approval by FDA in 2004 Non-small cell lung cancer, pancreatic
cancer

Gefitinib
(Iressa)

AstraZeneca EGFR Inhibitor of EGFR signaling First approval by FDA in 2003 Non-small cell lung cancer, esophageal
cancer

Lapatinib
(Tykerb/Tyverb)

GlaxoSmithKline EGFR/
HER2

Inhibitor of EGFR/HER2
signaling

First approval by FDA in 2007 Metastatic breast cancer

Dacomitinib Pfizer EGFR/
HER2/HER4

Pan-inhibitor of ErbB
receptors signaling

Phase III Non-small cell lung cancer

Trastuzumab
(Herceptin)

Genentech HER2 mAb directed against HER2 First approval by FDA in 1998 HER2-positive breast cancer
HER2-overexpressing metastatic gastric or
gastroesophageal junction adenocarcinoma

Pertuzumab
(Perjeta)

Genentech HER2 mAb directed against HER2 First approval by FDA in 2012 Breast cancer

Margetuximab
(MGAH22)

MacroGenics HER2 mAb directed against HER2 Phase I Breast, gastroesophageal and other
HER2-positive tumors

Patritumab
(U3-1287)

Daiichi Sankyo
Pharmaceutical
Development and Amgen

HER3 mAb directed against HER3 Phase I–II Non-small cell lung cancer

mAb, monoclonal antibody.

than VH (Heavy chain) domains (Stijlemans et al., 2004).
Nanobodies specific for EGFR have recently been developed.
They inhibit the binding of EGF to the receptor by different
mechanisms either by blocking ligand binding to EGFR in a
manner similar to cetuximab or by binding an epitope near
the EGFR domain II/III junction and then by preventing
receptor conformational changes required for high-affinity ligand
binding and dimerization (Schmitz et al., 2013). Nanobodies
binding to EGFR thereby inhibits EGFR signaling (Roovers
et al., 2007, 2011). Several studies have shown that several
EGFR-specific nanobodies have the potential to reproduce the
clinical efficacy of mAbs such as cetuximab. Moreover, these
molecules are more stable and less costly to produce than mAbs.
In addition, potent multivalent nanobodies can be produced
and can bind a number of targets (Jahnichen et al., 2010;
Roovers et al., 2011), allowing to design multivalent agents
that combine several modes of EGFR or other cancer target
inhibition.

Affibody molecules are derived from the B-domain in the
Ig-binding region of Staphylococcus aureus protein A (Nygren,
2008). Affibodies are highly soluble, chemically and thermally
stable and rapidly removed from the circulation. The single
protein chain of affibodies facilitates direct fusion with various
proteins such as toxins and fluorophores, radioactive labels, or
chemical groups for immobilization. The first affibody molecule,
developed in vivo, was directed against HER2. This molecule
binds to HER2 receptor on an epitope different from that of
trastuzumab and with an affinity constant of 50 nM (Friedman
et al., 2007). Since co-expression of HER2 and EGFR has been
reported to be related with a poor prognosis in several types
of cancer, a bispecific affibody directed against these receptors
was generated (Friedman et al., 2009). In-depth binding studies

have shown that this bispecific affibody can interact at the
same time with both target receptors. Other affibody molecules
which present different affinities for EGFR and HER2 were
also developed to study their selectivity and their cooperativity
between the two binding sites. Studies have shown that an
affitoxin composed of a HER2-specific affibody linked to a
truncated version of Pseudomonas exotoxin A was able to bind
to HER2 with nanomolar affinity. This affitoxin eliminated
HER2-positive cells with IC50 values three orders of magnitude
lower than the corresponding HER2-negative cells, and induce a
rapid shrinkage of BT-474 breast cancer xenograft tumors. This
study demonstrates that HER2-affitoxin is an encouraging new
therapeutic approach for HER2-overexpressing cancers that are
non-responsive to currently available therapies (Zielinski et al.,
2011).

Furthermore, new strategies has been developed this last
decade to disturb ErbB receptor family dimerization and
activation by targeting the transmembrane domain of these
receptors: indeed, short synthetic peptides which mimick TM
domains are able to inhibit specifically kinase activity and cell
signaling induced by EGF and ErbB2 receptors in cancer cells
(Bennasroune et al., 2004a). More recently, it has been shown
that transmembrane domain targeting peptide antagonizing
ErbB2/Neu exhibit anticancer properties by inhibiting breast
tumor growth and metastasis in genetically engineered mouse
model of breast cancer (Arpel et al., 2014).

CONCLUSION

Even if the involvement of ErbB receptor family by
overexpression or activating mutations in oncogenesis is
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well described since 25 years, numerous processes concerning
the role of these proteins in dysregulation of cell proliferation
and migration are not widely understood. Moreover, the
cancer progression is accompanied by an extensive remodeling
of ECM components. According to the current status of
knowledge, several proteins of the ECM as decorin or
matrikines may be used both as diagnostic markers and
as targets in cancer therapy. Indeed, studying the role
of ECM components and their interactions with ErbB
receptors in cellular processes of growth, invasion and
metastasis should permit the development of new inhibitor
classes.
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