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Cytarabine is the primary chemotherapeutic agent used for treatment of acute myeloid
leukemia (AML). Disease relapse after initial remission remains one of the most pressing
therapeutic challenges in the treatment of AML. Relapsed disease is often resistant
to cytarabine and subsequent salvage therapy is ineffective. Recent studies have
shown that some microRNAs (miRNAs) are associated with prognosis, but have not
yet explored the role of miRNAs in cellular response to cytarabine. We identified
20 miRNAs that associate with the in vitro cytarabine chemo-sensitivity or apoptotic
response of eight AML cell lines. Out of the 20 miRNAs, data on 18 miRNAs was
available in AML patients from The Cancer Genome Atlas database. Our stepwise-
integrated analyses (step 1 — miRNA-target mMRNA that were significantly correlated
in AML patients; step 2 — mRNAs from step 1 with significant association with overall
survival (OS)) identified 23 unique MIRNA-MRNA pairs predictive of OS in AML patients.
As expected HOX genes (HOXA9, HOXB7, and HOXA10) were identified to be regulated
by miRs as well as predictive of worse OS. Additionally, miR107-Myb, miR-378-
granzyme B involved in granzyme signaling and miR10a-MAP4K4 were identified to
be predictive of outcome through integrated analysis. Although additional functional
validations to establish clinical/pharmacologic importance of mMIRNA-MRNA pairs are
needed, our results from RNA electrophoretic mobility shift assay confirmed binding
of miR-10a, miR-378, and miR-107 with their target genes GALNT1, GZMB, and
MYB, respectively. Integration of pathogenic and pharmacologically significant miRNAs
and mMiRNA-MRNA relationships identified in our study opens up opportunities for
development of targeted/miRNA-directed therapies.

Keywords: miRNA, microRNA, cytarabine, acute myeloid leukemia, gene expression

INTRODUCTION

Acute myeloid leukemia (AML) is a hematological malignancy characterized by the
presence of immature abnormal myeloid cells in bone marrow. It is a heterogeneous
disease with various subtypes classified based on the morphology, immunophenotype,
and cytogenetics that are associated with outcome (Dohner et al, 2010). In spite
of advances in recent years, 5-year overall survival (OS) is roughly 60% for
children and ~25% for adults (Cancer Facts and Figures, American Cancer Society).
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Cytarabine (1-B-arabinofuranosylcytosine, ara-C), a nucleoside
analog, is the most widely used chemotherapeutic agent used
in combination with an anthracycline for treatment of AML.
Cytarabine requires intracellular activation to form an active
triphosphate metabolite that triggers apoptosis by inhibiting
DNA synthesis. Although chemotherapeutic regimens including
cytarabine induce complete response in 65-80% of AML patients,
the majority of these patients suffer from disease relapse within
2 years of diagnosis (Cros et al., 2004). This can be partly
attributed to the development of resistance of leukemic cells
to cytarabine-based chemotherapy regimens (Montillo et al,
1998; Estey, 2000). Several factors such as molecular and
cytogenetic subtype, differential gene-expression profiles, and
epigenetics can account for development of resistance in AML
(Sasaki et al., 2008; Peters et al., 2010; Mitra et al., 2011; Cao
et al., 2013; Gamazon et al., 2013; Mortland et al., 2013). We
have previously identified gene expression signatures in AML
patients predicting beneficial and detrimental patterns associated
with cytarabine-based response (Lamba et al., 2011). Others
have identified gene-expression differences between cytarabine-
sensitive and -resistant cell lines in order to understand the
molecular mechanisms underlying cytarabine resistance (Abe
et al., 2006; Song et al., 2009).

MicroRNAs (miRNAs, miRs) are non-coding RNAs of 22-25
nucleotides that regulate gene expression. miRNAs bind to
the complimentary sequence of messenger RNAs (mRNAs).
In many cases, this binding suppresses mRNA translation or
promotes mRNA degradation, thereby reducing expression at
the protein level (Bartel, 2004). It has been shown that miRNAs
play an important role in various cancers by regulating genes
involved in cell proliferation, differentiation, and apoptosis
(Zhanget al., 2010; Paik et al., 2011; Chen et al., 2013; Palma et al,,
2014). Likewise, several recent studies have identified various
miRNAs that differentiate the disease subgroups, associate with
disease development, and associate with clinical prognosis of
AML (Dixon-Mclver et al., 2008; Jongen-Lavrencic et al., 2008;
Marcucci et al.,, 2011; Starczynowski et al., 2011; Li et al., 2013;
Jinlong et al., 2015; Shibayama et al., 2015). However, these
valuable contributions have not yet carefully examined the roles
of miRNAs in the cellular response of AML to cytarabine.
Therefore, in this study, we characterized the association of
miRNA expression with apoptotic response to cytarabine to
identify candidate miRNAs for further evaluation of their
relationship with mRNAs and OS in The Cancer Genome Atlas
(TCGA) cohort of 200 AML patients.

MATERIALS AND METHODS

Figure 1 shows overall study design.

Cell Culture and Regents

The AML cell lines HL-60, MV-4-11, Kasumi-1, THP-1,
AML-193, and KG-1 were obtained from ATCC (Manassas,
VA, USA), while ME-1 and MOLM-16 cell lines were
obtained from DSMZ (Braunschweig, Germany). All the cell
lines were cultured in the media as recommended by the

supplier and were maintained in a humidified incubator
at 37°C with 5% CO,. The cells were passaged every
2-3 days in order to maintain them in logarithmic growth
phase. Cytarabine and the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reagent were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Stock concentrations
for cytarabine (5 mg/ml) were prepared in sterile water and stored
in -20°C in aliquots.

Cytotoxicity Assay

Cytarabine cytotoxicity was determined using the MTT assay.
Briefly, AML cell lines were plated in 96-well plate at seeding
density of 2.5 x 10° cells/ml and incubated at 37°C overnight.
After 24 h of recovery time, the cells were exposed to varying
concentrations (200, 100, 50, 5,0.5,0.01, and 0 M) of cytarabine.
Cell viability was determined 48 h post cytarabine treatment
by incubation with MTT reagent followed by measuring the
absorbance at 570 nm using Synergy plate reader (BioTek, USA).
The percent cell survival at each concentration was calculated
using the Gen5™ Software version 1.11 (Winooski, VT, USA).
The area under the survival curve (AUC) was calculated by the
trapezoidal method using the GraphPad Prism software version 6
(LaJolla, CA, USA).

Apoptosis Assay

The apoptotic activity of AML cell lines following treatment
(48 h) with varying concentration of cytarabine (as indicated
above) was determined using the Caspase-Glo® 3/7 assay as
per manufacturer’s instructions (Promega, USA). Forty-eight
hours of post cytarabine treatment, luminescence was read using
Synergy plate reader (BioTek, USA). The luminescence produced
is directly proportional to the caspase activity. The caspase
activity at each concentration was normalized to the control and
the area under the relative caspase activity curve (AUC) was
calculated by the trapezoidal method using the GraphPad Prism
software version 6 (La Jolla, CA, USA).

MicroRNA Expression Analysis

For determination of miRNA expression, total RNA was isolated
using mirVana™ miRNA Isolation kit (Life Technologies,
USA) as per the manufacturer’s protocol. The RNA quality
and concentration was measured using NanoDrop 2000
UV-Vis  spectrophotometer  (Thermo  Scientific, USA).
A total of 100 ng of purified total RNA was assayed for
determination of 800 human miRNA expression using the
nCounter Human v2 miRNA Expression Assay kit (Nanostring
Technologies, USA). miRNA expression data normalization
was performed using the nSolver™ Analysis Software
(Nanostring Technologies) according to the manufacturer’s
instructions. In order to avoid using the miRNAs with a
very low expression, we further filtered out the miRNAs
with expression counts <30 (two times the mean + 2SD
of negative control value, accounting for the background
noise). Total 412 miRNAs with expression counts >30 were
evaluated for differential expression between sensitive and
resistant cell lines and for their correlation with cytarabine
chemosensitivity.
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TCGA Data

The clinical outcome data, mRNA expression and miRNA
expression data for AML patients were extracted from The
Cancer Genome Atlas (TCGA) Data Portal' (Cancer Genome
Atlas Research Network, 2013). Out of the 200 AML patients in
TCGA database, 197 patients had gene expression profiling data
available and 187 patients had miRNA expression data available.
One hundred and eighty-six patients had both gene expression
and miRNA expression data available. Out of the 186 AML
patients, 13 patients lacked valid survival information and two
patients lacked cytogenetically defined risk information. Thus,
data for a total of 186 patients were used to evaluate miRNA-
mRNA associations, 173 patients used to evaluate mRNA-OS
associations, and miRNA-OS associations (171 for stratified
analyses).

Statistical Analysis

For each miRNA, Spearman’s rank-based correlation was used
to measure the association with cytarabine treatment response
or apoptosis in the eight cell lines. For each miRNA-mRNA
pair with predicted binding sites defined by miRBase® (release
21), Spearman’s rank-based correlation was used to evaluate the
association of miRNA expression with mRNA expression on
the TCGA AML cohort. The p-value for the Spearman statistic
was determined by 10,000 permutations. For each miRNA or
mRNA, Cox regression [or Jungs statistic] was used to evaluate
the association of expression with OS. FDR was estimated by
Pounds and Cheng’s (2006) robust FDR method.

Electrophoretic Mobility Shift Assays

The functional validation for binding efliciencies between
selected miRNAs and mRNAs was performed using the
electrophoretic mobility shift assays (EMSAs) as described
previously (Yu et al, 2015). The binding free energy between
the respective mRNA and miRNA pair (demonstrating inverse
relationship) was predicted using the RNAhybrid software. The
miRNA oligonucleotides were labeled with cy5™ dye on their
5" ends. The 2" O-methyl-modified mRNA oligonucleotides were
labeled with IRDye” 800 (LI-COR Biosciences, USA) dye on
their 5 ends. The labeled oligonucleotides were synthesized
by Integrated DNA Technologies (Coralville, IA, USA).
RNA EMSA experiment was performed using the LightShift
Chemiluminescent RNA EMSA Kit (Thermo Scientific,
USA) according to the manufacturer’s protocol. The mRNA
oligonucleotide was heated for 10 min at 80°C and then placed
on ice in order to relax the secondary structures. In each 20 pl
binding reaction, 200 nM miRNA oligonucleotide and/or mRNA
oligonucleotide were mixed with RNA EMSA binding buffer
and incubated at 25°C for 25 min. The reaction mixtures were
separated on a 15% polyacrylamide gel by electrophoresis at 4°C.
The binding reactions were electrophoretically transferred onto
nylon membrane and the resulting mobility shifts were imaged
using Odyssey CLx Infrared System (LI-COR Biosciences, USA).

!cancergenome.nih.gov/

Zwww.mirbase.org

RESULTS

Cytarabine Chemo-Sensitivity of AML

Cell Lines

The AML cell lines showed considerable variability in cytarabine
sensitivity as measured by cytotoxicity AUC and apoptosis AUC
in the MTT assay (Table 1; Supplementary Figures SIA-H).
Based on the cytotoxicity AUC, HL-60, MV-4-11, KG-1, and ME-
1 were classified as sensitive (cytarabine AUC < 12000), while
MOLM-16, AML-193, Kasumi-1, and THP-1 were classified as
resistant cell lines (cytarabine AUC > 12000).

MicroRNAs Associated with Cytarabine

Chemo-Sensitivity in AML Cell Lines

Of the 800 human miRNAs quantitated using the nCounter
Nanostring platform we excluded 388 miRNAs due to very
low expression and 412 miRNA were analyzed further. Twenty
miRNAs were associated with cellular viability (nine miRs) or
caspase activation (11 miRs) in AML cell lines post treatment
with cytarabine (Table 2). Expression of miR-25-3p, miR-148b-
3p, miR-107, miR-374-5p, miR-425-5p were positively associated
with AUC for cell survival post-cytarabine treatment and miR-
16-5p, miR-24-3p, miR-196a-5p, and miR-155-5p were negatively
associated with AUC for cell survival post-cytarabine treatment
(p < 0.05). (Selected miRNAs are shown in Supplementary
Figure S2.) Expression levels of miR-10a-5p, miR-29a/b-3p, miR-
30e-5p, miR-33a-5p, miR-378a/g were positively and expression
levels miR-197-3p, miR-27b-3p, miR-324-5p, and miR-421 were
negatively associated with AUC for caspase-3/7 activation
(apoptosis) post cytarabine treatment (Table 2, p < 0.05). Using
Ingenuity pathway analysis tool, the miRNAs that were correlated
with cytarabine chemosensitivity were also found to potentially
impact important biological process relevant to leukemia/cancer
(Supplementary Figure S3).

Pairs of Significantly Correlated mRNAs
and miRNAs that Associate with Overall

Survival of AML Patients

Of 20 miRNAs identified above, data on 18 were available in AML
patients from TCGA database and were tested for associations
with risk group and outcome. As shown in Supplementary Table
S1, seven of these miRNAs (miR-10a, miR-16, miR-196a, miR-
197, miR-421, miR-155, and miR24) demonstrated significant
difference in expression levels among the three risk groups. In
risk stratified analysis miR107, miR-155, miR-196a, miR-25, and
miR29b were associated with worse OS, whereas miR-25 was
predictive of better OS in AML patients at p < 0.05.

Using miRBase? (release 21), we determined that 5006
probe sets representing 2830 gene with binding sites for these
18 miRNAs. These 5006 mRNAs and 18 miRNAs belong to
7132 distinct miRNA-mRNA pairs. Using the analysis strategy
outlined in Figure 1, we found that 23 of the 7132 miRNA-
mRNA pair’s satisfied criteria listed below (Table 3):

(a) significant association between miRNA and target mRNA
(p < 0.05; 1532 pairs) and
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TABLE 1 | Characterization of acute myeloid leukemia (AML) cell lines for cytarabine chemosensitivity.

Cell lines Cytogenetics/molecular abnormality Ara-C cytotoxicity AUC (£SD)  Ara-C apoptosis AUC (+SD)
Kasumi-1 £(8;21)(922;022) — RUNX1/AML1-RUNX1T1/ETO fusion gene; TP53 mutant gene 14713 (£582) 409.3 (£20)
THP-1 (9;11)(p21;g23) — MLL-AF9 fusion gene; CDKN2A, KDMBA, NRAS mutant genes 17170 (£1341) 1544.5 (+2)
MOLM-16  #(6;8)(921;g24.3) and t(9;18)(q13;q21) 12021 (+£480) 490.2 (£18)
AML-193 +der(17)t(17;17)(p13.1;g21.3) 12988 (+366) 852.4 (+34)
MV-4-11 FLT3 ITD mutation, t(4;11)(@21;023) — MLL-AF4 fusion gene 5011 (+£442) 458.4 (£22)
ME-1 inv(16)(p13g22) — CBFB-MYH11 fusion gene 6497 (+£280) 753.6 (+33)
KG-1 NRAS mutation, P53 mutation, RB1 rearrangement 5939 (+464) 472.5 (£16)
HL-60 CDKN2A, NRAS, TP53 mutant genes 4597 (£397) 555.6 (+£29)

(b) mRNA expression associated significantly with OS in an
unstratified Cox regression model (p < 0.001; FDR < 0.05).

These 23 pairs included 16 unique genes and 10 unique
miRNAs (Table 3 - some mRNAs and some miRNAs belonged
to multiple pairs). A positive correlation of mRNA and miRNA
was observed for 10 of these pairs and a negative correlation was
observed for the other 13 pairs.

Among mRNA-OS associations COL3Al1, GALNTI,
GALNT?7, LTK, MAP4K4, MYB, PAPOLG, RPL35A, TMEMS87A,
and WDR48 were associated with better OS and HOX family
genes (HOXA9, HOXA10, HOXB7), GZMB, SE1L3, and
an oncogene PIM1 were associated with inferior outcome
(Table 3). Since nine of these genes demonstrated significant
association with risk groups we also performed risk-stratified
analysis and all but three genes HOXA9, HOXA10, and LTK
were significantly associated with OS in risk stratified analysis,

TABLE 2 | MicroRNAs significantly associated with cytarabine-induced
cytotoxicity AUC and cytarabine-induced apoptosis (caspase-3/7 activity).

MicroRNA Spearman r p-value
Cytarabine-induced cell cytotoxicity AUC

hsa-miR-107 0.7619 0.028
hsa-miR-148b-3p 0.7381 0.037
hsa-miR-155-5p —0.8095 0.015
hsa-miR-16-5p —0.7381 0.037
hsa-miR-196a-5p —0.7857 0.021
hsa-miR-24-3p —0.8095 0.015
hsa-miR-25-3p 0.7857 0.021
hsa-miR-374a-5p 0.7381 0.037
hsa-miR-425-5p 0.7619 0.028
Cytarabine-induced apoptosis AUC

hsa-miR-10a-5p 0.7857 0.021
hsa-miR-197-3p —0.8571 0.007
hsa-miR-27b-3p —0.7186 0.045
hsa-miR-29a-3p 0.881 0.004
hsa-miR-29b-3p 0.7857 0.021
hsa-miR-30e-5p 0.7381 0.037
hsa-miR-324-5p —0.9048 0.002
hsa-miR-33a-5p 0.8095 0.015
hsa-miR-378a-3p 0.8095 0.015
hsa-miR-378g 0.7381 0.037
hsa-miR-421 —0.7619 0.028

indicating that for these genes the observed association with
OS might be driven by risk group characteristics. Figure 2
shows the representative correlation plots as well as overall
curves for miR10a-GALNT1, miR10a-MAP4K4, miR16-Piml,
miR378-GZMB, and miR107-MYB.

We further utilized Ingenuity pathway analysis tool to map the
16 unique genes identified in integrative analysis and as shown
in Figure 3, these genes were associated with cell proliferation,
apoptosis, RNA expression, and quantity of hematopoietic
progenitor cells, hematological cancer and myeloid leukemia.

Functional Validation Using RNA
Electrophoretic Mobility Shift Assays
(RNA EMSA)

To further validate the miRNA-mRNA pairs discovered as
above, we performed RNA EMSAs. We first selected miRNA-
mRNA pairs from Table 3 that demonstrated significant inverse
relationships. Binding free energy for these miRNA-mRNA pairs
was calculated using RNAhybrid software. The 3'UTR sequence
of mRNA was obtained from the UCSC Genome browser
and miRNA sequence was obtained from miRBase software.
Of miRNA-mRNAs demonstrating minimum free energy of
binding <-24 kcal/mol miR107-MYB; miR378a-GZMB, and
miR10a-GALNT1 were validated by RNA EMSAs. EMSA results
confirmed binding for miR-107-MYB, miR-10-GALNT]1, and

Data Analysis Results

8 AML cell lines

Cytarabine sensitivity (MTT
assay and caspase3/7 assays)
expression of 800 miRNAs

Removed 388 miRNAs with very low expression.
Of the remaining 412 miRNAs, 20 associated with
cytarabine cytotoxicity or apoptosis (p < 0.05,
Table 2)

Found that 18 of 20 miRNAs bind to 5006 mRNAs
in a total of 7132 miRNA-mRNA pairs.

l

For 23 of those 7132 miRNA-mRNA pairs, mRNA
associated with miRNA (p <0.05) and mRNA
associated with OS (p < 0.001; FDR < 0.05) in an
unstratified Cox model. These 23 pairs include 16
unique mRNAs and 10 unique miRNAs (Table 3).

miRBase
binding mRNA-miRNA pairs

AML TCGA Cohort (n=200)

miRNA expression
mRNA expression
overall survival

FIGURE 1 | Overall summary of the study. Study design for identification of
microRNAs (miRNA) influencing cytarabine chemo-sensitivity and survival in
acute myeloid leukemia (AML) patients.
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TABLE 3 | miRNA-mRNA pairs predictive of overall survival in AML Patients (data from TCGA).

miRNA-mRNA Pair

miRNA-mRNA correlation

mRNA-risk group

mRNA-OS

Spearman Correlation

Kruskal-Wallis

Unstratified Cox model

miRNA mRNA probe mRNA gene mRNA Chr r p-value p-value FDR HR p-value FDR

mir-107 212202_s_at TMEMS87A chr15g15.1 —0.208 0.004 0.000 0.001 0.386 0.000 0.045
mir-107 204798_at MYB chr6g23.3 —0.235 0.001 0.050 0.075 0.430 0.000 0.004
mir-10a 201724 _s_at GALNT1 chr18g12.2 -0.418 0.000 0.000 0.000 0.327 0.000 0.006
mir-10a 218181_s_at MAP4K4 chr2gi1.2 —0.445 0.000 0.046 0.072 0.558 0.001 0.045
mir-10a 222273_at PAPOLG chr2p16.1 -0.174 0.018 0.429 0.350 0.392 0.000 0.013
mir-148b 218181_s_at MAP4K4 chr2gi1.2 0.240 0.001 0.046 0.072 0.558 0.001 0.045
mir-16 213150_at HOXA10* chr7p15.2 0.441 0.000 0.000 0.000 1.216 0.000 0.041
mir-16 201724 _s_at GALNT1 chr18g12.2 -0.217 0.003 0.000 0.000 0.327 0.000 0.006
mir-16 212314 _at SEL1L3 chrdp15.2 0.263 0.000 0.000 0.000 1.446 0.001 0.046
mir-16 209193_at PIM1 chrép21.2 0.247 0.001 0.002 0.006 1.718 0.000 0.045
mir-196a 214651_s_at HOXA9* chr7p15.2 0.293 0.000 0.000 0.000 1.166 0.001 0.046
mir-196a 204779_s_at HOXB7 chr17921.32 0.223 0.002 0.000 0.000 1.276 0.001 0.046
mir-196a 201852_x_at COL3A1 chr2g32.2 0.252 0.001 0.152 0.170 0.783 0.000 0.045
mir-196a 213687_s_at RPL35A chr 3g29 —-0.174 0.018 0.300 0.276 0.399 0.000 0.042
mir-197 212202_s_at TMEMS87A chr15g15.1 -0.184 0.012 0.000 0.001 0.386 0.000 0.045
mir-197 218181_s_at MAP4K4 chr2gi1.2 0.159 0.030 0.046 0.072 0.558 0.001 0.045
mir-29b 207106_s_at LTK* chr15g15.1 —0.184 0.012 0.000 0.000 0.790 0.001 0.046
mir-29b 56919_at WDR48 chr3p22.2 —0.169 0.021 0.068 0.095 0.514 0.000 0.009
mir-30e 204779_s_at HOXB7 chr17¢g21.32  —-0.325 0.000 0.000 0.000 1.276 0.001 0.046
mir-30e 201724 _s_at GALNT1 chr18g12.2 0.208 0.004 0.000 0.000 0.327 0.000 0.006
mir-30e 218313_s_at GALNT7 chrdq34.1 0.329 0.000 0.106 0.132 0.417 0.000 0.024
mir-378 210164 _at GZMB chr14g12 —0.205 0.005 0.199 0.207 1.439 0.001 0.046
mir-421 214651_s_at HOXA9* chr7p15.2 -0.277 0.000 0.000 0.000 1.166 0.001 0.046

*Except for HOXA9, HOXA10, and LTK, all other genes were also significantly associated with OS (p < 0.05) in risk stratified analysis. FDR was estimated by Pounds and

Cheng (2006) robust FDR method.

Bold indicates significance for p-value with p < 0.05 (Spearman Correlation and Kruskal-Wallis) and p < 0.001 (Unstratified Cox model).

miR-378-GZMB and are shown in Figure 4, respectively. As
shown in lane 3 in Figure 4, the EMSA results for miR-107,
miR-10a, and miR-378 demonstrate binding of this miRNA
with their respective mRNA target sequences confirming the
thermodynamic stability of these complexes predicted in the in
silico analysis. In addition, we observed competition of binding in
mRNA-miRNA complexes after adding excess unlabeled specific
miRNA probe (Figure 4, lane 4), excess unlabeled mRNA probe
(Figure 4, lane 5) but not by adding excess unlabeled non-specific
probe (Figure 4, lane 6).

DISCUSSION

Acute myeloid leukemia is a heterogeneous disease with dismal
outcome. Additional complexity is added by very heterogeneous
nature of AML with cytogenetic abnormalities used for risk
classification in AML patients. Although cytarabine has been
the backbone of AML chemotherapy for more than 50 years,
there are still gaps in our understanding of the molecular
mechanisms contributing to development of drug resistance in
AML. Although advances in supportive care have improved,
the treatment strategies have not changed much with cytarabine
being still the main player. Thus, understanding the molecular

mechanisms underlying cytarabine resistance will be of great
interest in developing predictive models of outcome as well as
for developing novel therapeutic strategies. Recent research has
shown the significant role of miRNAs in normal hematopoiesis
(Chen et al., 2004; Garzon and Croce, 2008; O’Connell et al.,
2008) as well as miRNA deregulation in AML. miRNAs (miR-
125, miR-146, miR-142, miR-155, miR-29, miR-181, let-7a, etc.)
of potential prognostic significance have been identified (Khalaj
et al., 2014). Recent data supports putative diagnostic role of
miR-155 in all AML subgroups and miR-196b within M4-5
subgroups (Yan et al., 2015). miR-9 has been also implicated in
promoting proliferation of leukemic cells in normal karyotype
AML by targeting Hes1 (Tian et al., 2015). However, the role of
miRNAs in development of resistance to cytarabine and thus
inferior clinical outcome has not been investigated in detail. In
this study, we report results of our genome-wide evaluation to
identify miRNAs associated with cytarabine sensitivity in eight
AML cell lines as well as their impact on clinical outcome in AML
patients (Figure 1 outlines overall study design and results).

We screened expression levels of 800 human miRNAs in
eight AML cell lines and after filtering out miRNAs with
very low expression, evaluated 412 miRNAs for association
with cytarabine chemo-sensitivity, measured as cell viability
and apoptosis induction following cytarabine treatment. Twenty
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FIGURE 2 | Representative plots showing correlation between miRNA-target messenger RNA (mRNA) and survival curves of miRNA and mRNA
expression with overall survival (OS) in AML patients from The Cancer Genome Atlas (TCGA) database. (A) Correlation plot of miR10a—GALNT1 mRNA
levels and Kaplan—Meier survival curves of miR10a and GALNT1 expression with OS. (B) Plots for miR-10a—-MAP4K4 pair. (C) Plots for miR-16 and Pim1 pair.
(D) Plots for miR-378 and GZMB pair. (E) Plots for miR-107 and Myb pair.
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FIGURE 3 | Network analysis. Ingenuity pathway analysis tool was utilized to evaluate the genes identified in mMiIRNA-MRNA-OS analysis. Several genes mapped
to biological processes of relevance to hematological malignancies, myeloid leukemia as well as to cell proliferation and apoptosis, RNA expression. Genes
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unique miRNAs were predictive of cytarabine chemo-sensitivity
in AML cell lines, and 18 of these were further evaluated
in AML patients from TCGA database. Seven of these were
differentially expressed among AML risk groups (favorable,
intermediate and poor; p < 0.05) and after risk stratification
five miRNAs (miR-107, miR-155, miR-25, miR-29b, and miR-
196a) were associated with OS (Supplementary Table S1). All but
miR-25 were associated with worse OS in AML patients.

Among the miRNAs associated with OS, miR-155 is located
in a non-coding RNA transcript cluster called B-cell integration
cluster (BIC), which has been shown to cooperate with c-Myc
(Clurman and Hayward, 1989; Tam, 2001). miR-155 is considered
as an oncomiR with implications in pathogenesis of AML
(O’Connell et al., 2008; Palma et al., 2014); it has been associated
with SHIP1 (negatively regulator of PI3K/AKT pathway) and
CEBP-B (Gorgoni et al., 2002; O’Connell et al., 2009). Our results
show that miR-155 is associated with cytarabine sensitivity which
is not in consensus with its association with inferior outcome,
thereby indicating that miR-155 (which is also differentially
expressed among risk groups) might have significant impact on
disease pathogenesis but might not be impacting drug response.
miR-29 family members are regulators of myeloid differentiation

and have been shown to be deregulated in AML (Garzon et al,,
2008, 2009a; Han et al., 2010). MiR29a/29b have been associated
with expression levels of oncogenes MCL1, CDK®6, IGFR, and
JAK2 (Mott et al., 2007; Garzon et al., 2009a) as well as have
been shown to target DNA modifying genes DNMTs and TET2
(Garzon et al., 2009b; Cheng et al., 2013).

In step-wise integrated analysis we identified 23 miRNA-
mRNA pairs predictive of survival in AML patients and these
pairs were mapped to 16 unique mRNAs.

We further validated miR107-MYB, miR-10a-GALNT1, and
miR378-GZMB miRNA-mRNA pairs using electrophoretic
mobility shift assays (Figure 4), which confirmed the binding of
these oligos as supported by in silico analysis indicating miRNAs
in regulating gene expression of these target genes by binding to
specific seed sequences.

As expected HOX genes (HOXA9, HOXA10, and HOXB?7)
were predictive of worse outcome. miR-196a-1 which was
associated cytarabine in vitro sensitivity in AML cell lines was
positively correlated in expression with HOXA9 and HOXB7
as well as with AML risk groups. miR-196a-1 gene co-localizes
with HOXB gene cluster between HOXB8 and HOXB13, positive
correlation observed in AML patients between HOXB7 and
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FIGURE 4 | Validation of binding interaction between miRNA-mRNA by RNA electrophoretic mobility shift assays (RNA EMSAs): (A) miR107-MYB;
(B) miR10a-GALNT1 and (C) miR378-GZMB. RNA EMSAs were performed using cy5-labeled respective miRNA oligonucleotide and 2’-O-methyl modified and
IRD-800 labeled mRNA oligonucleotides. Lanes 1 and 2 show the mobility of the respective labeled mMRNA or miRNA oligonucleotide. Lane 3 shows the mobility of
the labeled miRNA oligonucleotide with its target mMRNA oligonucleotide. Lanes 4 and 6 show the mobility of labeled mRNA oligonucleotide in presence of excess
unlabeled specific competitor miIRNA oligonucleotide and excess unlabeled non-specific competitor (NC). Lane 5 shows the mobility of labeled mMRNA
oligonucleotide in presence of excess unlabeled specific competitor mRNA oligonucleotide.
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mir-196a might be due to transcriptional co-regulation. miR-
196a has been previously shown to be positively correlated with
several HOX family members including HOXB7 and HOXA9
(Debernardi et al., 2007). In addition to miR-196a, we observed
significant negative correlation between miR-16-HOXA10, miR-
421-HOXA9, and miR-30e-HOXB7.

Among other miR target genes that were associated with
worse OS were PIM-1 (piml oncogene), GZMB (granzyme B),
and SEL1L3 (Sel-1 Suppressor Of Lin-12-Like 3). Piml is a
serine/threonine protein kinase that has role in cell survival and
cell proliferation. HOXAY is transcriptional activator of Pim-1,
which is further involved in regulation of MYC transcriptional
activity, regulation of cell cycle progression, and phosphorylation
and inhibition of proapoptotic proteins (BAD, MAP3K5, and

FOXO3) thereby by contributing to its oncogenic activity. Pim-
1 is also involved in inactivating MAP3K5 by phosphorylation
thereby inhibiting MAP3K5-mediated phosphorylation of JNK
and JNK/p38MAPK subsequently reducing caspase-3 activation
and cell apoptosis. Pim-1 seems like a potential target for
drug discovery, in fact in pediatric preclinical models, Pim1
inhibitor SGI-1776 has been shown to induce complete response
to subcutaneous MV4:11 leukemia (Batra et al., 2012) as well
as inhibit proliferation in other malignancies such as CLL, B
cell lymphoma, multiple myeloma, etc. (Cervantes-Gomez et al.,
2013, 2015; Yang et al., 2013).

GZMB was negatively regulated by miR-378 and higher
expression was associated with worse OS in AML. GZMB is a
key player in Granzyme signaling pathway, which is a lymphocyte
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granular serine protease that cleaves its substrates at Asp residues.
GZMB is expressed in cytotoxic T lymphocytes (CTL) and NK
cells and is primary mediator of apoptosis by CTL in cell-
mediated immune response. GZMB seems to play critical role
antibody -dependent cellular cytotoxicity (Elavazhagan et al.,
2015).

Among miR target genes that were associated with
good response were family members of Polypeptide
N-Acetylgalactosaminyltransferases (GALNT1 and GALNT7),
MAP4K4, TMEM87A, and COL3A1. GALNT1 was correlated
negatively in expression with miR-10a, miR-16-2 and positively
with miR-30e, which also demonstrated positive correlation
with GALNT7 expression. MAP4K4 belongs to serine/threonine
protein kinase family and has been specifically implicated in
activation of MAPKS8/JNK pathway.

Both MYB and TMEMS87 were inversely associated with miR-
107, which was associated with cytarabine resistance in cell lines
as well as worse OS in AML patients (Tables 2 and 3). Oncogenic
role of miR-107 in regulating tumor invasion and metastasis
in gastric cancer by targeting DICER1 (Li et al, 2011) and
in colorectal cancer by targeting metastasis suppressors death-
associated protein kinase (DAPK) and Kriippel-like factor 4
(KLF4; Chen et al, 2012) has been proposed. In AML
patients, we observed negative correlation of DICER with
miR-107 (p < 0.01) although DICER expression was not
predictive of outcome. Although TMEMS87A a transmembrane
protein has not been well studied, MYB, a V-Myb Avian
Myeloblastosis Viral Oncogene Homolog has been implicated
in leukemogenesis. Myb is reported to be overexpressed in
AML and results from recent studies shows its potential role in
interplay between C/EBPu activity for transcriptional regulation
of FLT3 expression (Volpe et al, 2013). Recent report in
luminal breast cancer demonstrated for the first time the
potential tumor suppressor role of c-Myb gene, (Thorner et al.,
2010), which is in concordance with TCGA results with Myb
expression associated with better OS thereby warranting further
investigation of Myb gene on its impact on treatment outcome in
AML.

In summary, although several studies have established
prognostic significance of miRNAs (miR-155, miR-29, miR-16,
etc.) in AML, role of miRNAs in cytarabine chemosensitivity
and development of resistance as a contributor of inferior
outcome has not been well studied. In this report, we performed
genome-wide miRNA profiling of eight AML cell lines and
identified 20 miRNAs predictive of differential AML in vitro
chemo-sensitivity (by measuring both cytarabine induced
cell death and apoptosis). These were further investigated in
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