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Background: Antiplatelet therapy plays a pivotal role in the prevention and treatment

of thrombotic diseases. We reported the screening of P1C as a novel integrin-binding

peptide from the C-terminal of connective tissue growth factor. Primary study indicated

that P1C has potential against platelet aggregation.

Objectives: We aimed to find the shortest active unit from the P1C fragments and

explore its in vivo and in vitro activities.

Methods: A series of truncated P1C fragments was prepared and screened for

antiplatelet activity. The most active fragment was evaluated using coagulation assays.

Flow cytometry and confocal microscopy were used to determine the interaction

between the peptide and the integrin. The in vivo potential was further explored using

two types of rat models.

Results: From a series of truncated P1C forms, a so-called P1Cm peptide of 5-amino

acids, namely, IRTPK was screened out as the shortest active unit with superior

activity. Coagulation experiments and an in vivo toxicity assay demonstrated that

P1Cm is safe in vivo and inhibits ADP- and TH-induced human platelet aggregation

in vitro in a concentration-dependent manner. Furthermore, it has limited effect on

the coagulation parameters. Flow cytometry and confocal microscopy experiments

consistently indicated that the peptide specifically binds the β3-subunit of integrin on

platelets. Further experiments using rat models of artery-vein shunt and carotid arterial

thrombosis illustrated that P1Cm can effectively prevent thrombosis formation.

Conclusion: P1Cm may be a new, promising antithrombotic alternative to currently

available antiplatelet treatments.

Keywords: peptide, platelet, integrin beta3, blood coagulation, thrombosis

INTRODUCTION

Platelet activation, aggregation, and adhesion are considered the general pathogenesis of various
cardiovascular disorders, such as acute coronary syndrome, myocardial infarction (De Luca,
2012), stroke, and unstable angina (Rodrigues et al., 2013). These pathological processes are
mainly mediated by the receptor of glycoprotein IIb/IIIa or by integrin αIIbβ3 of the platelets
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(Liu et al., 2005). Each platelet contains 60,000–80,000 molecules
of αIIbβ3 protein complexes (Armstrong and Peter, 2012).

Upon platelet activation, αIIbβ3 shifts into a high affinity
conformation that efficiently binds the ligands and leads to
platelet aggregation, which is considered the classic mechanism
of action for all known platelet agonists (Lefkovits et al.,
1995). Consequently, blocking the integrin αIIbβ3 receptor is an
excellent strategy for the therapeutic intervention for thrombotic
diseases (Di Mario, 2014).

Conventional αIIbβ3 inhibitors have helped establish the
protocol for antiplatelet therapy in percutaneous coronary
intervention (Hanna et al., 2010). Thus far, the United States
Food and Drug Administration has approved three αIIbβ3
inhibitors: abciximab, eptifibatide, and tirofiban. However,
retrospective analyses obtained through different means have
indicated a high risk of bleeding arising from the administration
of αIIbβ3 inhibitors (Hechler et al., 2011). Given the importance
of antithrombotics in the treatment of ischemic disorders,
additional efforts should be directed to searching for novel and
better antithrombotic agents.

P1C is a fragment from the C-terminal of connective tissue
growth factor, which binds to various integrins such as ανβ3 from
endothelial cells (Cornel et al., 2015), αIIbβ3 from blood platelets,
and alpha(6)-beta(1) from fibroblast cells (Gao and Brigstock,
2004). The nanoprobe prepared by conjugating P1C with ultra
superparamagnetic iron oxide particles confirmed the specific
affinity between P1C with ανβ3 in Bel7402 human primary liver
cancer cells in vitro (Lofblom et al., 2010) and in vivo (Wu et al.,
2011). However, whether peptide binding to another integrin,
such as αIIbβ3, will result in an antagonistic effect on platelet
aggregation remains unclear.

In this study, a pentapeptide P1Cmwas first screened out from
a series of truncated P1Cs with superior activity. The bioactivity
of P1Cm was evaluated in vitro and in vivo.

MATERIALS AND METHODS

Peptide Synthesis
The P1C peptide and its truncated forms were purchased from
Scipeptide (Shanghai, China). The peptides were synthesized
by the solid-phase method using a model 432A synthesizer
(Applied Biosystems Inc., Foster City, CA; Angiolillo et al.,
2004). Molecular mass was determined by electrospray mass
spectrometry using LCMS-2010 (Shimadzu, Japan). The purity of
the peptide was analyzed using a C18 reverse-phase HPLC (Wu
et al., 2008). Table 1 presents a summary of all sequences of the
truncated forms.

Animals
The animals were obtained from the Laboratory Animal Center,
Science Academy of China (Shanghai, China) and raised in
an SPF laboratory of a light/dark cycle of 12 h/12 h, with free
access to food and water. Animal experiments were carried
out according to a protocol approved by the Animal Care
and Use Committee of Southeast University, China. To collect
fresh animal samples, the animals were sacrificed through an
intravenous injection of air after being anesthetized.

TABLE 1 | Anti-platelet activity of various peptides and Tirofiban.

Peptide/Tirofiban IC50(µM)

IRTPKISKPIKFELSG (P1C) 80

IRTPK——————(P1Cm) 75

———ISKPI———- 442

—————–KFELSG 408

IRTP——————– >500

−RTPK—————— >500

−RTP——————– 377

Tirofiban————– 25

Platelet Sample Preparation
Blood samples from healthy adult donors who have never
received antiplatelet treatment were collected and supplemented
with 0.1X volumes of 3.8% trisodium citrate. After centrifugation
at 1100 g for 15min at 22◦C, the supernatant was collected
as the platelet-poor plasma sample (Oyama et al., 2009). The
pellets were transferred into a new tube and further purified by
repeated re-suspension and centrifugation in Tyrode’s albumin
buffer three times. The cell pellets were finally re-suspended in
the buffer as the platelet-rich plasma sample. Platelet count was
performed using a whole-blood cell counter (Cysmex, USA). All
samples were used within 6 h post-collection (Niu et al., 2012).

Antiplatelet Aggregation Studies In vitro
Platelet aggregation was measured by the turbidimetric assay
using a platelet aggregation analyzer (LBY-NJ4, Beijing Precil
Instrument Co. Ltd., China; Knight and Romano, 2005). A
300µL aliquot of platelet-rich plasma with 0–1.20mM peptide
added was incubated under gentle stirring at 37◦C for 5min
(Brossi et al., 2015). Adenosine diphosphate (ADP, 20µmol/L) or
bovine thrombin (TH, 200 units/L) was added to induce platelet
aggregation. The changes in transparence caused by platelet
aggregation were recorded. The transparence of platelet samples
with saline added was defined as 100%. The transparence of the
platelet sample with ADP/TH added was defined as 0%. The
IC50 values of peptides for the blood sample were calculated as
mean± SE.

The activity of P1Cm was further evaluated using the whole
blood sample. Briefly, a 500µL aliquot of whole blood was
placed in polystyrene tubes containing 0.009375–0.15 P1Cm. The
mixture was stirred at 37◦C for 5min, followed by an addition
of 60µL ADP or an equal volume of saline. Platelet counts were
performed using a whole-blood cell counter (Cysmex, USA) after
incubation at 37◦C for 5min.

Blood smears were also prepared and stained using the
Wright–Giemsa method (Nadal-Wollbold et al., 2010). Smear
images were obtained with a Zeiss AxioVert 200M inverted light
microscope (Carl Zeiss, Thornwood, NY, USA).

P1Cm on the Coagulation Parameters and
Its Acute In vivo Toxicity
Plasma was collected after centrifugation at 1000 × g for
10min at room temperature. An aliquot of 100µl plasma was
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supplemented with series concentrations of P1Cm, ranging from
0.15 to 0.45mM, 0.15mM tirofiban or vehicle (PBS, pH 7.4),
followed by an incubation of 5min at 37◦C before being sent
to an ACL TOP Automatic Coagulation Analyzer (Beckman
Coulter, USA; Wang et al., 2013). The coagulation parameters,
such as activated partial thromboplastin time (APTT),
prothrombin time (PT), and thrombin time (TT; Chen et al.,
2013), were recorded, and each assay was performed in triplicate.

Kunming mice (n = 6 for each group) were intravenously
injected with different concentrations of P1Cm, ranging from
0.075 to 6mmol/kg (10x IC90), or tirofiban ranging from 0.025
to 2mmol/kg (10x IC90). Blood pressure and breath were
monitored after injection, and the mesentery were observed
under microscope after the animals were sacrificed. Mortality
within the next 3 days was recorded.

Flow Cytometry
Washed platelets (1× 106 platelets/mL) were pre-incubated with
anti-human αIIb or β3 monoclonal antibody (5µg/mL, R&D
Systems, Minneapolis, MN) for 10min at room temperature
in the presence of 100 U/L thrombin. After rinsing twice with
PBS (Kander et al., 2014), the platelets were co-incubated with
5µg/mL goat anti-mouse antibody-PE (Caltag Laboratories,
USA) and/or 10µg/mL FITC-conjugated peptide (FITC-P1Cm,
synthesized by Science Peptide Bio-Technology Co, LTD.,
Shanghai, China) at 22◦C for 30min in darkness (Park et al.,
2014). The incubations were then washed three times and fixed
with 1% paraformaldehyde at 4◦C (Kashiwagi et al., 2013) before
flow cytometry analysis (Becton Dickinson, San Jose, CA, USA).

Confocal Microscopy
The platelet samples were prepared as previously reported
(Mahdi et al., 2002; Elnager et al., 2014; Brzoska et al., 2015).
In brief, human platelets (1 × 106 platelets/mL) containing
0.1 mg/mL polylysine (Sigma) were transferred into a 35mm
cell culture dish (Cat no. 627860, Greiner Bio-One, Germany)
followed by incubation for 30min at room temperature.
Thereafter, floating platelets were washed away with PBS (pH
7.4). The remaining platelets were treated with 100 U/L thrombin
plus 5µg/mL monoclonal antibody of anti-human αIIb or
β3 for 30min at room temperature. This step was followed
by an addition of goat anti-mouse antibody-PE (5µg/mL)
and/or FITC-P1Cm (10µg/mL) and incubation for 30min in
darkness at 4◦C. Finally, the platelets were washed twice with
PBS and examined with a confocal laser scanning microscope
(OLYMPUS-FV1000, Japan).

P1Cm against Carotid Arterial Thrombosis
Thirty male Wistar rats (250–300 g) were randomly divided
into five groups: high-, middle-, and low-dose treated groups
of P1Cm, a saline group, and a tirofiban group (n = 6 per
group). The rats were operated on the right common carotid
artery (Bird et al., 2008). Briefly, the rat was first anesthetized
by an intraperitoneal injection of ketamine (100mg/kg). The
fascia was bluntly dissected to expose the right common carotid
artery immediately after a dosage of 0.15, 0.30, or 0.45mmoL/kg
of P1Cm, 0.15mmoL/kg of tirofiban, or an equal volume of

saline applied accordingly via tail vein injection. A 3 × 4mm
piece of filter paper saturated with ferric chloride (10% solution)
was placed under the right carotid artery for 20min and then
removed. Thrombus size and blood flow were detected by color
Doppler flow imaging (CDFI) (13 MHz phased-array transducer,
LOGIQ S6 Color Doppler Ultrasonographer, GE, USA; Chua
et al., 2012). The animals were kept anesthetized during the CDFI
measurements.

Pathological Examination
To obtain fresh samples immediately after measurement, the
animals were sacrificed through an intravenous injection of air,
and the injured carotid artery was collected for pathological
examination. Carotid artery samples were fixed with 10%
neutral buffered formalin and embedded in paraffin wax
for routine histological analysis with hematoxylin and eosin
staining. Morphometric analysis was carried out using a Leica
Q500/W microscope (Leica Microsystems, Wetzlar, Germany).
The antithrombosis effect was evaluated by calculating the
percentage of carotid artery area covered by the thrombus
(Hosokawa et al., 2011).

Preventive Efficiency of P1Cm in the
Artery-Vein Shunt Model
Fifty male Wistar rats (250–300 g) were randomly divided into
five groups: high-, middle-, and low-dose groups of P1Cm,
a saline group, and a tirofiban group (n = 10 per group).
The animals were treated with the same concentrations as in
the previous thrombosis model, 0.15, 0.30, or 0.45mmoL/kg
of P1Cm, 0.15mmoL/kg of tirofiban, or an equal volume of
saline by tail vein injection after being anesthetized by an
intraperitoneal injection of ketamine (100mg/kg). The operation
was carried out as previously reported (Sato et al., 1998; Jing
et al., 2011). Briefly, the right carotid and left jugular veins were
separated. An 8 cm silk thread was placed inside a polyethylene
tube filled with heparin sodium solution (50 IU/mL). The right
carotid and left jugular veins were connected with the tube. One
end of the tube containing the thread was inserted into the left
jugular vein, and the other end was inserted into the right carotid
artery. Blood was allowed to flow from the right carotid artery
to the left jugular vein through the polyethylene tube for 15min.
The tube was then removed, and the weight of the attached wet
thrombus on the thread was measured immediately. The rats
were sacrificed through an intravenous injection of air.

Statistical Analyses
Data are expressed as the mean ± SD/SE and analyzed with
SPSS 13.0 software. Significant differences between the control
and experimental groups were analyzed by one-way analysis
(ANOVA) followed by the least-significant difference (LSD) post-
hoc test. P < 0.05 was considered statistically significant.

Ethics Statement
These studies were approved by IEC for Clinical Research of
Zhongda Hospital, affiliated to Southeast University (Application
number; 2013ZDSYLL109.0).
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FIGURE 1 | Effects of P1Cm on ADP- and TH-induced platelet

aggregation in human washed platelets. Platelets were pre-incubated with

P1Cm (0–1.2mM) for 5min, followed by an addition of ADP (5µM) or TH

(200 units/L). Data are presented as mean ± SE (n = 6).

RESULTS

P1Cm Activity against Platelet Aggregation
The antiplatelet activities of P1Cm or tirofiban were measured
using the turbidimetric assay described above. The IC50 values
of P1C and its truncated forms are summarized in Table 1.
The smallest unit with antiplatelet activity was a 5-amino acid
fragment (IRTPK) termed P1Cm. P1Cm exhibited superior
activity to its parent and other truncated P1C forms. P1Cm
prevented platelet aggregation in a dose-dependent manner
in the platelet-rich plasma samples (Figure 1). ADP induced
platelet aggregation in the whole blood sample, as shown in
Figure 2B. The whole blood sample pre-treated with 1mg/ml
P1Cm showed a similar diffused distribution of platelets as
negative control after the addition of ADP (Figures 2A,C).
Respective IC50 values for P1Cm inhibiting ADP- and TH-
induced platelet aggregation in the washed platelet samples were
145.9 ± 12.13 and 139.8 ± 10.54µM, and similar results were
obtained with the whole blood sample (Figure 2, lower panel).

Effects on Coagulation
The FIB values were 3.61 ± 0.44, 3.82 ± 0.37, 3.94 ± 0.45,
4.07 ± 0.39, and 4.23 ± 0.71 g/L for the saline, P1Cm (low,
middle, and high dosage), and tirofiban groups, respectively. The
other three parameters are summarized in Figure 3. We observed
that TT was postponed, whereas PT and APTT were as normal
as the control after P1Cm treatment. P1Cm extended the TT at
a dosage-dependent manner. No significant differences between
groups of different dosages (high-, middle-, and low-dose groups;
P > 0.05) were found in PT, APTT, and FIB. In contrast, tirofiban
apparently inhibited the coagulation and affected the parameters
(P < 0.05).

FITC-P1Cm Specifically Binds Integrin
β3-Subunits of Platelets
FITC and PE emitted green and red fluorescence, respectively.
The platelets incubated with FITC-P1Cm alone showed green

FIGURE 2 | Inhibitory effects of P1Cm on platelet aggregation in whole

blood. Upper panel, Wright–Giemsa stained blood smears: (A) untreated

control; (B) platelet aggregation by ADP; (C) platelets co-incubated with

P1Cm (0.075mM) and ADP. Lower panel, Platelet counts. P1Cm inhibited

ADP-induced platelet aggregation at different concentrations by platelet count

assay. The blank group was the sample without ADP and P1Cm treatment.

Data are expressed as mean ± SM (n = 20). #P < 0.05 vs. saline group.

*P < 0.05 vs. ADP group.

FIGURE 3 | Effect of P1Cm on coagulation. *P < 0.05 significantly different

from saline group. #Significantly different from the rest of the groups. Data are

expressed as mean ± SM (n = 6).

fluorescence (Figure 4E). The platelets gave off red fluorescence
(Figure 4C) after subsequent treatment with anti-αIIb antibody
or anti-β3 antibody and goat anti-mouse antibody-PE. Only red
fluorescence was present when the platelets were pre-incubated
with β3 antibody before FITC-P1Cm treatment (Figure 4D). In
contrast, both green and red fluorescence were observed when
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FIGURE 4 | P1Cm specifically binds to platelets using confocal microscopy. (A) Untreated platelets. (B) Platelets pre-treated with anti-αIIb antibody, followed

by an addition of goat anti-mouse antibody-PE and FITC-P1Cm. (C) Platelets pre-treated with anti-αIIb followed by an addition of goat anti-mouse antibody-PE. (D)

Platelets were pre-incubated with anti-β3 antibody, followed by the incubation with goat anti-mouse antibody-PE and FITC-P1Cm. (E) Platelets were incubated with

FITC-P1Cm.

Frontiers in Pharmacology | www.frontiersin.org 5 March 2016 | Volume 7 | Article 49

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Qu et al. A Novel Pentapeptide Inhibits Platelet Aggregation

the platelets were subsequently treated with anti-αIIb antibody,
goat anti-mouse antibody-PE, and FITC-P1Cm (Figure 4B). No
fluorescence signal was found in blank platelets without any
treatment (Figure 4A).

Flow cytometric assay was performed to further confirm the
affinity between P1Cm with the β3-subunit. Flow cytometry
was used to determine the expression of αIIb/β3-subunits of
integrin and their interaction with FITC-labeled P1Cm. As
shown in Figure 5, the αIIb- and β3-expression in platelets were
70.23 ± 2.34 and 50.18 ± 4.86%, respectively, with fluorescence
signals located in the upper left quadrant (PE red; Figures 5A,B).
The signal of the P1Cm-FITC bound platelets was 47.50 ±

5.21%, as shown in the lower right quadrant (FITC green;
Figure 5C). No competition was observed between anti-αIIb
mAb with P1Cm for platelet binding because the FITC green
channel signal barely changed after receiving extra anti-αIIbmAb
(50.45 ± 7.31 vs. 47.50 ± 5.21%). Some of the platelets were
also double-stained (Figure 5D) after being co-incubated with
P1Cm-FITC and anti-αIIb mAb. Consistent with the confocal
microscopy result, the platelets pre-incubated with β3 antibody
no longer showed affinity with P1Cm, as shown in Figure 5E,
indicating that anti- β3 competed with P1Cm for the same target.
An untreated platelet sample was used as the blank control
(Figure 5F).

In vivo Antithrombotic Activity
CDFI was used to detect the thrombosis size and evaluate the
stenosis of the blood vessel through peak systolic flow velocity
(PSFV). Anti-coagulation treatments significantly relieved the
thrombosis. PSFV was negatively related to the vascular stenosis
rate (VSR). When the vessel was blocked by thrombus, the flow
rate increased as compensation for the supply of sufficient blood
to the tissue. As expected, the highest P1Cm dosage resulted in
the slowest PSFV and the smallest VSR (Figure 6, Table 2), and
its effects were very close to those of tirofiban on PSFV and VSR.
The thrombosis areas in the carotid artery were 0.173 ± 0.004,
0.077 ± 0.004, and 0.0162 ± 0.002 cm2 for the saline, low-dose,
andmiddle-dose groups, respectively, but these were not detected
in the high-dose group (Table 2, Figure S1 and Figure 6). P1Cm
prevented thrombosis in a concentration-dependent manner,
and a difference was observed within the P1Cm groups in
thrombosis size, VSR, and PSFV (P < 0.01). The vessel of the
saline-treated model group was almost blocked without PSFV
detection.

In the artery-vein shunt model, thrombus formation was
prevented by antiplatelet treatment (Table 2). The thrombus
weights evidently decreased by 9.33, 20.04, 43.35, and 39.92%
from the P1Cm (low 0.15mM, middle 0.30mM, and high
dosage 0.45mM) and tirofiban 0.15mM groups, respectively, in
comparison with those from the saline group. The difference
was statistically significant between the saline and treated groups
(P < 0.05), except for the P1Cm low-dose group (P > 0.05).

As shown in Table 3, both P1Cm and tirofiban seemed safe
when IC90 or a lower dosage was applied. P1Cm seemed to
be safer than tirofiban when a higher dosage of 10X IC90 was
applied. In contrast to the effects of P1Cm, the mice showed
motor retardation after receiving 10X IC90 of tirofiban, and

two mice died within 16 h. Pathological examination showed the
mesentery was characterized by local hemorrhage.

DISCUSSION

Aberrant platelet activationmay cause thrombosis and eventually
lead to serious vascular symptoms, such as cerebral stroke
and myocardial infarction (De Luca, 2012). As an essential
molecule during platelet activation and aggregation, αIIbβ3 is
an excellent target for therapeutic intervention in thrombotic
diseases (Nicholls et al., 2012; Diamond, 2013).

We reported on P1C as an integrin-targeting peptide. In
this study, a pentapeptide (IRTPK), P1Cm with antiplatelet
aggregation, was screened out from a series of P1C truncated
forms (Table 1). Numerous substances can target integrin, but
few studies report on the discrimination of the two subunits
of integrin for targeting. Through flow cytometry and confocal
microscopy analyses, we demonstrated that P1Cm was targeted
on the β3-subunit. Reports have indicated that the soluble form of
the CD40 ligand, a tumor necrosis factor family member, mainly
expressed on activated T-cells and platelets can mediate platelet
stimulation by binding αIIbβ3 through a KGD domain (Prasad
et al., 2003; Lonsdorf et al., 2012). The β3-subunit is enriched on
the platelet surface, an outcome that is the theoretical basis of the
present study.

In the model of carotid thrombosis induced by ferric
chloride, P1Cm inhibited arterial thrombus formation in a
concentration-dependent manner. The CDFI results illustrated
that the thrombosis size and PSFV from the mid- and high-
dose groups were statistically different compared with those from
the saline group (P < 0.05). Significant differences were also
observed between the three P1Cm dosage groups (P < 0.05). The
result of pathological examination was in accordance with that of
CDFI. The artery-vein shunt thrombosis model also showed the
efficiency of P1Cm to reduce thrombus weight.

Our primary results indicated the weak effect of P1Cm in vivo
when used at the concentration of IC50; thus, 2x IC50 was
chosen as the lowest concentration for the in vivo experiments.
In this study, P1Cm showed 43.35% thrombotic inhibition at
a dose of 0.45mmol/kg, which was equal or even superior to
the effect of tirofiban at the dose of 0.15mmol/kg, as shown by
the in vivo experiment. Importantly, P1Cm seemed to be safer
than tirofiban, as shown by the coagulation assay and in vivo
toxicity evaluation. P1Cm had less effect on the extrinsic and
intrinsic coagulation cascades. PT and APTT are usually used
to evaluate the extrinsic and intrinsic coagulation pathways,
respectively. In contrast to tirofiban, no significant difference in
PT or APTT was found between the P1Cm-treated groups (high,
middle, and low doses), and the saline group (P > 0.05) in this
study. The lethal dose of P1Cm overreached 10X IC90 of P1Cm,
whereas tirofiban caused mouse death at the dosage of 10X IC90.
Histological examination indicated that tirofiban caused capillary
vessel hemorrhage.

In the last decades, millions of thrombosis patients have
benefited from antiplatelet treatments, including αIIbβ3
inhibitors, and most have survived. Nevertheless, these patients
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FIGURE 5 | FITC-labeled P1Cm specifically binds to platelets using flow cytometry. (A) Platelet sample treated with anti-αIIb antibody and goat anti-mouse

antibody-PE successively. (B) Sample treated with anti-β3 antibody and goat anti-mouse antibody-PE. (C) Sample treated with FITC-P1Cm. (D) Sample pre-treated

with anti-αIIb antibody, followed by an addition of goat anti-mouse antibody-PE and FITC-P1Cm. (E) Samples pre-incubated with anti-β3antibody, followed by an

addition of goat anti-mouse antibody-PE and FITC-P1Cm. (F) Untreated platelets.

FIGURE 6 | Pathological images of thrombosis in carotid artery. Slices of carotid artery after rats received (A) 0.15mmol/kg P1Cm, (B) 0.30mmol/kg P1Cm, or

(C) 0.45mmol/kgP1Cm, (D) 0.15mmol/kg tirofiban, or (E) saline.

TABLE 2 | Effects of P1Cm on the carotid thrombosis model and the artery-vein shunt model.

Groups (mmol/kg) PSFV (cm/s) SIZE/area (cm2) EMW (mg) VSR (%)

Saline None# 0.173 ± 0. 004 46.07 ± 4.46 83.95 ± 5.91

Tirofiban 0.15 84.2 ± 3.50* 0.007 ± 0.001* 27.51 ± 4.03* 28.25 ± 5.83*

P1Cm 0.15 109.6 ± 10.52* 0.077 ± 0.004* 41.77 ± 5.87 66.05 ± 6.99

P1Cm 0.30 97.3 ± 3.22* 0.016 ± 0.002* 36.83 ± 4.86* 50.00 ± 8.50*

P1Cm 0.45 81.5 ± 5.59* None+ 26.10 ± 4.74* 31.84 ± 12.72*

Thrombosis size (Size/area), peak systolic flow velocity (PSFV), and vascular stenosis rate (VSR) were measured after administering P1Cm at a dose of 0.15–0.45mmol/Kg in the ferric

chloride-induced carotid thrombosis models (n = 6). Thrombosis wet weights (EMW) were measured after administering P1Cm at a dose of 0.15–0.45mmol/Kg in the artery-vein shunt

models (n = 10). Data are expressed as mean±SD. #Blood vessel was almost blocked by thrombus. +No thrombus was detected. *P < 0.05 vs. saline groups.

were confronted with another risk of intrinsic bleeding, which
raised the paradox of the antiplatelet substance being able to
inhibit the thrombosis efficiently but not affecting the normal
coagulation. Given that platelets play an essential role in
hemostasis and thrombosis (Abtahian et al., 2015), balancing
platelet function is effective in preventing thrombosis and seems

to be the key to reducing bleeding risk during antiplatelet therapy
(Viswanathan et al., 2012). In fact, because of the high risk of
bleeding due to their unconscionable high affinity to αIIbβ3,
receptor inhibitors are no longer considered clinically safe
(Elcioglu et al., 2012). The occurrence of thrombocytopenia and
the increased risk of major and minor bleeding complications
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TABLE 3 | Acute toxicity of P1Cm and Tirofiban in mice (n = 6).

Dosage/mortality IC50 IC90 10x IC90

P1Cm 0 0 0

Tirofiban 0 0/6 2/6

have become main concerns. Thrombocytopenia is frequently
reported for abciximab, eptifibatide, and tirofiban treatment,
and bleeding complications are regarded as major determinants
of clinical outcomes in percutaneous coronary interventions
(Huynh et al., 2005). However, αIIbβ3 inhibitors are still
widely used to prevent periprocedural thrombosis during
PCI. Thus, the need for novel, safe antithrombotic drugs is
urgent.

Balancing the risk of thrombocytopenia or bleeding
complications with the curative effect of anti-coagulants is
a difficult undertaking (Ji and Hou, 2011). The key lies in
the affinity of P1Cm to αIIbβ3. One possible solution is to
administer P1Cm by continuous infusion. P1Cm may alleviate
the risk of thrombocytopenia and bleeding complications, as it
shows relatively smaller efficiency than other αIIbβ3 inhibitors.
Cyclization is another option to improve the affinity. We plan to
focus on modifying the structure to further develop P1Cm.

In addition, unlike eptifibatide from snake venom, P1Cm is
a small peptide derived from human connective tissue growth
factor, and it is expected to cause very limited allergic or
hypersensitivity reactions during or after infusion. Compared
with antibodies such as abciximab, P1Cm is a small peptide of
5-amino acid that results in less stereo-specific blockades, and
possibly a high drug-to-receptor ratio. In reference to the results
on toxicity in vivo (Table 3), the safety of P1Cm is apparently
superior to, but not as effective as, that of tirofiban.

In conclusion, P1Cm can clearly inhibit ADP- or TH-induced
human platelet aggregation in vitro in a concentration-dependent

manner by specifically binding to the β3-subunit. Compared
to tirofiban, P1Cm seems to be safe when a much higher
dosage is applied in vivo, with less effect on the extrinsic
and intrinsic coagulation pathways. Further experiments using
two rat thrombosis models demonstrated that P1Cm is
also an excellent antithrombotic agent in vivo. P1Cm is a
promising antithrombotic alternative to currently available
treatments.
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