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The extracellular matrix critically controls cancer cell behavior by inducing several

signaling pathways through cell membrane receptors. Besides conferring structural

properties to tissues around the tumor, the extracellular matrix is able to regulate cell

proliferation, survival, migration, and invasion. Among these receptors, the integrins family

constitutes a major class of receptors that mediate cell interactions with extracellular

matrix components. Twenty years ago, a new class of extracellular matrix receptors

has been discovered. These tyrosine kinase receptors are the two discoidin domain

receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum

and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences

with DDR1. Both receptors are activated upon binding to collagen, one of the most

abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar

collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens.

In contrast with classical growth factor tyrosine kinase receptors which display a rapid

and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and

sustained receptor phosphorylation upon binding to collagen. Recent studies have

reported differential expression andmutations of DDR1 and DDR2 in several cancer types

and indicate clearly that these receptors have to be taken into account as new players

in the different aspects of tumor progression, from non-malignant to highly malignant

and invasive stages. This review will discuss the current knowledge on the role of

DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal

transition, migratory, and invasive processes, and finally the modulation of the response

to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential

targets in cancer therapy.

Keywords: discoidin domain receptors, tyrosine kinase, extracellular matrix, collagen, cell signaling, cancer,

targeted therapy

INTRODUCTION

While advances in treatment have increased the survival rate for many cancers, it is still one of
the leading causes of death in the world, particularly in developing countries. Cancer represents
a tremendous burden on patients, families and societies. Yet, it is generally accepted that cancer
risk actually depends on a combination of genes aspects, environment and lifestyle. After surgery,
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radiation therapy (RT) has long been an integral component of
cancer care. It is usually employed to locally eradicate tumor cells
as well as alter tumor stroma with either curative or palliative
intent. Despite many improvements (image guided radiotherapy,
intensity modulated radiotherapy, etc.), RT often fails to provide
local tumor control, and delivering higher doses of radiation
alone is unlikely to solve this problem (Higgins et al., 2015).
In addition, neither surgery nor radiotherapy could control the
metastatic spread of tumor. Therefore, current efforts have been
focusing on understanding the molecular, cellular, and systemic
processes driving cancer initiation, progression, heterogeneity,
and metastatic spread.

The extracellular matrix (ECM) critically controls cancer
cell behavior by inducing several signaling pathways. Besides
conferring structural properties to tissues, ECM is able to regulate
cell proliferation, survival, migration, and invasion (Lu et al.,
2012). As a major part of the tumor ECM, type I collagen exhibits
high density and altered architecture in malignant cancer and is
causally linked to tumor formation and metastasis (Provenzano
et al., 2006, 2008). Until recently, these effects on tumor cells were
exclusively attributed to integrins; a major class of receptors that
mediate cell interactions with extracellular matrix components.
The identification of the Discoidin Domain Receptor (DDR)
family as collagen receptors represents a new paradigm in the
regulation of collagen-cell interactions and regulation of tumor
progression.

DDR1 and DDR2 were initially discovered by homology
cloning based on their catalytic kinase domains and were
orphan receptors until 1997 when Shrivastava and co-workers,
and Vogel and co-workers, reported that different types of
collagen are functional ligands for these receptors (Shrivastava
et al., 1997; Vogel et al., 1997). Indeed, DDRs belong
to the large family of receptor tyrosine kinases based on
the presence of a catalytic kinase domain with a distinct
extracellular Discoidin (DS) homology domain (Johnson et al.,
1993; Alves et al., 1995; Perez et al., 1996). DDR1 was first
identified in the Dictyostelium discoideum and was shown
to mediate cell aggregation (Breuer and Siu, 1981; Springer
et al., 1984). DDR2 shares highly conserved sequences with
DDR1 (Carafoli et al., 2009). Both receptors are activated
upon binding to collagen. DDR1 is activated by various types
of collagen including type I, IV, V, VI, and VIII, whereas
DDR2 is only activated by fibrillar collagens, in particular
collagens type I, III, and type X (Shrivastava et al., 1997;
Vogel et al., 1997; Leitinger and Kwan, 2006). In contrast
with classical growth factor tyrosine kinase receptors such as
the epithelial growth factor receptor (EGFR) and fibroblast
growth factor receptor (FGFR) which display a rapid and
transient activation (Dengjel et al., 2007), DDR1 and DDR2
are unique in that they exhibit remarkably delayed and
sustained receptor phosphorylation upon binding to collagen
(Vogel et al., 1997). Furthermore, many classical tyrosine
kinase receptors (RTKs) undergo negative regulation such
as receptor/ligand internalization and subsequent degradation
or dephosphorylation by phosphatases (Avraham and Yarden,
2011). In the case of DDRs, phosphorylation levels may persist
up to 18 h (Vogel et al., 1997).

Both DDRs are expressed early during embryonic
development as demonstrated in many in vivo studies (Valiathan
et al., 2012). Indeed mice lacking DDR1 or DDR2 exhibit major
defects in skeletal development (Bargal et al., 2009), reproduction
(Matsumura et al., 2009; Kano et al., 2010), inflammation (Olaso
et al., 2011), and cardiovascular system (Franco et al., 2010).
In addition, they are uniquely positioned to function as
sensors for ECM and to regulate a wide range of cell functions
such as migration, cell proliferation, cytokine secretion, and
ECM homeostasis/remodeling (Valiathan et al., 2012). While
activation of DDRs is required for normal development, studies
have reported differential expression andmutations of DDR1 and
DDR2 in several cancers (Valiathan et al., 2012). In malignant
transformation, cell proliferation, epithelial to mesenchymal
transition, migration, and invasive processes, the role of DDRs
in different aspects of tumor progression will be highlighted.
We further discuss recent studies on DDRs as a therapeutic and
potential target in cancer but also its role in the modulation of
the response to chemotherapy. Hopefully, these useful updates
will encourage more research on DDRs in cancer and the
possibility to better identify them as promising targets for future
therapies.

STRUCTURE, FUNCTION AND
REGULATION OF DDRs (FIGURE 1)

Structurally, DDRs are characterized by 4 different domains:
an extracellular region composed of an N-terminal DS domain
and a DS-like domain which binds to collagen. DDR1 and
DDR2 share high degree of sequence identity in DS and DS-
like domains with 59 and 51% of similarity, respectively (Carafoli
and Hohenester, 2013). The juxtamembrane (JM) domain is
composed of extracellular JM regions of about 50 amino acids
for DDR1 and 30 for DDR2 followed by large cytosolic JM
regions of about 171 amino acids for DDR1, depending on the
protein isoform, and 142 for DDR2 (Leitinger, 2011; Carafoli
and Hohenester, 2013). Finally, the catalytic tyrosine kinase
domain (KD) is composed of 300 amino acids, undergoes
phosphorylation and activates downstream signaling. This KD is
ended by a short C-terminal peptide of about 8 amino acids for
DDR1 and 6 amino acids for DDR2 (Carafoli and Hohenester,
2013). For detailed structural studies, readers are invited to refer
to the cited references (Carafoli et al., 2009, 2012; Fu et al., 2013;
Li et al., 2015).

Unlike DDR2, five isoforms of DDR1 (DDR1a, b, c, d,
and e) have been described as they exhibit differences in the
extent of glycosylation (Vogel, 1999), phosphorylation (Vogel
et al., 2006; Carafoli and Hohenester, 2013), protein interactions
(Matsuyama et al., 2003), expression patterns, and functions
(Vogel et al., 2006). DDR1a, b, and c are kinase-active, whereas
DDR1d and e are kinase-deficient because of frame shift and
truncation (Alves et al., 2001). While the longest isoform
(DDR1c) is composed of 919 amino acids, DDR1a and DDR1b,
the most abundant isoforms, lack 37 amino acids in the JM
domain or 6 amino acids in the KD. DDR1d andDDR1e isoforms
are C-terminally truncated receptors. DDR1d lacks exons 11 and
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FIGURE 1 | Structure of the different Discoidin Domain Receptors. DDR1a, DDR1b, DDR1c, and DDR2 are enzymatic active receptors, and DDR1d and

DDR1e are inactive kinase-deficient receptors. DS, discoidin domain; DS-like, discoidin-like domain; EJXM, extracellular juxtamembrane region; TM, transmembrane

segment; IJXM, intracellular juxtamembrane region; KD, kinase domain; AA, Amino Acid.

12 causing a frame-shift mutation that generates a stop codon and
premature termination of transcription, whereas DDR1e lacks
exons 11 and 12 as well as the first half of exon 10 (Alves et al.,
1995, 2001). In 2006, a sixth isoform that lacks a part of the
extracellular domain has been described in the postmeiotic germ
cells of the rat testis (Mullenbach et al., 2006).

DDRs control important aspects of cell behavior including
proliferation, migration, adhesion, and ECM remodeling but
are dysregulated in various human diseases. They are both
activated by several types of collagen. However, this activation
strictly requires collagen to be in its native and triple-helical
conformation. Heat-denatured collagen is not recognized by
DDRs (Leitinger and Kwan, 2006; Dengjel et al., 2007). Both
receptors are commonly activated by various types of collagen
(mainly type I) but distinctly activated by type IV for DDR1
and type X for DDR2 (Dengjel et al., 2007; Avraham and
Yarden, 2011). Surprisingly, the substitution of five peripheral
amino acids in DDR2 with their DDR1 counterparts converts
DDR2 into a receptor of type IV collagen (Xu et al., 2011).
Another intriguing feature of DDRs is their unusually slow
autophosphorylation upon stimulation by the ligand compared
with typical RTKs (hours rather than seconds; Dengjel et al.,
2007). Furthermore, DDRs dimerization is essential for collagen
recognition unlike other RTKs in which ligand binding leads to
receptor dimerization (Leitinger, 2003). By contrast to DDR2
which binds to several collagen peptides (Farndale et al., 2008),
DDR1 binding is restricted to the GVMGFO motif (Gu et al.,
2011). This collagen binding site of DDRs is highly conserved, 11
of the 13 amino acids identified by nuclear magnetic resonance

(NMR) by Ichikawa and co-workers are identical between DDR1
and DDR2 (Ichikawa et al., 2007).

Upon collagen binding, specific tyrosines residues present
in the activation loop of DDRs tyrosine kinase domain are
phosphorylated. Phosphorylation of these tyrosine residues leads
to the binding of a number of different Src homology 2 (SH2)
and phosphotyrosine binding (PTB) domain containing proteins
(Carafoli and Hohenester, 2013). Moreover, the activated KD
of DDRs is believed to autophosphorylate several tyrosines in
the JM region, which serve as docking sites for several adaptor
proteins such as SH2 domain containing transforming protein
1 (Shc1) (Ikeda et al., 2002), cytoplasmic protein Nck2 (Koo
et al., 2006), protein tyrosine phosphatase SHP-2 (Wang et al.,
2006), cell division control protein 42 (Cdc42) (Yeh et al., 2009),
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) (Das et al., 2006), extracellular signal-regulated kinase
mitogen-activated protein kinase (ERK1/2-MAPK) (Su et al.,
2009), activator protein (AP)-1 (Su et al., 2009), and members
of the signal transducers and activators of transcription (STAT)
family of transcription factors (Wang et al., 2006). Defining
DDR signaling pathways has always been a challenging task.
Indeed, DDRs bind to multiple collagens and both exhibit
unique and common structural and activation properties, but
phosphorylate different target receptors (Ongusaha et al., 2003).
In addition, DDRs may act in concert with other signaling
receptors, including the Wnt5a/Frizzled (Dejmek et al., 2003)
and Notch1 (Kim et al., 2011) receptors in the case of DDR1
and the insulin receptor (Iwai et al., 2013a) in the case of
DDR2. Finally, DDRs signaling is cell/tissue type-specific and

Frontiers in Pharmacology | www.frontiersin.org 3 March 2016 | Volume 7 | Article 55

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Rammal et al. DDR1 and DDR2 in Cancer

context-dependent. For example, DDR1 inhibits cell migration
in Madin-Darby canine kidney (MDCK) cells (Wang et al., 2006)
whereas, in other cellular systems, DDR1 and DDR2 promote cell
migration and/or invasion (Yoshida and Teramoto, 2007).

DDRs IMPLICATION IN CANCER
(TABLES 1, 2)

DDRs have been linked to tumor progression in several human
cancers. In fact, several studies have shown that the expression
and activation of DDRs are often dysregulated in such diseases
(Valiathan et al., 2012). In addition, somatic mutations of DDRs
genes have been found in various cancers (Ford et al., 2007).
In the case of DDR2, these mutations are present in 3–4% of
patients with lung squamous cell cancer (Hammerman et al.,
2011) and have been reported in other cancers at comparable
frequencies including lung adenocarcinoma, cervical carcinoma,
gastric carcinoma, bladder carcinoma, melanoma, colorectal
cancer, head, and neck cancer (Beauchamp et al., 2014). Mutation
known as I638F, has been shown to promote resistance to
inhibitors of DDR2 kinase function (Hammerman et al., 2011;
Figure 2). Nevertheless, the picture is still complicated by the
fact that DDRs can act also as anti-tumorigenic receptors and
their effect is highly dependent on the type of cancer and
the nature of the microenvironment. In the following parts,
we will try to explore recent data on the role of DDR1 and
DDR2 in malignant transformation, cell proliferation, epithelial
to mesenchymal transition, migratory, and invasive processes.

CELL PROLIFERATION AND SURVIVAL

The emerging role of DDRs in tumor cell survival/proliferation
and their crosstalk with oncogenic signaling was previously
evaluated through in vitro and/or in vivo DDRs silencing
strategies. Both DDR1 and DDR2 can exhibit pro- (Ongusaha
et al., 2003; Das et al., 2006; Yamanaka et al., 2006; Hammerman
et al., 2011; Kim et al., 2011, 2014; Cader et al., 2013; Han
et al., 2014; Rudra-Ganguly et al., 2014) and anti- (Wall
et al., 2005, 2007; Assent et al., 2015) proliferative activities
in a cell type and context-dependent manner. Targeting DDR1
with siRNA in glioma (Yamanaka et al., 2006) and pancreatic
adenocarcinoma cell lines (Rudra-Ganguly et al., 2014) inhibited
tumor cell proliferation in vitro and impaired subcutaneous
xenograft tumor growth in mice. Upregulation of transforming
growth factor beta 1 (TGFβ1), following DDR1 silencing, is
thought to induce tumor cell growth arrest (Rudra-Ganguly
et al., 2014). Furthermore, inhibition of DDR1 in human colon
carcinoma cells (Ongusaha et al., 2003), breast cancer cell lines
(Ongusaha et al., 2003; Das et al., 2006) and collagen treated
Hodgkin lymphoma cells (Cader et al., 2013) resulted in an
increase in cell death in response to induced DNA damage
(Ongusaha et al., 2003; Das et al., 2006; Cader et al., 2013).
These data suggest that DDR1 expression in tumor cells can
confer resistance to chemotherapeutic drugs. This resistance is
thought to be due to an activation of NFκB and its downstream
effectors, including cyclooxygenase-2 (COX-2) which plays a

FIGURE 2 | DDRs reported mutations in cancer. Domain distribution of

somatic mutations of mutated DDR1 and DDR2 identified in lung cancer (red)

and Acute Myeloid Leukemia (green) samples. Blue spots represent mutation

with undefined role. Gray spot represent a mutation that promotes tumor cell

proliferation and invasion. Pink spots represent a mutation that activates

constitutively DDRs. Black spots represent mutations responsible for an

increased sensitivity to dasatinib. Orange spot represents the “gatekeeper

mutation,” responsible for the resistance of tumor cells to dasatinib. DS,

discoidin domain; DS-like, discoidin-like domain; EJXM, extracellular

juxtamembrane region; TM, transmembrane segment; IJXM, intracellular

juxtamembrane region; KD, kinase domain.

role in resistance to chemotherapy-induced apoptosis (Cao and
Prescott, 2002; Das et al., 2006) or by counteracting p53 mediated
apoptosis (Ongusaha et al., 2003). Consistently, studies in human
HCT116 colon carcinoma cells showed that DDR1, in response
to collagen-induced activation, promotes cell survival in a Notch
signaling manner (Kim et al., 2011).

In the case of DDR2, mutations of the receptor were shown
to promote cell growth in NIH3T3 mouse embryonic fibroblast
cells [(Hammerman et al., 2011) section Supplementary Data,
Figure S3-a]. An upregulation of DDR2 followed by an
increase in cell proliferation and survival is thought to be
induced by an overexpression of COX-2 in U2OS human
osteosarcoma cells (Han et al., 2014). In H1299 cells, inhibition
of DDR2 activity by overexpressing the juxtamembrane domain
containing JM2 suppressed collagen-induced colony formation
and cell proliferation. JM2-mediated DDR2 dimerization is likely
to be essential for activation of the receptor and cell proliferation.
Thus, inhibition of DDR2 function using a JM2-containing
peptide may be a useful strategy for the treatment of DDR2-
positive cancers (Kim et al., 2014).

In contrast to the above studies, DDR1 and DDR2 can also
act as cell growth inhibitors. Indeed, DDR2 has been reported to
induce an inhibitory effect on proliferation of human melanoma
and fibrosarcoma cells, once cultured on fibrillar collagen, with a
growth arrest in the G0/G1 phase of the cell cycle. This process
was shown to be induced through p15INK4b cyclin-dependent
kinase inhibitor, raising the question whether p15INK4b could
be a downstream target of DDR2 signaling (Henriet et al.,
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TABLE 1 | Non-exhaustive list of reported DDRs in vitro functions in various aspects of cancer progression.

DDR1 in cancer cells DDR2 in cancer cells

Positive regulator

Proliferation /survival - Human glioma: U251, GI-1 and T98G (Yamanaka

et al., 2006)

- Human pancreatic adenocarcinoma: BXPC3

(Rudra-Ganguly et al., 2014) - Human colon

carcinoma: HCT116 (Ongusaha et al., 2003; Kim et al.,

2011)

- Human osteosarcoma: Saos2 (Ongusaha et al., 2003)

- Human breast cancer: MCF-7 (Ongusaha et al.,

2003), MDA-MB-435 and T47D (Das et al., 2006)

- Human Hodgkin lymphoma: L428 (Cader et al.,

2013).

- Human squamous cell lung cancer: H2286 and HCC366

(Hammerman et al., 2011) - Human osteosarcoma: U2OS

(Han et al., 2014)

- Human squamous cell lung cancer: H1299 (Kim et al., 2014)

- Human melanoma: A375 (Badiola et al., 2011)

- Human hepatoma: SKHEP (Badiola et al., 2011)

- Human colon carcinoma: HT-29 (Badiola et al., 2011).

EMT - Human hepatoma: HAK-1A and HAK-1B (Maeyama

et al., 2008)

- Human non-small cell lung carcinoma: A549 (Walsh

et al., 2011)

- Human colorectal cancer: LOVE1 and LOVO (Hu

et al., 2014)

- Human pancreatic adenocarcinoma: BxPC3 (Shintani

et al., 2008).

- Human lung carcinoma: A549 (Walsh et al., 2011)

- Human breast cancer: MDA-MB-231 (Zhang et al., 2013;

Ren et al., 2014), MCF-7 and MDA-MB-468 (Ren et al.,

2014).

Migration - Human glioma: G140 (Ram et al., 2006)

- Human hepatocellular carcinoma: HLE and Huh-7

(Park et al., 2007)

- Human non-small cell lung carcinoma: A549 and

H358 (Yang et al., 2010) - Human pancreatic cancer:

BxPC3 (Rudra-Ganguly et al., 2014)

- Human colorectal cancer: LOVE1 and LOVO (Hu

et al., 2014)

- Human breast cancer: MCF-7 (Huang et al., 2009),

MDA-MB-231 (Castro-Sanchez et al., 2010),

MDA-MB-468 and T47D (Neuhaus et al., 2011).

- Human melanoma: A375 (Badiola et al., 2011) - Human

hepatoma: SKHEP (Badiola et al., 2011)

- Human colon carcinoma: HT-29 (Badiola et al., 2011)

- Human prostate cancer: PC-3 (Yan et al., 2014)

- Human lung carcinoma: A549 (Walsh et al., 2011)

- Human nasopharyngeal carcinoma isolated cells (Chua

et al., 2008) - Murine melanoma: B16BL6 (Poudel et al.,

2015).

Invasion - Human glioma: G140 (Ram et al., 2006)

- Human hepatocellular carcinoma: HLE and Huh-7

(Park et al., 2007)

- Human oral squamous cell carcinoma: A431

(Hidalgo-Carcedo et al., 2011)

- Human colorectal cancer: LOVE1 and LOVO (Hu

et al., 2014)

- Human non-small cell lung carcinoma: A549 (Yang

et al., 2010; Miao et al., 2013; Juin et al., 2014) and

H358 (Yang et al., 2010)

- Human hepatoblastoma: Huh6 (Juin et al., 2014)

- Human breast cancer: MDA-MB-231

(Castro-Sanchez et al., 2011; Juin et al., 2014) -

Human prostate cancer: PC-3 (Shimada et al., 2008)

- Human pituitary adenoma: HP-75 (Yoshida and

Teramoto, 2007).

- Human prostate cancer: LNCaP and PC-3 (Yan et al., 2014)

- Human squamous cell lung cancer: H1299 (Kim et al., 2014)

- Human breast cancer: MDA-MB-231 (Zhang et al., 2013) -

Murine melanoma: B16BL6 (Poudel et al., 2015).

Negative regulator

Proliferation /survival - Human breast cancer: MCF-7 and ZR-75-1 (Maquoi

et al., 2012; Assent et al., 2015).

- Human melanoma: A2058 (Wall et al., 2005) and M24met

(Henriet et al., 2000; Wall et al., 2005, 2007)

- Human fibrosarcoma: HT-1080 (Wall et al., 2005)

- Human squamous cell lung cancer: (Iwai et al., 2013b; Miao

et al., 2014).

EMT - Human breast cancer: Hs578T, MCF-7 and

MDA-MB-231 (Koh et al., 2015).

NR

Migration - Human breast cancer: MCF-7 (Hansen et al., 2006),

MDA-MB-231 (Hansen et al., 2006; Koh et al., 2015)

and Hs578T (Koh et al., 2015).

- Murine colon carcinoma: MCA38 (Badiola et al., 2012).

Invasion NR NR

DDR, Discoidin domain receptor; EMT, Epithelial mesenchymal transition; NR, not reported.
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TABLE 2 | Insights into DDRs contribution in cancer from in vivo studies.

Cancer cell type In-vivo model Reported Results References

DDR1

Human pancreatic

adenocarcinoma

BXPC3 mouse tumor xenografts shRNA-DDR1 silencing reduced the growth of

tumor xenografts (∼50% reduction compared

to control)

Rudra-Ganguly et al., 2014

Human colon carcinoma HCT116 mouse tumor xenografts shRNA-DDR1 silencing reduced the growth of

tumor xenografts (∼30% reduction compared

to control)

Kim et al., 2011

Human breast cancer Hs587T and MDA-MB-231 cells seeded on

upper layer of Chorioallantoic membrane

(CAM)

DDR1 overexpression in cells, induced a

decreased invasion after 48 h of incubation

Koh et al., 2015

Human prostate cancer Androgen independent-LNCaP and LNCaP

prostate seeded on CAM

siRNA-DDR1 silencing in cells, induced a

decreased invasion after 72 h of incubation

Shimada et al., 2008

DDR2

Human squamous cell

lung cancer (SCC)

NCI-H1703, NCI-H2286 or A549 cells

athymic nude mouse xenografts

Dasatinib inhibited the proliferation of

DDR2-mutated SCC cell lines (NCI-H1703,

NCI-H2286 but not A549) in xenograft studies

Hammerman et al., 2011

Human melanoma Intrasplenic inoculation of A375R2-70 and

A37R2-40 cells in C57BL/6J-Hfn11 nude

mice

siRNA-DDR2 silencing in A375R2-70 and -40

reduced experimental liver metastasis

development, by 60 and 75%, respectively

Badiola et al., 2011

Mouse breast cancer 4T1-Luc/GFP cells implantation into the

breast tissue of syngeneic Balb/cJ mice

DDR2 depletion led to a reduced metastatic

capacity of 4T1-Luc cells

Zhang et al., 2013

Human breast cancer MDA-MB-231-luc-D3H2LN cells

transplantation into nude mice mammary fat

pads

shRNA-DDR2 silencing improved mice lifespan

and attenuated cells invasive capacity even 7

weeks after transplantation

Ren et al., 2014

Human prostate cancer PC-3 cells intrabone injection in mice

metastasis model

DDR2 depletion alleviated PC-3 cells induced

osteolytic lesions, signature of bone destruction

Yan et al., 2014

Murine colon carcinoma Intrasplenic MCA38 cells injection into

DDR2-deficient mice

Increase in cancer cells hepatic colonization

efficiency (hepatic occupied volume and

number of metastatic foci per area unit)

Badiola et al., 2012

shRNA, Short hairpin ribonucleic acid; siRNA, small interfering ribonucleic acid.

2000; Wall et al., 2005, 2007). SHP-2 has been shown to be a
key downstream component of DDR2 signaling. Indeed, Iwaï
and co-workers demonstrated that the mutation I638F in the
kinase domain of DDR2, leads to an inhibition of SHP-2
phosphorylation and a loss of its cell growth suppression effect,
whereas mutations L63V in the discoidin domain and G505S
in the intracellular juxtamembrane region don’t have any effect
on SHP-2 phosphorylation (Iwai et al., 2013b). In addition,
the mutation S131C in the DS domain of DDR2 was able to
increase squamous cell lung cancer (SCC) proliferation in vitro
and in vivo (Miao et al., 2014; Figure 2). Related to DDR1, it
has been identified as a key sensor that monitors the cellular
microenvironment and triggers apoptosis through the induction
of the pro-apoptotic Bcl-2-interacting killer protein (BIK) in
luminal breast cancer cells within a collagen three dimensional
culture system (Maquoi et al., 2012; Assent et al., 2015).

EPITHELIAL/MESENCHYMAL TRANSITION

The epithelial to mesenchymal transition (EMT) plays crucial
role in the differentiation of multiple tissues and organs. EMT

also contributes to tissue repair, but it can adversely cause organ
fibrosis and promote tumor progression through a variety of
mechanisms. EMT is characterized by an increase in cell motility
and invasiveness, induction and maintenance of stem cell
properties, prevention of apoptosis, senescence, and resistance
to therapy (Thiery et al., 2009). Tumor cells that undergo EMT
are found to express less epithelial markers such as E-cadherin
(Maeyama et al., 2008; Walsh et al., 2011; Zhang et al., 2013; Hu
et al., 2014; Ren et al., 2014; Koh et al., 2015) and cytokeratins
(Maeyama et al., 2008) but express more mesenchymal markers
such as vimentin (Maeyama et al., 2008; Walsh et al., 2011;
Hu et al., 2014; Ren et al., 2014; Koh et al., 2015) and N-
cadherin (Shintani et al., 2008; Hu et al., 2014), with a possible
switch in DDR expression from DDR1 (epithelial) to DDR2
(mesenchymal). These reports have shown that induction of
an EMT phenotype results in transcriptional downregulation of
DDR1 and that a predominant DDR2 expression reflects a result
of EMT process toward more malignant cells (Maeyama et al.,
2008; Toy et al., 2015). In addition, the newly expressed DDR2,
in several cell lines of human cancer such as liver (HAK-1A and
HAK-1B cells) (Maeyama et al., 2008), lung (A549 cells) (Walsh
et al., 2011), and breast (MDA-MB-231, MCF-7, SK-BR3, and
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TABLE 3 | An update on DDRs inhibitors: compound name, type and reported half maximal inhibitory concentration.

Compound
Half maximal inhibitory concentration (IC50) nM

Inhibitor type

DDR1 DDR2

Dasatinib (Day et al., 2008) 0.5 ± 0.2 nM 1.4 ± 0.3 nM Kinase type I inhibitor

Nilotinib (Day et al., 2008) 43 ± 3 nM 55 ± 9 nM Kinase type II inhibitor

Imatinib (Day et al., 2008) 337 ± 56 nM 675 ± 127 nM Kinase type II inhibitor

Ponatinib (Canning et al., 2014) 9 nM 9nM Kinase type II inhibitor

Actinomycin D (Siddiqui et al., 2009) NR 9000 nM Antibiotic

LCB 03-0110 (Sun et al., 2012) 164 nM 171 nM Thienopyridine derivative

7rh (Gao et al., 2013) 6.8 nM 101.4 nM 3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl)-ethynyl)benzamides derivative

7rj (Gao et al., 2013) 7 nM 93.6 nM 3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl)-ethynyl)benzamides derivative

2a (Richters et al., 2014) 68 nM 65nM Pyrazolo-urea containing compound

4a (Richters et al., 2014) 235 nM 75nM Pyrazolo-urea containing compound

4b (Richters et al., 2014) 39 nM 18nM Pyrazolo-urea containing compound

DDR1-IN-1 (Kim et al., 2013) 105 nM 413 nM Kinase type II inhibitor

DDR1-IN-2 (Kim et al., 2013) 47 nM 145 nM Kinase type II inhibitor

MDA-MB-468 cells) (Zhang et al., 2013; Ren et al., 2014), is
phosphorylated upon interaction with type I collagen, suggesting
that the induced receptor is physiologically active.

Studies in A549 lung carcinoma cells showed that inhibiting
the expression of DDR2 with siRNA is sufficient to alter activity
of the NF-κB and the lymphoid enhancer-binding factor 1
(LEF-1) transcription factors and to inhibit EMT and cell
migration induced by TGF-β1 (Walsh et al., 2011). While in
breast cancer cells, Zhang and co-workers showed that activation
of DDR2 regulates SNAIL1 protein stability by stimulating
ERK2 activity, in a Src-dependent manner. Activated ERK2
directly phosphorylates SNAIL1, leading to SNAIL1 nuclear
accumulation, a decrease in ubiquitination, and an increase in
protein half-life. Thus, DDR2 maintains SNAIL1 protein level
and its activity in tumor cells, facilitating cell invasion (Zhang
et al., 2013). Lately, it has been showed that DDR2 expression
and activation in breast cancer cells can be increased by hypoxia,
which is well-known to participate in tumor metastatic events
(Ren et al., 2014).

While these studies suggest that acquisition of a more
mesenchymal-like phenotype is associated with expression of
DDR2, other studies suggest that, depending on the cell type,
both DDRs can promote EMT. DDR1 has been shown to interact
with α2β1 integrin receptors and activate cell signaling pathways,
which promote expression of mesenchymal markers (Shintani
et al., 2008). Many studies have shown that microRNAs can also
regulate the expression of various genes closely associated with
invasion and metastasis in colorectal cancer (CRC) pathogenesis.
Indeed, overexpressing miR-199a-5p leads to a decrease in
the expression of DDR1, matrix metalloproteinase-2 (MMP-
2), N-cadherin, and vimentin, and an increase in E-cadherin
expression in both LOVE1 and LOVO CRC cell lines. However,
down-regulation of miR-199a-5p resulted in the opposite effects
(Hu et al., 2014). Zinc finger E-box-binding homeobox 1 (ZEB1)
is a transcription factor that is overexpressed downstream of
EMT inducers, and plays a critical role in mediating changes in
gene expression during EMT, particularly for E-cadherin (Eger

et al., 2005). Studies in triple-negative breast cancer cells revealed
a novel H-Ras/ZEB1/DDR1 network that contributes to breast
cancer progression in Ras-dependent hyperactive signaling.
These data showed that oncogenic H-Ras signaling upregulates
ZEB1, which in turn suppresses E-cadherin and DDR1, leading
to EMT and invasion (Koh et al., 2015).

CELL MIGRATION

As mentioned above, both DDR1 and DDR2 can support
EMT and contribute to the adaptation of cells to their new
environment by activation, in addition to other receptors, of
EMT-induced migration programs. Regulation of cell migration
by DDR1 was reported in various cancer cell lines including
glioma (Ram et al., 2006), hepatocarcinoma (Park et al., 2007),
lung (Yang et al., 2010), pancreas (Rudra-Ganguly et al., 2014),
colorectal (Hu et al., 2014), and breast (Hansen et al., 2006;
Huang et al., 2009; Castro-Sanchez et al., 2010; Neuhaus et al.,
2011) carcinoma. Nevertheless, this regulation is cell type
and receptor isoform dependent. Therefore, conflicting reports
attributed inhibitory (Hansen et al., 2006; Koh et al., 2015) as
well as pro-migratory (Ram et al., 2006; Park et al., 2007; Huang
et al., 2009; Castro-Sanchez et al., 2010; Yang et al., 2010; Neuhaus
et al., 2011; Hu et al., 2014; Rudra-Ganguly et al., 2014) effects
for DDR1 in cell migration. Overexpression of DDR1a (but not
DDR1b) in glioma (Ram et al., 2006), hepatocellular carcinoma
(Park et al., 2007) and non-small lung cancer cells (Yang et al.,
2010) significantly promotes tumor cell motility. Although, the
significance of the difference between the migration induced
effects of DDR1a and DDR1b is unknown, structural differences
and divergent signaling between DDR1a and DDR1b have been
suggested (Park et al., 2007). As an essential soluble component of
the ECM, TGF-β1 elicits numerous changes in cellular behavior
but has a conflicting role in cancer progression. Studies on
pancreatic cancer cells showed that the pro-migratory effect of
DDR1, in these cells, appears to be in part mediated via TGF-
β1 downregulation (Rudra-Ganguly et al., 2014). Stimulation of
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MDA-MB-231 breast cancer cells with type IV collagen is able
to induce cell migration through a DDR1 and CD9-dependent
pathway (Castro-Sanchez et al., 2010). In MDA-MB-468 breast
cancer cells, DDR1-dependent promotion of cell migration was
shown to be induced through a regulation of the migration
suppressor tyrosine-protein kinase (SYK) activity (Neuhaus et al.,
2011). In MCF-7 cells, full-length DDR1 associated to myosin
IIA facilitates the process of cell migration (Huang et al.,
2009). DDR1 can also play a negative role in cell migration.
Indeed, overexpression of DDR1 in Hs587T breast cancer cells
reduced their in vitro migratory behavior in type I collagen
three dimensional (3D) culture system (Koh et al., 2015).
While in MDA-MB-231 breast cancer cells, DDR1 suppresses
migration only when co-expressed with its interacting partners,
the Dopamine and cAMP-regulated neuronal phosphoprotein-
32 (DARPP-32) (Hansen et al., 2006).

DDR2, when activated by type I collagen, was shown to
support the migration of human A375 and B16BL6 murine
melanoma cells (Badiola et al., 2011; Poudel et al., 2015), SK-
HEP hepatoma cells, HT-29 colon carcinoma cells (Badiola
et al., 2011), PC-3 prostate cancer cells (Yan et al., 2014), A549
lung carcinoma cells (Walsh et al., 2011), and nasopharyngeal
carcinoma cells (Chua et al., 2008). Badiola and co-workers
showed, that the c-Jun N-terminal kinases (JNK) pathway is
involved in DDR2 inducing cell migration in A375 human
melanoma cells (Badiola et al., 2011). While in A549 lung cancer
cells, DDR2 inhibition with siRNA was sufficient to inhibit cell
migration induced by TGF-β1 (Walsh et al., 2011). Recently, it
has been shown that DDR2 promotes migratory phenotype of
B16BL6 murine melanoma cells through the regulation of ERK
and NF-κB signaling pathways (Poudel et al., 2015). In a single
report, DDR2 was shown to be a negative migration regulator.
Indeed, culturing MCA38 colon carcinoma cells in presence of
conditioned media from untreated DDR2−/− hepatic stellate
cells (HSCs) and tumor-activated DDR2−/− HSCs was able to
enhance the migration of MCA38 cells, respectively, by 60 and
90% (Badiola et al., 2012).

CELL INVASION

Tumor invasion is a complex process that requires ECM
degradation and tissue remodeling. Indeed, this process requires
the activation of multiple genes but depends also on the action
of key molecules such as ECM-degrading proteases and ECM
receptors. Among these receptors, DDR1 has been found to be
highly expressed in invasive tumors indicating its critical role
as a regulator of cell invasion and subsequent tumor metastasis
(Valiathan et al., 2012). Moreover, accumulating evidence using
Matrigel or type I collagen as matrix barriers suggests that
DDR1 plays a promoting role in invasion of a variety of human
cancers including glioma (Ram et al., 2006), hepatocellular (Park
et al., 2007), squamous epidermoid (Hidalgo-Carcedo et al.,
2011), colorectal (Hu et al., 2014), lung (Yang et al., 2010; Miao
et al., 2013; Juin et al., 2014), prostate (Shimada et al., 2008),
breast carcinomas (Castro-Sanchez et al., 2011; Juin et al., 2014).
This has also been observed for pituitary adenoma (Yoshida
and Teramoto, 2007). Matrix metalloproteinases (MMPs), a

family of zinc-dependent endopeptidases, degrade the basement
membrane and ECM, facilitating cell migration, tumor invasion,
and metastasis. Among MMPs, MMP-2, and MMP-9 are
considered important in the malignant behavior of tumor cells
(Shuman Moss et al., 2012). Several reports showed that DDR1
can function as an inducer of MMP-2 (Ram et al., 2006; Park
et al., 2007; Yoshida and Teramoto, 2007; Castro-Sanchez et al.,
2011; Hu et al., 2014; Juin et al., 2014), or/and MMP-9 (Park
et al., 2007; Yoshida and Teramoto, 2007; Shimada et al., 2008;
Yang et al., 2010; Castro-Sanchez et al., 2011; Miao et al., 2013)
and thus, contribute to the matrix components degradation.
Overexpression of the DDR1a but not DDR1b isoform confers an
aggressive invasive behavior to glioma cells in vitro by increasing
their ability to invade Matrigel or type I collagen. DDR1a
activation by collagen leads to the conversion of pro-MMP-2 (72
kDa) into its active form (62 kDa) (Ram et al., 2006). Whereas,
DDR1a and DDR1b overexpression resulted in an increase of
MMP-2 and MMP-9 in hepatocellular carcinoma and non-small
lung cancer cell lines, respectively (Park et al., 2007; Yang et al.,
2010). Hu and co-workers showed that overexpression of DDR1
induces invasion in colon carcinoma through the up-regulation
of MMP-2 (Hu et al., 2014). By contrast, DDR1 in pituitary
adenoma cell line induced an increase in bothMMP-2 andMMP-
9 secretion (Yoshida and Teramoto, 2007). In 2011, Hidalgo-
Carcedo and co-workers suggested that the ability of DDR1 to
support collective cell invasion of human A431 oral squamous
cell carcinoma cells does not require receptor signaling and is
independent of its activation by collagen. In these cells, DDR1
through its interaction with the cell polarity regulators Par3 and
Par6, induces a decrease in actomyosin contractility and thereby
enables collective cancer cell invasion (Hidalgo-Carcedo et al.,
2011). Prostate cancer antigen-1 (PCA-1) has been shown to
contribute to prostate carcinoma cell invasion through DDR1
(Shimada et al., 2008). In MDA-MB-231 breast cancer cells,
type IV collagen induces MMP-2 and MMP-9 secretion and
invasion through a DDR1 and Src-dependent pathway (Castro-
Sanchez et al., 2011). Moreover, MMP-2 and MMP-9 secretion
required protein kinase C (PKC) activity and epidermal growth
factor receptor (EGFR) activation (Castro-Sanchez et al., 2011).
Frederic Saltel’s team proposed that DDR1 could be a sensor
used by MDA-MB-231 breast and A549 lung carcinoma cells to
interact with fibrillar type I collagen, leading to the organization
of linear invadosomes, via a Cdc42-Tuba pathway (Juin et al.,
2014). Neither DDR1 kinase activity nor Src tyrosine kinase were
required for the formation and activity of invadosomes (Juin
et al., 2014).

DDR2 has been found to promote invasion in prostate (Yan
et al., 2014), non-small cell lung (Kim et al., 2014), breast (Zhang
et al., 2013), and metastatic melanoma (Poudel et al., 2015).
Zhang and co-workers have identified an intracellular signaling
pathway initiated by collagen-mediated DDR2 activation,
leading to ERK1/2 activation in a Src-dependent manner and
SNAIL1 phosphorylation. This induced SNAIL1 stabilization and
promotedMDA-MB-231 cell invasion in vitro and in vivo (Zhang
et al., 2013). Recently, Poudel and co-workers demonstrated that
DDR2 was able to modulate MMP-2 and MMP-9 secretion in
response to type I collagen and to regulate the invasive phenotype
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of murine metastatic melanoma cells through a regulation of
ERK1/2 and NF-κB signaling pathways (Poudel et al., 2015).

DDRs INHIBITION AND TARGETED
THERAPY IN CANCER (TABLE 3)

The contribution of DDRs in tumor progression clearly indicates
that inhibition of these receptors might represent a promising
therapeutic strategy. Yet, DDRs inhibitors reported so far are
adenosine triphosphate (ATP) competitive inhibitors that bind
to either active (type-1 inhibitors) or inactive (type-2 inhibitors)
conformations, preventing transfer of the terminal phosphate
group of ATP to the protein substrate. Type-1 inhibitors bind
in the so-called “open conformation” of DDRs kinase domain,
which is characterized by a “DFG-in” configuration of the
conserved triad DFG at the beginning of activation loop. In
contrast, type-2 inhibitors bind to and stabilize an inactive
kinase form that is characterized by “DFG-out” conformation.
The “DFG-out” motif opens an additional cavity, a hydrophobic
allosteric site that, in addition to the ATP binding pocket,
is targeted by type-2 inhibitors (Kothiwale et al., 2015).
Using chemical and proteomic approaches, dasatinib, imatinib,
nilotinib (Bantscheff et al., 2007; Rix et al., 2007; Day et al., 2008),
and ponatinib (Canning et al., 2014) were identified as potent
small-molecule inhibitors against DDR1 and DDR2, with IC50

values of 0.5, 337, 43, 9 nM and 1.4, 675, 55, 9 nM, respectively
(Day et al., 2008; Canning et al., 2014). These four molecules
were originally developed to inhibit Bcr-Abl tyrosine kinase in
chronic myeloid leukemia. Imatinib, nilotinib, and ponatinib
(type-2 inhibitors) are more selective by inhibiting a few tyrosine
kinases, whereas dasatinib (type-1 inhibitor) is known to inhibit
dozen of tyrosine kinases. In 2011, Hammerman and co-workers
have shown that DDR2 is mutated in approximately 4% of lung
squamous cell cancer and have reported data to suggest that
these mutations induce a gain in DDRs function (Hammerman
et al., 2011). The same group has also shown that cell lines
harboring these mutations are sensitized to the multitargeted
kinase inhibitor dasatinib (Hammerman et al., 2011; Bai et al.,
2014). Indeed, dasatinib can efficiently inhibit the proliferation
of DDR2- mutated SCC cell lines in vitro and in vivo, as well as
cells ectopically expressing mutant DDR2 (Hammerman et al.,
2011). This led to the design of clinical trials testing its efficacy
in patients with non-small-cell lung carcinoma (NSCLC) (Haura
et al., 2010; Johnson et al., 2010; Pitini et al., 2013; Gold et al.,
2014). However, inhibition of DDRs signaling pathways often
activates secondary survival mechanisms (Beauchamp et al.,
2014). Therefore, combining dasatinib and Src kinase inhibitors,
could enhance the efficacy of dasatinib in NSCLC (Khurshid
et al., 2012) and could also decrease substantial toxicity associated
with dasatinib when administered alone (Brunner et al., 2013; Dy
and Adjei, 2013).

Actinomycin D is an antibiotic compound that has been
clinically used for a long time as an anticancer drug to treat
rhabdomyosarcoma, Ewing’s sarcoma, trophoblastic neoplasia,
and testicular carcinoma. Yang and co-workers have identified
Actinomycin D as an antagonist of the DDR2-collagen
interaction. Indeed, this compound selectively inhibited the

activation of DDR2 by type I collagen in HEK293 cells. However,
its relatively weak inhibitory activity (IC50 = 9000 nM) may
limit its further application for inhibition of DDR2 (Siddiqui
et al., 2009). LCB 03-0110, a thienopyridine derivative, was
identified from a chemical library using the kinase domain
of DDR2 and has been shown to inhibit collagen-induced
activation of DDR1 and DDR2 receptors with IC50 values of
164 and 171 nM, respectively. However, this compound is also
an effective inhibitor for other tyrosine kinases (Sun et al.,
2012). Moreover, Ding and co-workers have reported a series of
3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl)-ethynyl)benzamides which
selectively bind and inhibit, with a type II mode, the kinase
function of DDR1 and were significantly less potent against
many other kinases such as Bcr-Abl. The two most promising
compounds in this series 7rh and 7rj inhibited the kinase activity
of DDR1, with IC50 values of 6.8 and 7.0 nM, respectively.
In vitro investigations revealed that these compounds potently
inhibited the proliferation of cancer cell lines expressing high
levels of DDR1, including A549 and NCI-H23 lung carcinoma,
MDA-MB-435,MCF-7, and T47D breast carcinoma andHCT116
colon carcinoma cells (Gao et al., 2013). Using a new strategy
called “fluorescent labels in kinases” (FLiK), Rauh and co-
workers reached to identify a series of pyrazolo-urea containing
compounds as new type II inhibitors of DDR2. The inhibitory
effects of three compounds (2a, 4a, and 4b) were further validated
by an orthogonal activity-based assay. DDR2 was found to be
inhibited, by these compounds, with IC50 values of 65, 75, and
18 nM, respectively. These molecules were also able to inhibit
DDR1 with IC50 values of 68, 235, and 39 nM, respectively.
Furthermore, compounds 2a and 4b exhibited significant effect
against the T654M gatekeeper mutant of DDR2 with IC50 values
of 2.0 and 1.0 nM, respectively (Richters et al., 2014). Gray and
co-workers designed and synthesized a series of type II inhibitors,
among which DDR1-IN-1 and DDR1-IN-2 induced a significant
inhibitory effect against DDR1with IC50 values of 105 and 47 nM,
respectively. These two inhibitors were also able to inhibit DDR1
activation in U2OS cells in the presence of collagen, with EC50

values of 86 and 9.0 nM, respectively (Kim et al., 2013). Using
fragment based drug design (so-called back-to-front design),
Murray and co-workers have recently discovered novel inhibitors
of DDR1 and DDR2 that were potent and selective and displayed
interesting pharmacokinetic properties. In vitro studies showed
that DDR2 activity was highly inhibited by these molecules but
in contrast to unselective inhibitors such as dasatinib, they were
not able to inhibit proliferation of lung SCC cells harboring a
mutant DDR2 (Murray et al., 2015). Finally, other ways to inhibit
DDRs consist in the use of targeted delivery of miRNAs based
therapeutics such asmiR-199a-5p (Hu et al., 2014) ormonoclonal
antibodies including Fab 3E3 (Carafoli et al., 2012), 48B3 (Ram
et al., 2006), and H-126 (Castro-Sanchez et al., 2010) that have
been shown to bind to the DS-like domain of DDR1.

CONCLUSION

Type I collagen, one of the abundant matrix components
and an activator of these receptors, was considered for a
long time as a mechanic barrier against cell proliferation and
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migration but also as a physical obstacle against chemotherapy
by decreasing passive diffusion of anticancer drugs. Herein,
the reported studies clearly demonstrate that the interaction
between type I collagen and DDRs plays a functional role in the
regulation of tumor progression, from cell proliferation/survival
to migration/invasion processes. However, effects of DDRs
activation on tumor progression are controversial. For cell
proliferation, it have clearly been demonstrated that DDR1
and DDR2 act as growth suppressors via their activation by
type I collagen and specific downstream cell signaling. In the
case of DDR1, apoptosis was concurrent with cell proliferation
suppression. Moreover, the role of DDR2 in the suppression of
cell proliferation has been elegantly demonstrated using receptor
mutants. In fact, kinase domain mutants were particularly
able to alleviate this suppression by inhibiting the activation
of these receptors and their downstream cell signaling. These
mutations have been identified as novel drivers contributing to
cell proliferation in vivo and consequently tumor progression.
However, other findings strongly suggested that activation
of these receptors resulted also in activation of pro-survival
signaling pathways. In the case of cell migration and invasion,

several in vitro and in vivo studies specifically addressed the
consequences of DDR1 and DDR2 activation in the initiation
of migratory and invasive processes. The majority of these
studies tended to attribute a functional role of these receptors
in the promotion of cell migration and invasion. Moreover,
clinical studies on DDR1 and DDR2 expression and the outcome

of several cancer pathologies found a correlation between the
expression of these receptors, metastasis, and a reduced survival.

Finally, DDR1 and DDR2 are considered as potential
therapeutic targets. Therefore, a considerable effort has
been made to design inhibitors against these receptors.
For kinase activity inhibitors, several molecules including
imatinib and nilotinib were identified as inhibitors of these
receptors. However, mutations have been noted in several cancer
specimens. In the case of DDR2 mutations in squamous lung cell
carcinoma, dasatinib showed particular efficacy. Nevertheless,
latest in vitromodel studies have reported a second site mutation
in DDR2 which was able to confer resistance to dasatinib.
Therefore, and given the clinical trials of dasatinib and other
inhibitors in the future, the establishment of additional models
of resistance will be important to design strategies that overcome
resistance to these molecules.
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