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A large number of physiomic pathologies can produce hyperexcitability in cortex.

Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic

movement disorder or as epilpesy. We focus here on dystonia, a movement disorder

that produces involuntary muscle contractions and involves pathology in multiple brain

areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices.

Most research in dystonia has focused on basal ganglia, while much pharmacological

treatment is provided directly at muscles to prevent contraction. Motor cortex is

another potential target for therapy that exhibits pathological dynamics in dystonia,

including heightened activity and altered beta oscillations. We developed a multiscale

model of primary motor cortex, ranging from molecular, up to cellular, and network

levels, containing 1715 compartmental model neurons with multiple ion channels and

intracellular molecular dynamics. We wired the model based on electrophysiological

data obtained from mouse motor cortex circuit mapping experiments. We used the

model to reproduce patterns of heightened activity seen in dystonia by applying

independent random variations in parameters to identify pathological parameter sets.

These models demonstrated degeneracy, meaning that there were many ways of

obtaining the pathological syndrome. There was no single parameter alteration which

would consistently distinguish pathological from physiological dynamics. At higher

dimensions in parameter space, we were able to use support vector machines to

distinguish the two patterns in different regions of space and thereby trace multitarget

routes from dystonic to physiological dynamics. These results suggest the use of in silico

models for discovery of multitarget drug cocktails.

Keywords: dystonia, multiscale modeling, computer simulation, motor cortex, beta oscillations, corticospinal
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1. INTRODUCTION

A large number of physiomic pathologies can produce
hyperexcitability in cortex. In motor cortex, this hyperexcitability
will manifest as alterations in movement and muscle tone.
At the most extreme, hyperexcitability leads to a seizure with
uncontrolled movement, as seen in epilepsia partialis continuans.
Lesser hyperexcitability produces a variety of hyperactive
movement disorders, including tics, chorea, tremor, etc, whose
pathophysiology is not restricted to cortex, but involves multiple
brain areas including basal ganglia, thalamus, cerebellum, and
others. We focus here on dystonia, a movement disorder that
produces prolonged involuntary muscle contractions (Neychev
et al., 2008; Crowell et al., 2012).

The large variety of dystonias of different etiologies may
present with involvement of one or several parts of the
body. Pediatric causes of dystonia include cerebral palsy and
are generally distinct from adult-onset cases. Common adult
dystonias are torticollis, causing involuntary head turning, and
movement-overuse dystonias such as writers cramp. Despite
these differences, dystonias in different patient populations are
primarily treated with the same therapies. While most research
in dystonia has focused on basal ganglia, much pharmacological
treatment is provided directly at muscles. Similarly, we propose
that treatment could be targeted elsewhere in the motor
pathway, here focusing on motor cortex as a potential target for
therapy.

As with many other movement disorders, the dystonias
generally lack a reliable biomarker and are diagnosed by
semiology, the assessment of signs and symptoms. However, all
dystonias feature excessive muscle activation that is associated
with hyperactivity in multiple motor areas associated with
movement activation. Electrophysiological studies of dystonia
patients confirms a pattern of hyperactivation in cortex. Healthy
individuals show low beta oscillations (∼15–20 Hz) in motor
cortical local field potential (LFP). This beta is reduced in
amplitude and synchrony duringmovement (Jasper and Penfield,
1949; Pfurtscheller and Aranibar, 1979; Crone et al., 1998; Miller
et al., 2007). In dystonia patients, motor cortex shows increases
in neuronal activity levels (Nobrega et al., 1995; Pratt et al.,
1995), with relatively high beta amplitude and high functional
connectivity at the beta frequency (Schnitzler and Gross, 2005;
Jin et al., 2011). There is also excessive neural synchrony both
at rest and in certain phases of movement (Toro et al., 1994;
Kristeva et al., 2005; Mallet et al., 2008; Crowell et al., 2012).

Some dystonias, in common with several other movement
disorders, are thought to have their origin in the basal ganglia.
Other dystonias, such as those associated with cerebral palsy
and with movement overuse, probably have a strong cortical
component. In all cases, however, the interconnections of brain
motor systems makes it clear that multiple brain areas will be “in
the loop” of abnormal activity. Following some primary insult
or insults to a brain area, a secondarily-involved brain area will
contribute further to the disorder by reacting to the alterations
in input activity through its own homeostatic responses. In some
cases these homeostatic changes may be compensatory so as to
reduce the severity of the symptoms. However, in other cases,

plasticity may actually exacerbate the abnormal movements
(Sanger et al., 2003; Neychev et al., 2008; Casellato et al., 2014).

There are at least two, and perhaps more, cerebello-thalamo-
striato-cortical loops that play a role in movement disorders.
There may also be additional contributions from still longer
loops involving recurrent connections from spinal cord or from
muscle spindles. One or more of these sites may have associated
pathology. Regardless of the locus of primary pathology,
multiple sites are potential targets where therapy could interrupt
pathophysiological dynamics. Currently, brain pharmacotherapy
often fails and patients are treated with botulinum toxin to
partially paralyze muscles by blocking nicotinic cholinergic
transmission at the affected muscle. Another treatment is deep
brain stimulation using implanted electrodes. In this paper, we
take two or three steps back from the level of muscle treatment
by proposing interventions at the level of motor cortex.

Complex multifocal diseases may require complex multitarget
treatments (Viayna et al., 2013). In the context of brain disease,
multitarget therapy can hit multiple brain regions or multiple
receptors in a region or both. High-level models that include
many brain areas can assist in understanding how different
brain areas contribute to a disorder (Sanger and Merzenich,
2000; Sanger, 2003; Hendrix and Vitek, 2012; Kerr et al.,
2013). However, these models typically lack biological detail,
making them unsuitable for assessing the impact of specific
pharmacological manipulations. Detailed models are not yet
elaborated to the point of handling multiple brain areas but do
provide the details needed to assess pharmacological intervention
more directly.

Single agent treatments for disease are traditionally tested
in vitro or in vivo. As noted above, single agent treatments
for dystonia have not had much success. There is, however,
the potential for success with multitarget drug cocktails that
could target multiple locations in the brain, or multiple drug
receptor targets at a single location, or both (Delnooz and
van de Warrenburg, 2012). Due to combinatorial explosion,
evaluating combinations of drugs in different dosages in this
way can not be readily done in tissue and is most feasible in
silico (Viceconti et al., 2008; Kohl and Noble, 2009; Lytton et al.,
2014; Action, 2016; Viceconti et al., 2016). In this study, we use
our detailed multiscale model of primary motor cortex to assess
potential multitarget pharmacological therapies for treatment of
dystonia. The model contains 6 cortical layers with multiple
classes of excitatory and inhibitory neurons, using wiring based
on mouse microconnectomic data (Shipp, 2005; Weiler et al.,
2008; Kiritani et al., 2012; Hooks et al., 2013). Excitatory neurons
contain intracellular molecular mechanisms that contribute to
persistent activity and hyperexcitability (Neymotin et al., 2016).
These mechanisms include endoplasmic reticulum associated
calcium stores released by activation of IP3Rs, and ryanodine
receptors, both with affinity for caffeine, an agent that can
exacerbate dystonia symptoms (Richter and Hamann, 2001).
Plasmamembrane calcium, sodium, and potassium channels also
contribute to cellular excitability.

Since our model does not include spinal cord and muscle, we
defined dystonia pathology as a state of cortical hyperactivation
characterized by increased beta oscillations with excessive and
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hypersynchronous firing in layer 5 corticospinal neurons. These
layer 5 neurons project downward to brainstem and spinal cord,
and their sustained firing would lead to the increased muscle
contractions of dystonia. We distinguished the hyperexcitability
of dystonia from the still greater hyperexcitability of a seizure by
excluding simulations that showed higher levels of activity with
higher frequency oscillation and a strong tendency to “latch-up”
through multicell depolarization blockade (Lytton and Omurtag,
2007). Classification in 11-dimensional space demonstrated that
we could identify different regions in parameter space for these
different states—baseline normal, dystonia, epileptiform—and
predict pharmacological combinations that would lead from
pathology back to the physiological activity state. As in our
previous investigations of epilepsy (Lytton and Omurtag, 2007),
we found multiple parameter combinations that were consistent
with the pathological state, as well as multiple parameter
combinations to produce our baseline physiological state. Such
parameter degeneracy is typical of complex neural systems
(Edelman and Gally, 2001; Golowasch et al., 2002).

2. MATERIALS AND METHODS

Network simulations consisted of 1715 reduced compartmental
cell models with single compartments for inhibitory cells
and five compartments for pyramidal cells, arrayed by layer
with connectivity taken from experimental results on motor
cortex (Weiler et al., 2008; Figures 1A,B). Parallel-conductance
electrophysiological simulation in the pyramidal cells was
complemented by chemophysiological simulation focused on
Ca2+ handling, based on our prior models (Neymotin et al., 2015,
2016; Figure 1C).

Simulations were run in the NEURON (version 7.4)
simulation environment (Carnevale and Hines, 2006) utilizing
the reaction-diffusion (RxD) Python module (McDougal et al.,
2013a,b) and NMODL (Hines and Carnevale, 2000). Two
seconds of simulation time took ∼3 min using 24 nodes
on a Linux cluster with parallel NEURON, run with a
fixed time-step of 0.1 ms. The full model is available on
ModelDB (https://senselab.med.yale.edu/ModelDB/ShowModel.
cshtml?model=189154).

We briefly describe the scales of the multiscale model from
smaller to larger in the following sections (Table 1). For more
details, readers are referred to our previous papers (Neymotin
et al., 2015, 2016).

2.1. Intracellular Molecular Scale
Our Ca2+ dynamics (Figure 1C), are based on (Neymotin
et al., 2016). We modeled a one-dimensional RxD system of
intracellular neuronal Ca2+ signaling in all compartments
of neocortical pyramidal (PYR) neurons. Within each
compartment, we modeled cytosolic and endoplasmic reticulum
(ER) sub-compartments by using a fractional volume for each.

IP3 was produced through a reaction sequence initiated
by glutamate binding to the metabotropic glutamate receptor
(mGluR), based on a reaction scheme developed by Ashhad and
Narayanan (2013) (ModelDB #150551). IP3 diffused outward
from the synapse location and decayed following first-order

kinetics (τIP3 of 1 s). Baseline mGluR synaptic weight was
normalized to represent the increase in the amount of glutamate
bound to mGluR. Extracellular glutamate did not diffuse but
was represented by a local Glu value that was incremented in
response to an event delivered due to a presynaptic spike. Glu
showed bind/unbind kinetics on mGluR and was eliminated by
first-order degradation (lower left of Figure 1C).

The ER Ca2+ model involves IP3 receptors (IP3Rs), ryanodine
receptors (RYR) (Sneyd et al., 2003), SERCA pumps, and a Ca2+

leak. IP3R dynamics involved a slow Ca2+ inactivation binding
site state (De Young and Keizer, 1992; Li and Rinzel, 1994).
The SERCA pump is a pump rather than a channel and so is
modeled with Hill-type dynamics. Calcium buffering followed

Ca + B
5

−−−−⇀↽−−−−
9.5·10−4

CaB where B is diffusible buffer with diffusion

coefficients D = 0.043 µm2/ms for both B and CaB, about half
the rate of Ca2+diffusion (Anwar et al., 2012). Calcium extrusion
across the plasma membrane was modeled by first-order decay
with τex = 5 ms.

2.2. Synapses
AMPA/NMDA synapses were modeled by standard NEURON
double-exponential mechanisms (Table 2). All excitatory
projections were mixed AMPA (rise,decay τ : 0.05, 5.3 ms) and
NMDA (rise,decay τ : 15, 150 ms). NMDARs were scaled by
1/(1+ 0.28 ·Mg · exp(−0.062 · V)); Mg = 1mM (Jahr and
Stevens, 1990). 13% of INMDA was carried by Ca2+(Spruston
et al., 1995). AMPA and NMDA receptors had reversal potentials
of 0 mV.

Inhibitory synapses were mediated by GABAA and GABAB

receptors. GABAA synapses were modeled with a double-
exponential mechanism. The GABAB synapse had second
messenger connectivity to a G protein-coupled inwardly-
rectifying potassium channel (GIRK). LTS cells connected to
apical dendrites of PYR cells using GABAA receptors (GABAAR;
rise,decay τ : 0.2, 20 ms) and GABAB receptors (GABABR) and
onto somata of FS and other LTS cells with GABAA Rs (rise,decay
τ : 20, 40 ms). GABAARs had reversal potentials of −80 mV, and
GABABRs −95 mV. GABABRs provide longer-lasting activation
compared to GABAARs.

2.3. Cell Scale
The network consisted of pyramidal cells (PYR; 3 apical
dendrite compartments, 1 basal dendrite compartment, 1 somatic
compartment), fast spiking soma-targeting interneurons (FS; one
compartment) , and dendrite-targeting low-threshold spiking
interneurons (LTS; one compartment; Wang and Buzsaki,
1996; Wang, 2002; Monyer and Markram, 2004; Bartos et al.,
2007; Neymotin et al., 2011a,b; Tables 3, 4). Reaction-diffusion
mechanisms (Ca2+,IP3,buffer) were restricted to the PYR cells
in this network. Properties of pyramidal neurons in the different
layers were identical except for apical dendrite length which is
longer in deep pyramidal neurons than in superficial (Hay et al.,
2011; Castro-Alamancos, 2013): 900 µm in L5-6; 450 µm in L2/3
and L4.

Voltage-gated ionic current models were based on prior
models of our own and others (McCormick and Huguenard,
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FIGURE 1 | Model schematics. (A,B) Motor cortex architecture. Circles represent neuronal populations (red: excitatory cells; green: fast-spiking interneurons; blue:

low-threshold firing interneurons). Circle size denotes number of cells in population. Lines (with arrows) indicate connections between the populations. Thickness of

lines proportional to synaptic weights. E cells synapse with AMPAR/NMDARs; I cells synapse with GABAAR / GABABRs. Circles with self-connects denotes recurrent

connectivity. (A) Excitatory connections. E5P projects to spinal cord (not modeled). (B) Inhibitory connections. (C) Chemical signaling in pyramidal cells showing fluxes

(black arrows) and second- (and third- etc) messenger modulation (red back-beginning arrows). We distinguish membrane-associated ionotropic and metabotropic

receptors and ion channels involved in reaction schemes in red (in reality, it is likely that almost every membrane-bound protein is modulated). External events are

represented by yellow lightning bolts—there is no extracellular diffusion; the only extracellular reaction is glutamate binding, unbinding, and degradation on mGluR1

after an event. Ca2+ is shown redundantly in blue—note that there is only one Ca2+ pool for extracellular, 1 pool for cytoplasmic, and 1 pool for ER (PLC,

phospholipase C; DAG, diacyl-glycerol; cAMP, cyclic adenosine monophosphate; PIP2, phosphatidylinositol 4,5-bisphosphate). Adapted from Figure 1 of Neymotin

et al. (2016).

1992; Migliore et al., 2004; Stacey et al., 2009; Neymotin et al.,
2011b,a, 2013). Voltage sensitive channels generally followed
the Hodgkin-Huxley parameterization, whereby ẋ = (x∞ −

x)/τx (x = m for activation particle and h for inactivation
particle). Steady-state x∞ and time constant τx are either related
to channel opening α(V) and closing kinetics β(V) as x∞ =

α/(α + β), τx = 1/(α + β), or are directly parameterized:
x∞(V), τx(V). Kinetics for channels were scaled by Q10 from
an experimental temperature (where available) to simulation

temperature of 37◦C. Q10 = 3 was used when no experimental
value was available. All cells contained leak current, transient
sodium current INa, and delayed rectifier current IK−DR, to allow
for action potential generation. Additionally, PYR cells contained
in all compartments IK−A, IK−M providing firing-rate adaptation
(McCormick et al., 1993). Pyramidal cells also had Ih, voltage-
gated calcium channels (VGCCs) in all compartments: IL, IT ,
IN (Kay and Wong, 1987; McCormick and Huguenard, 1992;
Safiulina et al., 2010; Neymotin et al., 2015), and SK and BK
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TABLE 1 | Summary of model.

Property Description

Populations 13; 7 E and 6 I, corresponding to layer 2/3, 4, 5A, 5B, and 6

of M1

Topology 3D with cortical depth (y) based on M1 laminar distribution,

horizontal location (x,z) randomly distributed

Connectivity Probability of connection and weight depends on layer and

cell type

Neuron model Multichannel multicompartment (E cells also RxD

mechanisms)

Synapse model AMPA, NMDA, GABAA, GABAB, mGluR

Plasticity –

Input Independent random Poisson spike trains with fixed rate

depending on cell type/synapse

Measurements Membrane potential, spiking activity, synchronization, firing

vector correlations

E (I) denote excitatory (inhibitory) neurons. No plasticity modeled (Table format based on

Nordlie et al., 2009).

TABLE 2 | Summary of synapse models used to connect neurons.

Label Description

AMPA Double exponential

NMDA Double exponential with voltage dependence

GABAA Double exponential

GABAB 2nd messenger connectivity to a G protein-coupled inwardly-rectifying

potassium channel (GIRK)

mGluR 2nd messenger signaling producing IP3

TABLE 3 | Summary of neuron models.

Label Description

Dynamics Multichannel compartmental Hodgkin-Huxley (plus RxD

mechanisms)

Compartments E: 5 (soma, basal dendrite, 3 apical dendrites)

Compartments I: 1 (soma)

Ion channels E: leak, Naf , Kdr , Ka, KD, KM, HCN, CaL, CaN, CaT, SK,

BK

Ion channels I: leak, Naf , Kdr , HCN, CaL, KM

RxD molecules E: Ca2+, IP3, B (Ca2+ buffer), CaB (Ca2+-bound

Ca2+-buffer)

RxD compartments E: endoplasmic reticulum, cytosol

RxD channels E: leak, RyR, IP3R, SERCA

E (I) denote excitatory (inhibitory) neurons. Reaction-diffusion (RxD) mechanisms/

compartments described more fully in intracellular scale.

calcium-activated potassium currents (IKCa). LTS cells contained
IL, non-Ca

2+-dependent Ih, SK, and Ca2+ decay.
HCN channels in different cell types have somewhat different

voltage dependence and different kinetics (Hagiwara and Irisawa,
1989; Schwindt et al., 1992; Chen et al., 2001; Wang et al.,
2002; Robinson and Siegelbaum, 2003). The hyperpolarization-
activated HCN current Ih used in pyramidal cells was modeled
with second messenger and calcium dependence taken from

Winograd et al. (2008) (ModelDB #113997), and modified to
provide the faster voltage-sensitivity time constants found in
cortex (Harnett et al., 2015), and provides PYR cells longer-
lasting firing activity via augmentation of the HCN channel
conductance. The mechanism for Ca2+ regulation of HCN
channels in PYR cells in Winograd et al. (2008) is modeled
empirically in order to produce the relationship between
cytosolic Ca2+ levels and Ih activation without simulating the
details of Ca2+ effects on adenyl cyclase (see schematic for HCN
chan in Figure 1C).

ḡh was 0.0025 S/cm2 in PYR soma, basal dendrites and
exponentially-increasing in apical dendrites with distance from
somawith 325µm space constant, hence e-fold augmented at 325
microns as described by Kole et al. (2006). Apical dendrite IK−DR,
IK−A, IK−M density also increased with the same length constant,
based on data showing HCN and Kv channel colocalization
(Harnett et al., 2015, 2013).

2.4. Network Scale
The network consisted of 1715 cells (Table 4). The network
contained 157,507 synapses for an overall connection density
of ∼5% (see Table 6). PYR cells synapsed onto each-other’s
dendrites. PYR-to-PYR synaptic locations on the dendrite were
randomized between basal and apical compartments (Markram
et al., 1997). PYR cells synapsed onto somata of FS and LTS cells
(single-compartment models).

Neuronal populations were arranged by cortical layer based
on our prior models (Neymotin et al., 2011a,c; Chadderdon
et al., 2014; Neymotin et al., 2016), with additional data from
direct measurements from mouse motor cortex (Shipp, 2005;
Weiler et al., 2008; Kiritani et al., 2012; Hooks et al., 2013), and
recent experiments which demonstrate a thin layer 4 in mouse
motor cortex (Yamawaki et al., 2014). The network consisted
of 13 populations of 3 excitatory cell types, intratelencephalic
(IT), pyramidal-tract (PT), and corticothalamic (CT), and 2
inhibitory cell types, low-threshold spiking (LTS) and fast-
spiking (FS). These were distributed across cortical layers 2/3,
4, 5a, 5b, and 6 (Harris and Shepherd, 2015), with cell numbers
for each population based on estimated cell densities and
volume (Table 4). The volume of each population was calculated
assuming a horizontal area (x and z dimensions) of 120 × 120
µm, and a layer-dependent cortical depth range (y dimension).

Connection probabilities pij (Tables 5, 6) of presynaptic
excitatory populations were dependent on pre- and pothst-
synaptic type and layer. For presynaptic inhibitory populations,
connection probabilities inversely scaled based on distance

pij = p̄ij · exp(−
√

(dx2 + dz2)/15), in x, z plane perpendicular
to the y-direction of layering. Connection probabilities and
weights are based on data from rodent motor cortex mapping
(Weiler et al., 2008; Lefort et al., 2009; Anderson et al., 2010;
Fino and Yuste, 2011; Apicella et al., 2012; Kiritani et al.,
2012). Individual neurons were placed randomly with uniform
distribution. Weights from E cells displayed in Table 6 are for
the AMPA synapses, with colocalized NMDA weights at 10% of
AMPA weights. Synaptic delays were randomized between 1.8
and 5 ms with additional delay based on distance.
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TABLE 4 | Network Population, including normalized and nominal cortical depth range (ynormRange, yRange, neuron density, and number of cells).

Label Description ynormRange yRange (um) Density (cells/mm3) numCells

E2 Layer 2/3 PYR IT excitatory neurons 0.12–0.31 160–420 80,000 300

E4 Layer 4 PYR IT excitatory neurons 0.31–0.42 420–570 80,000 173

I2 Layers 2/3 FS interneurons 0.12–0.31 160–420 10,000 37

I2L Layers 2/3 LTS interneurons 0.12–0.31 160–420 10,000 37

E5a Layer 5a PYR IT excitatory neurons 0.42–0.52 570–700 80,000 150

E5b Layer 5b PYR IT excitatory neurons 0.52–0.77 700–1040 40,000 196

E5P Layer 5b PYR PT excitatory neurons 0.52–0.77 700–1040 40,000 196

I5 Layers 4 and 5 FS interneurons 0.31–0.77 420–1040 10,000 89

I5L Layers 4 and 5 LTS interneurons 0.31–0.77 420–1040 10,000 89

E6 Layer 6 PYR IT excitatory neurons 0.77–1.0 1040–1350 40,000 179

E6C Layer 6 PYR CT excitatory neurons 0.77–1.0 1040–1350 40,000 179

I6 Layer 6 FS interneurons 0.77–1.0 1040–1350 10,000 45

I6L Layer 6 LTS interneurons 0.77–1.0 1040–1350 10,000 45

PYR, pyramidal; IT, intratelencephalic; PT, pyramidal tract; CT, corticothalamic; FS, fast spiking, LTS, low-threshold spiking.

TABLE 5 | Summary of network connectivity rules.

Property Description

E to E pij , wij dependent on pre-/post-synaptic cell type/layer

E to I pij , wij dependent on pre-synaptic cell layer, and post-synaptic cell

type/layer

I to E/I pij decreases exponentially with x,z plane distance between

pre-/post-synaptic neurons; fixed wij

All delays Randomized 1.8–5 ms with additional delay based on distance

pij denotes probability of connection between type i and j; wij denotes weight. Parameters

by pre- and post-synaptic type in Table 6.

Background activity was simulated by excitatory and
inhibitory synaptic inputs following a Poisson process, sent
to all cells, representing ongoing drive from other cortical
areas and other inputs. These inputs were selected to maintain
low-frequency firing of neurons within the model, which would
not fire otherwise, due to small network size and the requirement
for multiple synaptic inputs to trigger a postsynaptic spike
(Neymotin et al., 2011a). The strength of these background
inputs was not based on the full source of inputs from all
upstream brain areas, since these inputs are not completely
mapped.

2.5. Simulation Variations
We ran over 5800 simulations, randomly varying each of the
following parameters using an independent normal distribution:
1. E neuron mGluR density (mGluR); 2. E neuron ER RYR
density (RYR); 3. E and I neuron HCN channel density; 4.
E and I neuron fast Na+ channel density (Naf ); 5. E neuron
Kdr channel density; 6. E neuron Ka channel density; 7. E
neuron KD channel density; 8. E neuron KM channel density;
9. E neuron SK calcium-activated potassium channel density;
10. E neuron BK calcium-activated potassium channel density;
11. E and LTS neuron voltage-gated calcium channel (VGCC)
density.

Means and standard deviations differed for the different
parameters and were selected to allow each simulation to
maintain activity. A subset of the simulations was used for the
analyses described (Table 7).

We ran simulations with initial calcium concentration in the
ER set to 1.25 mM (Bygrave and Benedetti, 1996), to mimic
the effects of ER calcium priming via prior excitatory synaptic
stimulation (Ross et al., 2005; Hong and Ross, 2007; Fitzpatrick
et al., 2009; Neymotin et al., 2016).

We categorized the simulations into distinct groups by noting
major differences in activity across parameter sets (Table 8).
From the full set of 5867 simulations, 1505 did not display
any firing due to random variations in ion channel densities
which led to low neuronal activity (Table 7). The remaining
4341 simulations were Active due to higher neuronal activity,
e.g., partially caused by the higher average Naf density in these
simulations. Of these 4341 Active simulations, 1077 exhibited
epileptic latch-up dynamics—periods of intense activity which
led to depolarization blockade (Na+ channel inactivation; Lytton
and Omurtag, 2007). These periods where neurons did not
fire lasted 200–300 ms (gaps between E5P spikes: E5P gap in
Table 8). We categorized the top and bottom 2nd percentile of
the Active/non-latch-up simulations ranked by E5P firing rate
into dystonia (n = 65) and physiological (n = 65) sub-sets.
We used E5P firing rate as a criterion for dystonia classification
because E5P neurons project downward to brainstem spinal cord,
and sustained overactive E5P firing can lead to the tonic muscle
contractions symptomatic of dystonia.

2.6. Data Analysis
We formed multiunit activity (MUA) time-series, which count
the number of spikes in each bin (10 ms) for a given
population. To calculate neuronal population rhythms, we
took the power spectral density (PSD) of the mean-subtracted
MUA time-series; we then calculated the peak frequencies and
amplitudes in the PSD. We used the average Kendall’s τ non-
parametric rank-correlation coefficient (Kendall, 1938; Knight,
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TABLE 6 | Network Connectivity Parameters.

Pre Post p̄ij wij (nS) Pre Post p̄ij wij (nS) Pre Post p̄ij wij (nS)

I2L I2L 1.00 0.150 I2L I2 1.00 0.150 I2L E2 1.00 0.225

I2L E2 1.00 1.688 I2 I2L 1.00 0.150 I2 I2 1.00 0.150

I2 E2 1.00 0.225 E2 I2L 0.19 0.117 E2 I2 0.19 0.117

E2 E2 0.15 0.160 E2 E4 0.11 0.092 E2 I5L 0.22 0.151

E2 I5 0.02 0.017 E2 E5a 0.05 0.126 E2 E5b 0.01 0.111

E2 E5P 0.07 0.111 E4 I2L 0.02 0.054 E4 I2 0.02 0.054

E4 E2 0.05 0.184 E4 E4 0.15 0.160 E4 I5L 0.03 0.018

E4 I5 0.19 0.162 E4 E5a 0.04 0.160 E4 E5b 0.01 0.225

E4 E5P 0.01 0.225 E4 I6L 0.02 0.066 E4 I6 0.02 0.066

E4 E6C 0.00 0.477 E4 E6 0.00 0.477 I5L E4 1.00 0.225

I5L E4 1.00 1.688 I5L I5L 1.00 0.150 I5L I5 1.00 0.150

I5L E5a 1.00 0.225 I5L E5a 1.00 1.688 I5L E5b 1.00 0.225

I5L E5b 1.00 1.688 I5L E5P 1.00 0.225 I5L E5P 1.00 1.688

I5 E4 1.00 0.225 I5 I5L 1.00 0.150 I5 I5 1.00 0.150

I5 E5a 1.00 0.225 I5 E5b 1.00 0.225 I5 E5P 1.00 0.225

E5a I2L 0.02 0.054 E5a I2 0.02 0.054 E5a E2 0.04 0.131

E5a E4 0.03 0.104 E5a I5L 0.03 0.018 E5a I5 0.19 0.162

E5a E5a 0.18 0.143 E5a E5b 0.01 0.208 E5a E5P 0.02 0.208

E5a I6L 0.02 0.066 E5a I6 0.02 0.066 E5a E6C 0.01 0.081

E5a E6 0.01 0.081 E5b I2L 0.02 0.054 E5b I2 0.02 0.054

E5b E2 0.02 0.059 E5b E4 0.03 0.043 E5b I5L 0.03 0.018

E5b I5 0.19 0.162 E5b E5a 0.05 0.080 E5b E5b 0.18 0.171

E5b E5P 0.04 0.171 E5b I6L 0.02 0.066 E5b I6 0.02 0.066

E5b E6C 0.02 0.122 E5b E6 0.02 0.122 E5P I2L 0.02 0.054

E5P I2 0.02 0.054 E5P I5L 0.03 0.018 E5P I5 0.19 0.162

E5P E5P 0.18 0.171 E5P I6L 0.02 0.066 E5P I6 0.02 0.066

I6L I6L 1.00 0.150 I6L I6 1.00 0.150 I6L E6C 1.00 0.225

I6L E6C 1.00 1.688 I6L E6 1.00 0.225 I6L E6 1.00 1.688

I6 I6L 1.00 0.150 I6 I6 1.00 0.150 I6 E6C 1.00 0.225

I6 E6 1.00 0.225 E6C I5L 0.02 0.037 E6C I5 0.02 0.037

E6C E5a 0.03 0.034 E6C E5b 0.03 0.077 E6C E5P 0.03 0.077

E6C I6L 0.02 0.080 E6C I6 0.02 0.080 E6C E6C 0.03 0.133

E6C E6 0.02 0.133 E6 I5L 0.02 0.037 E6 I5 0.02 0.037

E6 E5a 0.03 0.034 E6 E5b 0.03 0.077 E6 E5P 0.03 0.077

E6 I6L 0.02 0.080 E6 I6 0.02 0.080 E6 E6C 0.02 0.133

E6 E6 0.03 0.133

p̄ij and wij are distance-independent probability of connections from Pre to Post neuronal types and synaptic weights, respectively.

1966) between pairs of neuron binned spike train time-series
for calculating the synchronization of populations of neurons
(denoted population-synchrony). Kendall’s τ non-parametric
rank correlation, defined as:

τ =
nc − nd
1
2n(n− 1)

,

is used with these data. Kendall’s τ is a normalized difference
between concordant (nc) and discordant pairs (nd); ties are
taken into account by the normalizing term, 1

2n(n − 1) ,
which represents the total number of ordered pairs in the

time-series. We used the Python scikit-learn library (Pedregosa
et al., 2011) for performing principal component analysis (PCA)
and support-vector machine (SVM) classification (Cortes and
Vapnik, 1995; Orrù et al., 2012). Dystonia and physiological
simulation classes were characterized on the basis of layer
5 corticospinal pyramidal neuron (E5P) firing rates. The
clearest examples of both classes (bottom/top 2nd percentiles
as physiological/dystonia classes) were used for the majority
of the analyses described in the Results (Figures 3–8). The
NuSVC variant of SVMs was used to classify physiological and
dystonia simulations and to find which simulation parameters
contributed the most to classification accuracy. SVM inputs
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TABLE 7 | Parameter ranges (average ± standard deviation) for all simulations (n = 5867), active simulations (n = 4341), latch-up simulations (n = 1077),

active/non-Latch-up simulations (n = 3264), physiological simulations (n = 65), and dystonia simulations (n = 65).

Parameter All Active Latch-up

mGluR 8.06± 6.44 8.02± 6.43 8.04±6.34

RYR 108.54± 86.99 109.74± 86.74 112.03±86.98

HCN 0.0025± 0.0003 0.0026± 0.0002 0.0026±0.0002

Naf 0.0809± 0.0081 0.0829± 0.0074 0.0856±0.0072

Kdr 0.0209± 0.0053 0.0202± 0.0052 0.0216±0.0054

Ka 0.3000± 0.0150 0.2977± 0.0147 0.2967±0.0144

Kd 0.0009± 0.0002 0.0008± 0.0002 0.0008±0.0002

Km 1.002e-05± 2.48e-06 1e-05± 2.49e-06 1.001e-05±2.51e-06

SK 0.0001± 6.163e-05 0.0001± 6.18e-05 0.0001±6.296e-05

BK 0.0030± 0.0015 0.0030± 0.0015 0.0031±0.0015

VGCC 0.0052± 0.0035 0.0053± 0.0035 0.0051±0.0035

Parameter Active/Non-Latch-up Physiological Dystonia

mGluR 8.02± 6.45 8.42± 6.54 8.12±5.74

RYR 108.99± 86.66 105.1± 82.9 116.64±77.11

HCN 0.0026± 0.0002 0.0026± 0.0002 0.0026±0.0003

Naf 0.0820± 0.0073 0.0787± 0.0053 0.0879±0.0076

Kdr 0.0198± 0.0051 0.0226± 0.0041 0.0195±0.0054

Ka 0.2981± 0.0148 0.3029± 0.0144 0.2992±0.0136

Kd 0.0008± 0.0002 0.0008± 0.0002 0.0008±0.0002

Km 1e-05± 2.48e-06 1.034e-05± 2.42e-06 1.021e-05±2.81e-06

SK 0.0001± 6.135e-05 0.0001± 6.797e-05 0.0001±6.604e-05

BK 0.0030± 0.0015 0.0034± 0.0013 0.0025±0.0015

VGCC 0.0054± 0.0035 0.0058± 0.0032 0.0046±0.0031

Plasma membrane ion channel conductance density values are in S/cm2. mGluR and RYR density are in arbitrary units used to scale channel conductance.

TABLE 8 | Dynamic measures (average ± standard deviation) for All simulations (n = 5867), Active simulations (n = 4341), Latch-up simulations (n = 1077),

Active/Non-Latch-up (n = 3264), physiological simulations (n = 65), and dystonia simulations (n = 65).

Dynamic measure All Active Latch-up Active/non-latch-up Physiological Dystonia

E5a rate (Hz) 0.65± 0.52 0.88± 0.41 1.09± 0.37 0.81±0.40 1.34± 0.51 0.85± 0.39

E5b rate (Hz) 1.68± 1.21 2.27± 0.79 2.45± 0.66 2.22±0.82 1.18± 0.28 3.74± 2.08

E5P rate (Hz) 7.10± 5.62 9.59± 4.32 7.77± 2.68 10.19±4.59 1.77± 0.26 22.59± 2.67

I5 rate (Hz) 11.46± 6.99 15.49± 1.89 15.14± 1.28 15.61±2.04 11.47± 0.72 17.67± 0.90

I5L rate (Hz) 5.81± 3.71 7.85± 1.61 7.13± 1.19 8.09±1.66 5.37± 0.76 13.42± 1.82

E5P synchrony 0.35± 0.25 0.47± 0.16 0.47± 0.12 0.47±0.17 0.07± 0.06 0.75± 0.05

E5P MUA freq. (Hz) 14.78± 8.91 19.97± 1.94 19.72± 1.79 20.05±1.99 20.91± 3.11 20.55± 0.88

E5P MUA amp. (AU) 83.0± 100.1 112.1± 101.4 59.8± 48.1 129.4±108.1 1.9± 1.2 527.0± 161.7

E5P MUA beta amp. (AU) 21.0± 26.4 28.3± 27.1 15.9± 11.9 32.4±29.4 0.8± 0.7 111.2± 64.9

E5P gap 79.13± 70.95 106.94± 61.87 190.23± 32.94 79.46±41.10 62.77± 24.85 21.75± 32.11

E5P FV sim 0.20± 0.14 0.27± 0.09 0.24± 0.06 0.28±0.09 0.13± 0.03 0.44± 0.08

E5P gap measures number of 300 ms gaps between individual E5P neuron firing times; E5P MUA amplitude and E5P MUA beta amplitude in arbitrary units; E5P FV sim measures

similarity between E5P population firing rate vectors using average pairwise Pearson correlation.

were vectors consisting of normalized parameter values. Each
of these input vectors was labeled into either of two distinct
binary classes: physiological (0) or dystonia (1). SVM parameters,
including kernel type (linear, polynomial, radial-basis function),
γ , tolerance, ν, and polynomial degree were selected using

a grid search with N-fold cross validation run 10 times for
each combination of parameters. SVM classification accuracy
surpassed the accuracy of other machine learning methods,
including logistic regression (not shown). Figures were drawn
with Matplotlib (Hunter, 2007).
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3. RESULTS

3.1. Simulation Overview
We ran over 5800 network simulations, randomizing 11
ion channel/receptor densities independently. A typical 2 s
simulation took ∼3 min using 24 cores on Linux with parallel
NEURON. After running simulations, we calculated neuronal
population firing rates, synchronization, and power spectra.

3.2. Characterization of Dystonia
Pathophysiology
Simulations were grouped into physiological and pathological
based on differences in firing patterns (Table 8, Figure 2).
1505 of 5867 simulations produced no activity. The remaining
simulations were characterized as physiological or pathological.
Pathological simulations showed increased activity. High
activity alternating with latch-up condition was defined
as an epileptiform simulation with periods of >200 ms of
depolarization blockade across multiple cells (1077 simulations).
1077 simulations were classified as epileptiform based on activity
latch-up resulting in sustained periods. The different classes
of simulations formed distinct clusters in multiple slices of
excitatory corticospinal (ESP) activity feature-space (Figure 2).
Physiological simulations showed E5P rates ≤2 Hz with low
to intermediate E5P firing vector (FV) similarity. Dystonia
simulations primarily occupied the upper-right quadrant of the
scatterplot in Figure 2A, but displayed either high or low FV
similarity which overlapped with the range of values displayed
by the physiological simulations. Epileptiform simulations had
intermediate average E5P rates due to high activity alternating
with periods of quiescence caused by depolarization blockade.
Across simulation types, higher E5P firing increased the
excitatory drive to I5 neurons, causing increased I5 neuron firing
(Table 8). Higher I5 and E5P neuron firing then caused higher
E5P synchronization via recurrent E5P excitation and feedback
inhibition (Figure 2B). Stronger E5P and I5 interactions then

increased beta rhythm amplitude (Figure 2B), however with
substantial variability. Peak oscillatory frequency was held
relatively stable across simulations (Table 8). Physiological
and epileptiform simulations had lower overall E5P synchrony
and beta power compared to the dystonia simulations, which
occupied the upper-right quadrant of Figure 2B.

E5P FV similarity showed temporal recurrences which
further distinguished the three simulation types (Figure 2C).
The physiological simulation showed intermediate self-similarity
(0.17) due to sparse firing of different subsets of pyramidal cells
at different times. In contrast, the dystonia simulation firing
patterns showed strong self-similarity (0.56) and recurrence
over time (recurring orange/red blobs in Figure 2C), indicating
stereotyped dynamics. The example epileptiform simulation
showed relatively weak self-similarity (0.16) due to its two
distinct firing patterns: high E5P synchrony alternating with
E5P silence produced by depolarization blockade. Epileptiform
and dystonia simulations showed a brief period of high
similarity when the epileptiform simulation showed strong
oscillations during the initial period. There was weak similarity
between epileptiform and physiological (0.12) and dystonia
and physiological (0.22) simulations, indicating that both
pathological dynamics were distinct from the physiological.

E5P neurons in a representative physiological model fired
sparsely with low synchrony (population-synchrony = 0.01;
Figures 3A,D; Supplementary Figure 1 has all physiological
rasters), with multiple downstream effects. Low excitatory drive
from E5P to I5 and I5L neurons caused them to fire slowly. This
low L5 inhibition allowed E5a neurons to fire quickly. The weak
E5P and L5 interneuron interactions produced only weak beta
rhythms which were confined to layer 5 (Figure 4A).

In a representative dystonia simulation, E5P neurons
had sustained, synchronous, rapid firing (Figures 3B,D;
Supplementary Figure 2 shows all dystonia simulation rasters).
This promoted strong, continuous layer 5 interneuron activation.
The L5 interneurons then suppressed E5a intratelencephalic

FIGURE 2 | Distinct dynamics in in physiological, dystonia, and latch-up simulations. (A) Average E5P firing rate vector (FV) similarity vs. average E5P firing

rate for individual simulations. (B) E5P MUA Beta oscillation amplitude vs. E5P synchrony for individual simulations. (A,B) [light blue: physiological, purple: dystonia,

orange: epileptiform, black: remaining Active simulations, large circles represent simulations shown in (C) and Figure 3]. (C) Pearson correlations between all pairs of

E5P FVs. Solid black lines demarcate FVs from example physiological, dystonia, and epileptiform simulations. All FVs used 50 ms intervals, forming 40 FVs per 2 s of

simulation.
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FIGURE 3 | Distinct firing patterns in physiological, dystonia, and epileptiform (epileptic) simulations. (A) Physiological model has sparse, asynchronous

E5P firing, relatively low I5 firing, and activated E5a/E5b populations. (B) Pathological model shows high-frequency, synchronous activity in E5P neurons, causing

higher I5 firing, which suppresses E5a activity. (C) “Epileptiform” (epileptic) model shows high-frequency, synchronous activity with intermittent 200–300 ms gaps in

firing of E neurons, caused by depolarization blockade (Na+ channel inactivation). (A–C) Left Dots represent individual neuron spike times (red: E cells, blue: LTS cells,

green: FS cells). Cells arranged from layer 2/3 (top) to layer 6 (bottom). Scale-bar: 100 ms. (A–C) Right Population firing rates (25 ms bins) arranged vertically to

roughly correspond to position on raster plot to the left. Scale-bar: 40 Hz (Same color code as raster; apparently flat lines indicate low variation in firing rate). (D)

Population firing rates from simulations in (A–C) (Average ± standard error of the mean).

neurons, which fired at reduced rates. In contrast, E5b firing
increased with the faster E5P firing, due to excitation spreading
in the network. The relatively high recurrent connectivity
(18% density) and strong synaptic weights between E5P
neurons allowed the E5P neurons to remain activated despite
strong feedback inhibition. The strong feedback inhibition
also activated the E5P HCN channels, which produced
rebound excitation. The strong E5P activation coupled with the
feedback inhibition also enabled E5P neurons to synchronize

(population-synchrony= 0.83; vertical stripes in Figure 3B) at
a strong beta rhythm (∼20 Hz; Figure 4B). These synchronous
beta rhythms also spread to other populations and layers (E2, I5,
I5L, E5b, and E6).

Epileptiform simulation also displayed strong intermittent
beta oscillations and strong synchrony (population-synchrony
= 0.05; Figures 3C, 4C), but this activity alternated with
lengthy periods (200–300 ms) where E neurons were not firing
due to depolarization blockade. Even with these periods of
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FIGURE 4 | Motor cortex models produce different beta oscillations. Power spectrum of multiunit activity vectors of examples in Figure 3. Power (y-axis) in

arbitrary units. (A) Physiological model shows weak beta (22 Hz) oscillations with power of <0.1% of the pathological model. (B) Pathological model produces strong

beta (20 Hz) oscillations with additional harmonic at 40 Hz. (C) Epileptiform model produces strong beta (19 Hz) oscillations with additional harmonic at 38 Hz.

depolarization blockade, most E neurons fired at higher average
rate than in the physiological simulations (Figure 3D). Such
increased synchrony with high excitatory cell activity is seen in
epilepsy patients (Meisel et al., 2015). In contrast to the dystonia
simulations, the synchronous periods of epileptiform oscillations
were largely confined to layer 5 and did not spread to other layers.

3.3. Need for Multitarget Approach
No individual parameter determined physiological vs. dystonia-
dynamical-condition in the network (Figure 5). Therefore, no
single parameter adjustment would routinely provide an effective
“treatment” that would reliably restore physiological activity in
most pathological models. We therefore went on to explore
whether multitarget manipulation would be able to find such
treatment routes.

Although no single parameter could predict physiological
vs. pathological dynamics, the outliers of certain individual
parameters were predictive. At the pathological margin,
simulations had parameters which are expected to produce high
activity: high Na+ or Ca2+ channels promoting inward currents,
high HCN channel densities providing high resting membrane
potential (RMP), and low K+ channel densities again producing
depolarization and reduced repolarization with spiking.

Further evidence for lack of predictability of dynamics
based on parameters, comes from viewing the parameters
in all 11 dimensions organized into 2 classes by dynamics.
The parameter space showed substantial heterogeneity in the
patterns producing pathology (Figure 6A), with weak intra-class
clustering (Figure 6B). Correlation between parameter vectors
of each simulation averaged 0.06 for physiological simulations,
0.07 for pathological simulations, with weak -0.05 anticorrelation
between pathological and physiological simulations. The low
correlations in both the physiological simulations (lower-left

corner of Figure 6B) and the pathological simulations (upper-
right corner of Figure 6B) demonstrate that there is widespread
degeneracy in the parameter sets that produce either the
physiological or pathological states. Some of this degeneracy is
unsurprising: for example K+ channels with similar time courses
of activation can substitute for one another to some extent. Other
degeneracy is more complex and involves higher-order dynamic
compensation.

3.4. High Dimensional Separation of
Physiological and Pathological Parameters
Because of the difficulty of separating pathological from
physiological with these high dimensional parameter sets,
we used a SVM classification to create a separation (termed
a maximum margin hyperplane) separating parameter sets
producing physiological dynamics from parameter sets
producing pathological dynamics. We started by training
SVMs using only two parameters in combination (Figure 7). In
order to test the efficiency of this separation, we separated out
our target sets (physiological vs. pathological) into two subsets
of each to serve as training and testing sets to evaluate the
adequacy of the separation. By trying various random training
and testing sets we got a mean and standard error for each
case. Many two-parameter predictions were below chance (0.5)
indicating that the SVM could not separate physiological from
pathological based on that parameter pair. Two-parameter SVMs
could accurately classify when the parameter pair included
Naf density—the strongest predictor of excitability. The best
prediction came with high Naf and low Kdr . Logistic regression
methods were also tried to perform this two-dimensional
separation but did not perform as well as SVM.

Going beyond 2 parameters, SVM classification accuracy
increased regularly with the number of parameters used
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FIGURE 5 | Individual parameters do not distinguish physiological from dystonia activity. (A) Dystonia (purple) vs. physiological (light blue) simulations. of

simulations sorted by E5P firing rate (N = 65 for each group). (B) Cumulative probability distributions for each parameter in the dystonia (purple) and physiological

(light blue) simulations. Parameter values normalized to a distribution with zero mean and unit variance (zero mean does not indicate zero density of a given ion

channel/receptor). Simulations shown are obtained from bottom and top 2nd percentile based on dynamic measures.

(Figure 8), suggesting that a multi-target drug approach beyond
two targets might produce greater effect. Moving to higher and
higher dimensional spaces, we checked all possible parameter
combinations at each dimensionality. In Figure 8, we report
the parameter combination that was most predictive—e.g., at 6
dimensions we report just one of the 462 combinations of six
from 11 parameters. Looking at the red blocks below, we can
identify that the six dimensions that provide best prediction are
Naf , four of the K

+ channels, and VGCC. Predictability increases
up through six parameters, then plateaus, and then falls off due
to the extreme sparseness of data. This sparseness was due to
the so-called curse of dimensionality: given a constant number
of data points n, the density falls off #bin-fold with each increase
in dimension, where #bin is the binning of the space in one

dimension. Because of this, any high-dimensional method will
tend to underestimate predictive strength given a limited amount
of data (Bishop, 2006; Noble, 2006).

This multi-target SVM approach revealed the parameters
that had the highest contribution to producing or preventing
dystonia. Naf density was the most predictive parameter across
all numbers of parameters used (horizontal red stripe at top
of Figure 8B), as had been also shown using 2 dimensions
alone (Figure 7). Again confirming the 2-dimensional result, the
next most predictive parameters was Kdr . Following these came
Ka, Kd, BK, SK, and VGCC densities which also significantly
contributed to accurate predictions, due to their strong influence
on E neuron excitability. mGLUR, RYR, and Km densities showed
lesser contributions.
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FIGURE 6 | All parameters of pathological and physiological simulations reveals weak intra-class clustering. (A) 11-dimensional parameters for

physiological and pathological simulations. Colorbar is normalized parameter values as in Figure 5. (B) Pearson correlations between all pairs of parameter vectors.

FIGURE 7 | Support vector machine classification accuracy of pathological vs. physiological simulations using two parameter values has high levels

for certain parameter combinations (e.g., including Naf channel density) but overall accuracy is often below chance (0.5). (A) Accuracy as a function of

specific parameter combinations [indicated at same horizontal location in (B) (Red indicates parameter (param) was used for classification; blue indicates the

parameter was not used)] (solid line: mean cross-validation accuracy (n = 10); dotted line: standard error of cross-validation accuracies).

Increasing the percentile cutoffs for categorizing physiological
from pathological simulations from the 2nd percentile to 7th
percentile decreased prediction accuracy but still demonstrated
the value of multitarget changes (Figure 9). The left column

shows the same result as Figure 8: accuracy increased (colormap)
as one goes from fewer to more parameters (bottom to top).
By including more exemplars on both the physiological and
pathological sides, we moved away from the best exemplars
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FIGURE 8 | SVM classification accuracy generally increases when using 1–10 parameters, indicating utility of multitarget pharmacy approach to

treating dystonia. (A) Best classification accuracy from all combinations of x parameters (solid line: mean cross-validation accuracy (n = 10); dotted line: standard

error). (B) Best parameter (param) combinations (red: parameter used; blue: parameter not used). x-axis in (A,B) indicates number of parameters used.

and obtained less distinction between the two parameter sets.
However, at all percentiles, there was an initial increase in
classification accuracy with continued increase up to or beyond
3 parameters. This increase then declined as the number
of parameters increased further due to the aforementioned
sparseness at high dimensionality.

4. DISCUSSION

We developed a multiscale model of primary motor cortex
to explore multitarget pharmacological therapies for dystonia.
We searched parameter space—channel and receptor densities—
to create a set of models to contrast dystonia dynamics with
physiological dynamics. Dystonia simulations displayed high
excitability and synchrony in layer 5 corticospinal neurons
(E5P), and strong beta oscillations which spread between
cortical layers (Figures 3B, 4B). Dystonia simulations could be
distinguished from epileptiform simulations primarily by the
presence of periods of latch-up with depolarization blockade
in the epileptiform simulations. Physiological simulations
had low excitability, asynchronous firing, and weak beta
oscillations (Figures 3C, 4C). Attempts to use high-dimensional
visualization techniques to find potential therapeutic directions
in the parameter space were limited by the solution degeneracy
in the 11-dimensional parameter space with scattered parameter

vectors with low correlation (Figure 6). We therefore turned to a
SVM classification to identify hyperplanes in high-dimensional
space that would separate the two populations. As expected,
the major spike generating channels, Naf and Kdr were the
primary determinants of excitability, followed by additional
potassium channels and calcium channels. We did not assess
pharmacological effects on synapses, which would be useful to
do in the future.

4.1. Biological Degeneracy and
Personalized Therapy
Degeneracy of mechanism is a major theme in biology (Edelman
and Gally, 2001), meaning that there are many different ways
that a biological system can produce a particular shape in the
case of an immunoglobulin, or a particular dynamics in the case
of a neural system. Such degeneracy has been shown directly in
the stomatogastric ganglion of lobster, where a particular cell
type produces its stereotyped dynamics using many different
combinations of ion channel densities (Golowasch et al.,
2002). Associated with this degeneracy is failure of averaging—
averaging across parameter sets that produce the dynamics
gives a set of parameter values that do not produce the same
dynamics.

In the context of brain physiology, this means that we
can expect that individuals differ in the details of how their
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FIGURE 9 | SVM classification accuracy increases with more

parameters then decreases due to “curse of

dimensionality”—sparseness of parameter vectors relative to

dimension. Best classification accuracy from all combinations of y

parameters (params) using bottom/top SPI firing rate percentiles on x-axis.

motor cortex produces oscillations and contributes tomovement.
Similarly, we can expect that individuals differ in the details of
their pathology. From a pharmacological perspective this argues
that we may see greater benefit from personalized medicine—
identifying the high-dimensional complex of pathological
parameters in a particular patient in order to treat them with
their own individualized cocktail of multitarget drugs to produce
a dynamics that falls somewhere in the physiological regime. To
this might also be added complementary individualized, perhaps
multi-locus, brain stimulation (Kerr et al., 2012; Song et al.,
2013; Chadderdon et al., 2014; Hiscott, 2014; Nelson and Tepe,
2014; Dura-Bernal et al., 2016). Such a personalized approach
would require much more intensive, and more costly, diagnostic
procedures of a type that is currently only used by epilepsy
surgery centers, which typically require invasive methods to
perform their diagnostic tests.

Due to the degeneracy, parameter averaging failed in our
dataset—using the average of all parameters sets that produce
pathological simulations does not give a pathological simulation.
However, the ability of the SVMmethod to separate pathological
from physiological populations in high dimensional parameter
space does suggest that there may be some benefit to pushing all
patients in that direction through a multitarget pharamacological
cocktail. In future studies, we plan to test this explicitly in the
simulations in order to determine what percentage improve,
what percentage worsen and what percentage remain essentially
unchanged with such an average treatment. This assessment will

require a larger number of simulated patients than we have thus
far accumulated.

4.2. Multilocus, Multitarget, Multiscale
Approaches for Treating Dystonia
In general, single target pharmacology has not been effective in
dystonia (Fahn, 1987). As in other complex diseases, many of
the treatments for dystonia have highly variable effectiveness and
must be used at high doses that produce side-effects (Jankovic,
2006). For these reasons, botulinum toxin, targeting the final
endpoint —the muscle movement—is commonly used as a
treatment (Jankovic, 2006; Sanger et al., 2007; Bragg and Sharma,
2014). Deep-brain stimulation, an invasive procedure, is also
used to partially restore normal brain dynamics (Tarsy, 2007;
Johnson et al., 2008; Air et al., 2011; Bhanpuri et al., 2014).

Multilocus, multitarget approaches may be particularly
useful in movement disorders because movement produces
coordination by utilizing coordination among multiple brain
areas including the basal ganglia, thalamus, cerebellum, sensory,
and motor cortices (Neychev et al., 2008; Crowell et al., 2012;
Delnooz and van de Warrenburg, 2012). Pathology within any
one region, or disturbances in communication between any of
the regions can potentially lead to disorders. To begin to address
these multiple challenges, we focused our computer modeling
here on a multiscale model of motor cortex and multitarget
pharmacology based in this one area. In the future, thismodel will
be expanded to encompass more areas and will include synaptic
receptor targets in each area.
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