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A commentary on

A Humanized Clinically Calibrated Quantitative Systems Pharmacology Model for

Hypokinetic Motor Symptoms in Parkinson’s Disease

by Roberts, P., Spiros, A., and Geerts, H. (2016). Front. Pharmacol. 7:6. doi:
10.3389/fphar.2016.00006

This publication proposes a computer-based platform to explore novel targets for symptomatic
treatment, based on the known neuroanatomy and neurophysiology of the basal ganglia (Roberts
et al., 2016). However, this theoretical proposal should also take into consideration other aspects,
such as the possible molecule(s) involved in the loss of dopaminergic neurons containing
neuromelanin, because there is a long list of molecules that failed to translate successful preclinical
to clinical studies and new therapies.

The discovery that PD motor symptoms were linked to the loss of dopaminergic neurons
containing neuromelanin was a very important input in the search for new pharmacological
treatments and understanding the mechanism underlying the degeneration of the nigrostriatal
system (Fahn, 2015). This discovery also had a great influence on preclinical models that were
developed by using exogenous neurotoxins that induce the degeneration of nigrostriatal neurons.
The first exogenous neurotoxins used as a preclinical model of PD were 6-hydroxydopamine
and later1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone. For decades, these
preclinical models have been used both to study themolecular mechanisms of the disease and to test
new possible drugs or treatments. A long list of drugs and even gene therapy has been tested with
these preclinical models, showing successful results, but these failed in clinical studies (Athauda
and Foltynie, 2015; Lindholm et al., 2016; Olanow et al., 2015; Park and Stacy, 2015).

In our opinion, the failure to translate the successful results obtained in preclinical studies
to clinical studies is not a problem of incorrect targets but depends on (i) the identity of the
neurotoxin causing the loss of dopaminergic neurons, containing neuromelanin in the substantia
nigra, which remains unknown. The discovery of genes associated with a familial form of PD
provided an enormous input to the basic research into understanding the mechanism involved in
the degeneration of the nigrostriatal system. However, it is unclear what induces the dysfunction of
these genes in the sporadic form of disease. There is a general agreement in the scientific community
that the degeneration of the nigrostriatal neurons in PD involves mitochondrial dysfunction,
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aggregation of alpha-synuclein to neurotoxic oligomers,
dysfunction of protein degradation, oxidative stress,
neuroinflammation and endoplasmic reticulum stress (Segura-
Aguilar et al., 2014, 2016a) and (ii) preclinical models that
do not reflect what is happening in the disease since these
models are based on exogenous neurotoxins that do not exist
in dopaminergic neurons. These models have been used both
to study the mechanisms of neurodegeneration and to test new
drugs. The degenerative process of the nigrostriatal system in
Parkinson’s disease is extremely slow because it takes years
for motor symptoms to become evident. This contrasts with
the extremely rapid and extensive degenerative process of the
nigrostriatal system induced by exogenous neurotoxins such
as 6-hydroxydopamine, MPTP or rotenone. The best example
is the MPTP that induces severe Parkinsonism in humans just
3 days after the consumption of drugs contaminated with this
neurotoxin (Segura-Aguilar et al., 2014, 2016b). The exogenous
neurotoxin models have been very useful as models for studies
of mechanisms for neurodegeneration (Segura-Aguilar and
Kostrzewa, 2015) but they have been completely worthless as
preclinical models for Parkinson’s disease (Athauda and Foltynie,
2015; Lindholm et al., 2016; Olanow et al., 2015; Park and Stacy,
2015; Segura-Aguilar et al., 2016a,b).

It has been proposed that aminochrome, a metabolite
of dopamine oxidation to neuromelanin, can be both used
in a preclinical model for Parkinson’s disease and also
represents an endogenous neurotoxin that triggers the
loss of dopaminergic neurons containing neuromelanin in
the substantia nigra (Segura-Aguilar et al., 2014, 2016a;
Herrera et al., 2016). Recently, it has been reported that
the unilateral injection of aminochrome into the striatum
induced a dysfunction of dopaminergic neurons characterized
by (i) an imbalance between the level of dopamine and
GABA as a consequence of lower release of dopamine; (ii)
induction of a progressive contralateral behavior without
significant loss of the nigrostriatal system; (iii) induction of
mitochondrial dysfunction resulting in lower levels of ATP
required for both axonal transport of synaptic vesicles and
dopamine release; (iv) a significant decrease in the number
of synaptic vesicles in the terminals; and (v) the induction of
morphological changes in dopaminergic neurons (cell shrinkage)
(Herrera et al., 2016).

The difference between aminochrome and exogenous
neurotoxins used in the preclinical model of Parkinson’s disease

is that aminochrome is produced within dopaminergic neurons
lost during Parkinson’s disease and does not induce a rapid
and massive loss of the nigrostriatal system, but induces a
progressive dysfunction of dopaminergic neurons based on an
imbalance between neurotransmitters, as in Parkinson’s disease.
Rats fed β-sitosterol β-d-glucoside have been proposed as a
new preclinical model of Parkinson’s disease and the question
is whether this compound is generated inside dopaminergic
neurons (Van Kampen et al., 2015). Aminochrome has been
proposed as the endogenous neurotoxin that triggers the loss
of dopaminergic neurons containing neuromelanin, since
aminochrome induces mitochondrial dysfunction (Arriagada
et al., 2004; Paris et al., 2011; Aguirre et al., 2012; Muñoz et al.,

2012), protein degradation dysfunction (Zafar et al., 2006;
Huenchuguala et al., 2014), endoplasmic reticulum stress (Xiong
et al., 2014), oxidative stress (Arriagada et al., 2004) and the
formation of neurotoxic oligomers of alpha-synuclein (Muñoz
et al., 2015).

Dopamine oxidation to neuromelanin is a normal pathway
since healthy individuals have intact dopaminergic neurons
containing neuromelanin in the substantia nigra (Segura-Aguilar
et al., 2014). The reason why aminochrome is not neurotoxic in
healthy individuals is because two enzymes [DT-diaphorase and
glutathione transferase M2-2 (GSTM2)] prevent aminochrome-
induced neurotoxicity (Segura-Aguilar et al., 2014, 2016a). DT-
diaphorase is expressed in dopaminergic neurons and astrocytes.
GSTM2 is only expressed in astrocytes, but astrocytes secrete
GSTM2 into the conditioned medium to protect dopaminergic
neurons against aminochrome-induced neurotoxicity as these
neurons are able to internalize GSTM2 (Cuevas et al., 2015;
Segura-Aguilar, 2015; Segura-Aguilar et al., 2016a).

In conclusion, a new computer platform to explore new targets
for new drugs is very important, but we also need to understand
why we cannot translate successful results from preclinical to
clinical studies to develop new pharmacological therapies.
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