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There is an increasing need for new reliable non-animal based methods to predict
and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a
computer-based method linking chemical structures with biological activities, is used
in predictive toxicology. In this study, we tested the approach to combine QSAR data
with literature profiles of carcinogenic modes of action automatically generated by
a text-mining tool. The aim was to generate data patterns to identify associations
between chemical structures and biological mechanisms related to carcinogenesis.
Using these two methods, individually and combined, we evaluated 96 rat carcinogens
of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat
carcinogens were mainly mutagenic, while the group of carcinogens affecting the
hematopoietic system and the liver also included a large proportion of non-mutagens.
The automatic literature analysis showed that mutagenicity was a frequently reported
endpoint in the literature of these carcinogens, however, less common endpoints such
as immunosuppression and hormonal receptor-mediated effects were also found in
connection with some of the carcinogens, results of potential importance for certain
target organs. The combined approach, using QSAR and text-mining techniques, could
be useful for identifying more detailed information on biological mechanisms and the
relation with chemical structures. The method can be particularly useful in increasing
the understanding of structure and activity relationships for non-mutagens.

Keywords: carcinogens, mode of action, text mining, QSAR, risk assessment, toxicity, prediction

INTRODUCTION

Cancer is a major public health problem and the number of cases are expected to increase in
the future (Frankish, 2003). Current research indicates that environmental factors, including
chemicals, have a major role in the disease development, emphasizing the importance to prevent
exposure to compounds possessing carcinogenic potential (Christiani, 2011; Landrigan et al., 2011;
Wu et al., 2016). Traditionally, the animal bioassay has been the main method used to identify
carcinogens. However, these tests are costly and time-consuming, and recent regulatory policies
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require a reduction in the number of animals used in chemical
testing. Consequently, there is a need for alternative methods to
examine toxicological effects of chemicals (Pelkonen, 2010).

In order to develop reliable non-animal based tests to
identify carcinogens, knowledge of the biological mechanisms
that lead to cancer is required. For example, the understanding
of chemicals’ modes of action (MOA), i.e., the sequence
of key events resulting in cancer, has become increasingly
important in hazard identification and risk assessment (Sonich-
Mullin et al., 2001; US-EPA, 2005; Boobis et al., 2008).
The current understanding of how chemicals cause cancer
involves two major MOAs: genotoxicity and non-genotoxicity
(indirect genotoxicity). A genotoxic MOA means that the
chemical interacts directly with the DNA (which can result in
mutagenicity), whereas a non-genotoxic MOA denotes indirect
effects, such as stimulation of cell proliferation or inhibition of
cell death (US-EPA, 2005).

The huge collection of biomedical articles in MEDLINE,
available through the search engine PubMed1, provides a great
source of information for researchers to utilize and generate
new knowledge. However, considering the enormous amount of
articles, more than 26 million to date, it is getting more and more
problematic for researchers to handle information relevant to
them. For such purposes, techniques like text-mining could be
used for locating and managing information overload. Recently,
biomedical text-mining has become increasingly popular for
handling the large volumes of texts in biomedical sciences
(Cohen and Hersh, 2005; Zweigenbaum et al., 2007). Today,
there is a wide range of different text-mining tools available to
support researchers in the biomedical field (Cohen and Hersh,
2005; Zweigenbaum et al., 2007; Zhu et al., 2013; Fleuren and
Alkema, 2015; Gonzalez et al., 2016). One such tool, CRAB, has
been developed to support classification of literature relevant
to cancer risk assessment (Korhonen et al., 2009, 2012; Guo
et al., 2014). This tool automatically classifies literature based
on the carcinogenic evidence that is mentioned in the text of
scientific abstracts. Based on the text analysis the tool generates
toxicological literature profiles that can be used for cancer risk
assessment or cancer research. This approach facilitates the
detection of new patterns in data, which could be a nearly
impossible task by manual literature search and evaluation. Such
data patterns can be used, e.g., to compare individual substances
or groups of chemicals to generate new hypotheses that can be
tested experimentally (Korhonen et al., 2009, 2012; Kadekar et al.,
2012; Silins et al., 2014; Ali et al., 2016).

Quantitative structure-activity relationship (QSAR) modeling
is an important computational tool in medicinal chemistry and
predictive toxicology (Hansch et al., 1962; Cherkasov et al., 2014).
It is a procedure by which a chemical structure is quantitatively
linked with a clearly defined process, typically biological activity
or chemical reactivity. The QSAR model systems build on
structure-activity relationships of known chemicals, and can be
used to predict the toxicity of unknown chemicals based on their
structures (Combes, 2012). This technique has proven especially
useful in predicting mutagenicity based on structural alerts,

1http://www.ncbi.nlm.nih.gov/pubmed

which are mechanistically linked to carcinogenicity (Benigni
and Bossa, 2011). Structural alerts are the molecular structures
and reactive groups that are responsible for a toxic effect
(Benigni et al., 2013). The QSAR method can thus both predict
carcinogenicity, and mutagenicity, and provide information
about structural alerts based on the chemical structures (Benigni
and Bossa, 2006). Traditionally, the QSAR method has been
better in predicting reactive (genotoxic) compounds compared
to non-reactive (non-genotoxic) carcinogens, however, recently a
new set of structural alerts relating to non-genotoxic mechanisms
including, e.g., oxidative stress, hormonal imbalance, and
peroxisome proliferation has been identified (Benigni et al.,
2013).

Several new alternative approaches for predicting carcinogens
in connection with QSAR have been suggested (Benigni, 2014).
For example, a strategy using QSAR in a tiered approach
combined with in vitro tests for genotoxicity and tumor
promotion has been proposed (Benigni, 2014). Another approach
to improve prediction in combination with QSAR is based
on mechanistic information, involving the concept of adverse
outcome pathways (AOP; Benigni, 2014). The AOP outlines the
sequence of events starting from a molecular initiating event,
through a series of key events, resulting in an adverse effect
(Vinken, 2013). The AOP and the MOA (described above) are
similar concepts that take into account mechanistic information
to improve, e.g., risk assessment, however, one major difference
is that a MOA focuses on the details specific to a particular
chemical, whereas the AOPs are chemical-agnostic (Edwards
et al., 2016; Kleinstreuer et al., 2016).

The purpose of this study was to test whether combining
QSAR methodology with a text-mining approach based on
carcinogenic MOA could be useful to identify new associations
between chemical structures and biological activities related to
carcinogenesis. Ninety-six rat carcinogens were selected from the
National Toxicology Program’s (NTP) database, and literature
profiles and QSAR data were generated for each carcinogen.
Based on both the QSAR data and on text mining-generated
literature profiles we found that skin and lung rat carcinogens
were mainly mutagenic, while the group of carcinogens affecting
the hematopoietic system and the liver also included a large
proportion of non-mutagens. Mutagenicity was a found to be
a frequently reported endpoint in the literature, however, less
common endpoints such as immunosuppression and hormonal
receptor-mediated effects were also found in literature on
some carcinogens, which could be of potential importance.
The approach to combine QSAR and text-mining could be
particularly useful for identifying biological mechanisms of
potential relevance to non-mutagens.

MATERIALS AND METHODS

Selection of Carcinogens
The NTPs database2 was used to select the rat carcinogens
included in this study. Four common organ sites were

2http://ntp.niehs.nih.gov/index.cfm
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selected, including the hematopoietic system (i.e., leukemia or
lymphoma), liver, lung, and skin. All rat carcinogens affecting
these four organs and classified by NTP as positive, clear, or
some evidence were selected for further analysis. Based on these
criteria, a total of 126 rat carcinogens were included. Among
these carcinogens, 30 chemicals affected one or more of the other
three organs, leaving a total of 96 individual chemicals for further
analysis.

Analysis of Carcinogenic MOA Using a
Text-Mining Approach
To investigate the carcinogenic MOAs concerning the 96 selected
rat carcinogens we used the text mining-based tool CRAB
(Korhonen et al., 2009, 2012; Guo et al., 2014) to analyze the
scientific literature. The published literature concerning these
carcinogens was retrieved from PubMed3 using the chemicals’
nomenclature or CAS numbers. This analysis was based on
literature published until January 2015. The literature collection
of each carcinogen was automatically classified by the tool, which
categorizes scientific abstracts according to a taxonomy that
covers the main types of evidence for carcinogenic MOAs. In
brief, the taxonomy structure includes two main MOA classes:
genotoxicity and non-genotoxicity. It is further branched into 25
sub-categories, ranging from common carcinogenic endpoints,
such as mutations, to less common effects, such as inflammation.
The classification is based on the evidence mentioned in the
abstracts’ text. For each carcinogen of interest the tool generates
a publication profile based on the scientific literature, thus the
profile reflects the current knowledge about this chemical. The
tool automatically calculates the proportion of abstracts in each
category (per total number of MOA-relevant abstracts; Guo et al.,
2014). The tool is based on advanced text-mining techniques and
has shown to generate classification of high accuracy. It can be
found at: http://omotesando-e.cl.cam.ac.uk/CRAB/request.html.

The carcinogens were grouped according to their target organ,
predicted mutagenicity/non-mutagenicity and structural alert.
Literature profiles for each group were generated by calculating
the average percent for each MOA subcategory. Carcinogens with
less than 10 abstracts were excluded in the text-mining analysis.
The statistical significance of the results was calculated using the
t-test.

QSAR Analysis
VEGA4 Non-Iterative Client (VEGANIC) v1.0.8, a standalone
JAVA-based software was employed and three different SAR
models were applied to the current dataset: Mutagenicity model
CAESAR (Ferrari and Gini, 2010) version 2.1.12, Mutagenicity
SarPy model version 1.0.6-DEV (Ferrari et al., 2013), and
Benigni–Bossa Mutagenicity (TOXTREE; Benigni et al., 2008)
version 1.0.0-DEV. The input structural data of the chemicals
were given in SMILES format (Weininger, 1988). The SMILES
chemical structures for each compound were retrieved from
PubChem, ChemSpider, or Wikipedia databases using CAS
registry numbers, IUPAC nomenclature or empirical chemical

3http://www.ncbi.nlm.nih.gov/pubmed
4http://www.vega-qsar.eu/

names. In a first step, the dataset of 96 carcinogens was curated
and counter ions, salts and disconnected structures were removed
as no identical compounds were located. In total, 75 carcinogens
were included in the QSAR analysis.

Linking QSAR Data with Literature
Profiles of Carcinogenic MOA
The results generated from three different SAR models were
compiled in order to decide the structures of carcinogens
according to Benigni Bossa code (Benigni et al., 2008). Each
of the 75 carcinogens analyzed was associated with a structural
alert, if given from the QSAR output. Some of the chemicals
were mutagens without a structural alert (named here unspecific
mutagens) or were predicted non-mutagens (typically without a
proposed structural alert).

Certain classification rules were applied when the carcinogens
were grouped as mutagenic or non-mutagenic based on the
output from the QSAR analysis. When identical results were
generated from all the three QSAR models the classification
as mutagenic or non-mutagenic was considered certain. If one
model presented conflicting results, the experimental result was
assumed more reliable than the predicted outcome. As default,
carcinogens were considered mutagenic if the QSAR models
presented conflicting results (e.g., if one model predicted the
chemical as mutagenic and another model as non-mutagenic).

Grouping of Chemicals
First, carcinogens were grouped according to their target
organs (hematopoietic system, liver, lung, and skin). Secondly,
carcinogens were grouped based on the QSAR output for each
chemical, as mutagens or as non-mutagens. In cases where a
chemical could have been entered into both classes because of
conflicting results from the different QSAR models, a decision
was made regarding the dominant category, and it was entered
into that single class. The two groups (mutagens and non-
mutagens) were further associated with their average MOA
literature profile, an analysis which included 46 mutagens and
22 non-mutagens. Thirdly, carcinogens were grouped based
on their structural alerts; eight groups were formed including
mutagens (quinones, primary aromatic amines, nitro aromatics,
unspecific mutagens, hydrazine, epoxides, and aziridines and
aliphatic halogens) and non-mutagens. For each of these groups
an average MOA literature profile was generated.

RESULTS

Literature Analysis of Carcinogenic MOA
Using the CRAB-Tool
The rat carcinogens affecting the four selected target organs
(hematopoietic system, liver, lung, and skin) included in total 126
chemicals. Of these, 30 were carcinogenic in at least one of the
other organs, leaving 96 individual rat carcinogens for further
analysis. The liver was the most common target site, since 58 of
the chemicals affected the liver in rats. Twenty-four chemicals
caused cancer in the hematopoietic system, and 22 were skin
and lung carcinogens, respectively (Table 1). The total literature
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TABLE 1 | Literature data for carcinogens affecting the hematopoietic
system, liver, lung, and skin in National Toxicology Program’s (NTP) 2-year
rat bioassays.

Target
organ

Number of
carcinogens

Number of
abstracts

(retrieved from
PubMed)

Number of abstracts
relevant to

carcinogenic MOA
(modes of action)

(CRAB-tool analysis)

Hematopoietic
system

24 21,837 4,296

Liver 58 49,862 18,097

Lung 22 6,895 1,648

Skin 22 49,902 6,251

Total 126 128,496 30,292

The number of carcinogens per target organ, number of abstracts retrieved from
PubMed and the number abstracts classified as relevant to carcinogenic MOA for
each target organ are shown.

collection of the selected carcinogens included almost 130 000
scientific abstracts retrieved from PubMed. The group of skin
carcinogens was the most well-studied with a literature collection
of almost 50 000 abstracts.

From the whole abstract collection >30 000 abstracts (∼25%
of the whole retrieved literature collection) were classified
as relevant for carcinogenic MOA by the CRAB-tool. Liver
carcinogens were the most well-studied of the four target organs
regarding literature relevant to carcinogenesis and MOAs as
shown in Table 1.

By using the CRAB-tool, the literature collection retrieved
from PubMed for each carcinogen was classified, and
carcinogenic MOA profiles were generated. As an illustration of
a literature distribution pattern, MOA profiles of 21 individual
rat carcinogens of the hematopoietic system are shown in
Figure 1. The figure shows the percent of abstracts relevant to a
certain MOA category, for each carcinogen. From the literature
distribution it is observed that one of the carcinogens has a large
proportion of literature classified in the strand breaks category
(A) and another carcinogen in the immunosuppression category
(B). From the same figure can also be seen that the literature of
most carcinogens reports about mutagenicity (C), but only one
carcinogen has a large proportion of the literature classified in
the inflammation category (D).

Chemicals were grouped according to their target organ and
literature profiles were generated for each group (Figure 2).
This approach facilitates comparison of carcinogens affecting
different target organs. If a specific MOA category stands
out in the comparison it may reflect a potentially important
mechanism for this organ. The data patterns showed that a larger
proportion of literature concerning lung carcinogens reported
about mutations as compared to the other organs (significantly
different compared to carcinogens of the hematopoietic
system). The figure further shows that carcinogens of the
hematopoietic system have a significantly larger proportion
of literature classified in the immunosuppression category
compared to liver carcinogens. In general, the literature patterns
indicated that endpoints such as mutations and oxidative stress

were commonly studied, while inflammation and hormonal
receptor-mediated effects were less frequently reported in
literature.

The literature patterns were analyzed in more details.
A compilation of the results from the CRAB literature analysis for
the four target organs is shown in Table 2. The literature analysis
showed that mutation was a commonly studied endpoint,
reported in the literature of 80–90% of all carcinogens included.
Other common endpoints were chromosomal changes and strand
breaks. In addition, mutagenicity was found to be the most
well-studied MOA category regarding rat carcinogens of the
liver, lung, and skin. Regarding carcinogens of the hematopoietic
system, oxidative stress was the most well-studied MOA category,
for which, on average, 12% of the MOA literature was classified
as relevant.

Analysis of Carcinogens Using the QSAR
Method
The QSAR method was used to predict the type of carcinogen
(mutagen or non-mutagen) and structural alerts. When
carcinogens were grouped according to their target organ
the QSAR data indicated that most skin carcinogens were
mutagens (Table 3). Grouping of skin carcinogens suggested two
dominating structural alerts: aliphatic halogens, epoxides, and
aziridines, which are both alkylating and direct-acting chemicals.
Most of the lung and liver carcinogens were also predicted
mutagens, however, a large proportion (38%) of the liver
carcinogens were predicted non-mutagens. In addition, although
the majority of carcinogens affecting the hematopoietic system
were predicted mutagens, a large part (37%) were classified as
non-mutagens (Table 3). Thus, compared to carcinogens of
the skin and lung, a large proportion of the liver carcinogens
and carcinogens affecting the hematopoietic system were
non-mutagens.

Combining QSAR and Text
Mining-Generated MOA Profiles
Chemicals were grouped either as mutagens or as non-mutagens,
based on the output from the QSAR modeling. The group of
mutagens included 46 chemicals and 22 chemicals were non-
mutagens. Literature profiles were generated for each of the
two groups. Figure 3 shows the differences in the literature
distributions between them. The proportion of literature
classified as relevant to genotoxic endpoints or to non-genotoxic
categories is in line with the data from the QSAR analysis. For
example, literature concerning mutagens was more frequently
classified in genotoxic MOA-categories, including mutation,
strand breaks, and chromosomal changes. Non-mutagens, on
the other hand, had more literature classified in non-genotoxic
MOA-categories, e.g., hormonal receptor-mediated effects, as
compared to mutagens.

Sixty-eight carcinogens, for which QSAR data had been
generated and that had enough literature data required for
analysis were grouped based on their structural alerts. The aim
was to investigate whether more detailed information regarding
the chemical structures could be associated with a particular
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FIGURE 1 | Individual literature profiles of 21 rat carcinogens of the hematopoietic system. Twelve selected categories of carcinogenic MOA (modes of
action) are shown.

FIGURE 2 | Comparison of literature profiles for four target organs including hematopoietic system, liver, lung, and skin. The average percent of
abstracts classified in the MOA taxonomy is shown on the y-axis. Carcinogens were grouped according to their target organ(s). ∗Significantly different from
carcinogens of the hematopoietic system (p ≤ 0.05), ∗∗Significantly different compared to liver carcinogens (p ≤ 0.05).
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TABLE 2 | Results from the classification of abstracts relevant to
carcinogenesis.

Target organ Most common MOA
(percent of all chemicals)

Most well-studied MOA
(average percent)

Hematopoietic
systema

Mutations (90%) Oxidative stress (12%)

Liverb Mutations (82%) Mutations (13%)

Lungc Chromosomal changes,
mutations, strand breaks (89%)

Mutations (21%)

Skind Mutations (89%) Mutations (16%)

a21/24, b49/58, c19/22, d18/22 carcinogens were included in the analysis using
the CRAB-tool.

MOA category. Eight groups were formed, seven groups included
mutagens with different structural alerts and one group consisted
of non-mutagens (without structural alerts). Each structural alert
group was linked to its corresponding literature profile. The
two most common MOA categories for each group is presented
in Table 4. The mutation and oxidative stress categories were
the dominating categories. Cell proliferation and oxidative stress
were the most common categories for non-mutagens (same data
as shown in Figure 3). However, the number of carcinogens
included in each group was small, ranging from three carcinogens
in the group of hydrazines and epoxides and aziridines, to 22
carcinogens in the group of non-mutagens.

The literature patterns generated by the CRAB-tool can
provide new information of potential interest that can be used to
form new hypotheses. When the output from the QSAR analysis

TABLE 3 | The number of carcinogens with predicted structural alerts
shown for each target organ.

Structural alert Hematopoietic
cancer

Liver Lung Skin

Mutagens: aliphatic halogen 3 3 2 3

Mutagens: epoxides and aziridines 2 0 0 3

Mutagens: hydrazine 1 1 0 0

Mutagens: unspecific 3 3 6 1

Mutagens: nitro aromatics 2 1 3 2

Mutagens: primary aromatic amines 0 5 0 0

Mutagens: quinones 0 4 0 0

Mutagens: other structural alerts 1 8 3 2

Mutagens (in total) 12 25 14 11

Non-mutagens 7 15 4 2

Some carcinogens affected more than one target organ.

was linked with information on the target organs affected, we
found that the group of carcinogens affecting the hematopoietic
system included a larger proportion of non-mutagens (7 of 19
carcinogens with QSAR data) compared to the other organs. The
literature patterns of these seven non-mutagens were analyzed
in more detail (Figure 4) and we found that the most common
endpoints studied for these carcinogens were oxidative stress,
cell proliferation, and cytotoxicity, which are all non-genotoxic
effects. Interestingly, the literature concerning five of these
non-mutagens (2,4,6-Trichlorophenol, Butyl benzyl phthalate,
Hydroquinone, Mirex, and Furan) had data classified in the

FIGURE 3 | Distribution of literature concerning mutagens and non-mutagens in the MOA taxonomy. Carcinogens were grouped into two groups
(mutagens and non-mutagens) based on the results from QSAR modeling. Carcinogenic MOA profiles were generated for the two groups. The literature distribution
is shown as the average percent of abstracts in the MOA category. ∗Signficantly different compared to the other group (p ≤ 0.05).
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TABLE 4 | Linking structural alerts with carcinogenic MOA information.

Structural alert Most common MOA categories

1. Aliphatic halogen (alkylating, direct acting
agents)

Mutations, oxidative stress

2. Epoxides and aziridines (alkylating, direct
acting agents)

Cell proliferation, cell death

3. Hydrazine (alkylating, direct acting
agents)

Oxidative stress

4. Unspecific mutagens Oxidative stress, mutations

5. Nitro aromatics (DNA adducts, indirect
acting agents)

Mutations, chromosomal changes

6. Non-mutagens Cell proliferation, oxidative stress

7. Primary aromatic amines (DNA adducts,
indirect acting agents)

Strand breaks, mutations

8. Quinones (alkylating, direct acting
agents)

Mutations, chromosomal changes

Carcinogens with the same structural alerts were grouped. Each group was linked
with their corresponding literature profile. The most and second most common
MOA category for each group is shown.

category of hormonal receptor-mediated effects. This result is
also in line with what is known about some of these compounds
(Ma et al., 2011; Upson et al., 2013; Alam and Kurohmaru, 2016).

DISCUSSION

In this study, we tested the idea of combining the QSAR
method with a text-mining approach to generate more detailed
information regarding the relationship between chemical

structures and carcinogenic mechanisms (MOAs). The literature
of 96 rat carcinogens was analyzed using the text mining-based
CRAB tool (Korhonen et al., 2009, 2012; Guo et al., 2014). QSAR
models were used to predict mutagenicity and structural alerts
for 75 of these carcinogens. The chemicals were grouped based
on target organ, mutagenicity and structural alerts, and literature
profiles were generated for each chemical group with the aim
to discover new patterns in data that connect target organs,
chemical structures, and carcinogenic MOAs.

The text-mining analysis showed that the mutation endpoint
was frequently studied in connection with most of the 96 rat
carcinogens, particularly in relation to lung and skin carcinogens.
This is not surprising as mutagenicity is known to have a central
role in carcinogenesis. In addition, the mutation endpoint is
widely used in studies of carcinogens and in screening tests of
mutagenicity (Mortelmans and Zeiger, 2000). By using QSAR
models we also found that the groups of carcinogens affecting
the liver and the hematopoietic system in rats included a large
proportion of non-mutagens. These data are in line with a
previous study of 522 carcinogens (Ashby and Paton, 1993),
where it was shown that these organs were partly affected by
carcinogens without reactive molecular sites. The same study
also showed that rat lung and skin carcinogens included mainly
reactive chemicals (Ashby and Paton, 1993).

Data patterns related to rare carcinogenic endpoints may
also be of interest, e.g., regarding non-genotoxic chemicals for
which detailed carcinogenic mechanisms may not be known. By
using the text-mining approach to compare groups of chemicals
new data patterns of potential importance can be found. In the
current study, we found that immunosuppression was frequently

FIGURE 4 | Seven non-mutagenic rat carcinogens of the hematopoietic system were investigated in more detail. The figure shows 13 selected MOA
categories and the literature distribution over these classes for carcinogens affecting the hematopoietic system in rats.
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mentioned in the literature concerning rat carcinogens affecting
the hematopoietic system. This is an interesting finding, which is
also in line with the known mechanisms of human carcinogens
affecting this organ (Adamson and Seiber, 1981; IARC, 2015). An
association between immunosuppressant drugs and development
of cancer in the hematopoietic system (lymphomas) in humans
has also been shown previously (Bugelski et al., 2010). However,
as the value of the rodent carcinogenicity assay in predicting
human toxicity caused by immunosuppressants has been
questioned (Bugelski et al., 2010) it would be of interest to apply
the same method on a set of human carcinogens affecting the
hematopoietic system.

Another finding concerning carcinogens of the hematopoietic
system was a relatively large proportion of literature linked to
hormonal effects, compared with the other organs. Although
the findings were based on only a few rat carcinogens this
result may indicate a potentially important mechanism for
cancer development in this organ, possibly also for humans.
Although there are articles reporting on potential links between
hormonally active substances and cancer of the hematopoietic
system in humans (Traversa et al., 1998; Poynter et al., 2013;
Leal et al., 2016), the aetiologies of this cancer type are still
unclear (Laurier et al., 2014). More research is required to support
these findings and it would, e.g., be of interest to evaluate
the structures of the chemicals in more details and investigate
potential links with hormonal receptors. In addition, human
carcinogens targeting this organ should be analyzed using the
same approach.

When the rat carcinogens were organized into groups based
on their proposed structural alerts, we found that the literature of
carcinogens with predicted mutagenic structural alerts reported
more frequently about genotoxic effects compared to non-
mutagenic carcinogens. This comparison confirms that the
outcomes of the two methods are consistent. Our initial idea
was that more detailed information regarding structural alerts
linked to text mining-generated information could provide
new data patterns of potential interest. This approach could
be particularly useful to increase the knowledge about how
non-genotoxic compounds act, e.g., in a certain organ. More
detailed structural information could be important because
the knowledge about how the chemical structures of these
compounds link to biological effects, on a mechanistic level,

is still weak. Furthermore, a problem in current non-animal
based cancer testing is the lack of reliable systems to detect non-
genotoxic carcinogens (Benigni et al., 2013). Thus, development
of new approaches to study, e.g., non-mutagenic carcinogens is
important to improve future testing strategies.

Although QSAR models have proven useful in predicting
mutagens, the method is more challenging for non-genotoxic
carcinogens (Silva Lima and Van der Laan, 2000; Benigni et al.,
2013; Luijten et al., 2016). There are several explanations for
this difference, e.g., a better mechanistic understanding of how
mutagenic compounds cause cancer, compared to non-genotoxic
carcinogens. Furthermore, the databases used for QSAR contain
more data on mutagenic carcinogens, which makes the basis
for analysis stronger, leading to more robust predictions for
mutagens (Benigni et al., 2013). Another more general difficulty
related to non-genotoxic carcinogens is that these compounds
may target specific organs, often depending on organ-specific
metabolic mechanisms (Silva Lima and Van der Laan, 2000).
As these characteristics can be species-specific, the human
relevance of certain non-mutagenic mechanisms may be unclear.
Predicting metabolic induction of enzymes such as cytochromes
P450 using computational approaches (Kirchmair et al., 2015)
could be useful to identify chemicals with potential to cause
tumors in, e.g., the rodent liver (Graham and Lake, 2008).

In this study we have combined QSAR data with text mining-
generated literature profiles of carcinogenic MOAs to generate
new patterns in data to explain the link between chemical
structure and carcinogenic effects. This approach could be
valuable in studies of non-mutagens, where more knowledge
about structure and activity relationships is needed. The overall
strategy, using these two methods in combination, also needs
further evaluation, e.g., by including additional non-mutagens
in the analysis and to further test its usefulness, maybe also as
a predictive approach.
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