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With multiple omics strategies being applied to several cancer genomics projects,
researchers have the opportunity to develop a rational planning of targeted cancer
therapy. The investigation of such numerous and diverse pharmacogenomic datasets
is a complex task. It requires biological knowledge and skills on a set of tools to
accurately predict signaling network and clinical outcomes. Herein, we describe Web-
based in silico approaches user friendly for exploring integrative studies on cancer
biology and pharmacogenomics. We briefly explain how to submit a query to cancer
genome databases to predict which genes are significantly altered across several types
of cancers using CBioPortal. Moreover, we describe how to identify clinically available
drugs and potential small molecules for gene targeting using CellMiner. We also show
how to generate a gene signature and compare gene expression profiles to investigate
the complex biology behind drug response using Connectivity Map. Furthermore, we
discuss on-going challenges, limitations and new directions to integrate molecular,
biological and epidemiological information from oncogenomics platforms to create
hypothesis-driven projects. Finally, we discuss the use of Patient-Derived Xenografts
models (PDXs) for drug profiling in vivo assay. These platforms and approaches are
a rational way to predict patient-targeted therapy response and to develop clinically
relevant small molecules drugs.

Keywords: cancer genome, CellMiner, Connectivity Map, cBioPortal, pharmacogenomics

INTRODUCTION

In last decade, a number of high-throughput large scale cancer genomic technologies have
generated very comprehensive and complex datasets (Cline et al., 2013; Robbins et al., 2013; Van
Allen et al., 2013; Friedman et al., 2015; Ledford, 2015). Some of key features of each type of
tumor and individual patient’s cancer including a specific pattern of DNA mutations, deletion,
amplification, gene rearrangements, translocation, microsatellite instability, and epigenetic
alterations have been revealed, but not fully understood (Hanahan and Weinberg, 2011; Cline
et al., 2013; Robbins et al., 2013; The Cancer Genome Atlas Research et al., 2013; Van Allen
et al., 2013; Lawrence et al., 2014; Forbes et al., 2015). Numerous web-based oncogenomic portals
for assessment of tumor genetic profiling derived from a very large number of patients have
been served as powerful tools for discovery and implementation of personalized cancer medicine
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(Ciriello et al., 2013; Van Allen et al., 2013; Friedman et al.,
2015; Klonowska et al., 2015). The use of genomic information
to identify and develop innovative therapies depends on
development of statistical, mathematical and computational
methods. Translational bioinformatics is an emerging field
dedicated on applying informatics to find genomic alterations
that can be used to development of precision medicine strategies
using multi-omics datasets (Ciriello et al., 2013; Dienstmann
et al., 2015; Friedman et al., 2015). There are several large-
scale cancer genomics platforms available for cancer researchers
querying molecular profiles and clinical drug response from
experimental and clinical trial studies (Van Allen et al.,
2013; Dienstmann et al., 2015). These rich data sets allow
clinical applications of genomic markers derived from treatment
response and/or adverse events into biologic insights and new
treatments. Familiarity with bioinformatics tools is one of present
challenges to explore genomics projects aiming to reveal cancers’
gene drivers and thereby planning a rational sequence of targeted
cancer therapies.

Further comprehensive histological and molecular
characterization of various types of cancer cells depends on
systems biology strategies to measure, create models and
manipulate appropriated tissue cell culture, animal models and
patient cohorts (Floor et al., 2012; The Cancer Genome Atlas
Research et al., 2013; Belizário et al., 2015). Initially, system-level
approaches have revealed a number of genetic and epigenetic
alterations that contribute to oncogenesis, progression and
metastasis of cancer cells (Hanahan and Weinberg, 2011). Recent
studies on tumor pathobiology in hematological and solid
cancers have revealed that heterogeneity is the major cause of
poor drug efficacy and response duration, within and between
individual patient groups (Visvader, 2011; McGranahan and
Swanton, 2015). Because of heterogeneity at cellular, molecular
pathways and pathophysiological levels, cancer cells that respond
to particularly therapeutic treatment can rapidly adapt and
develop extrinsic and intrinsic resistance changing their driver
mutation signaling pathways (Luo et al., 2009; Carragher et al.,
2012; McGranahan and Swanton, 2015). The targeted inhibition
of a unique protein (e.g., protein kinase) in a driver cancer
pathway many times results in the activation of pre-existing
genetic alterations in tumor cell clones (Nijhawan et al., 2012;
Holohan et al., 2013). Thus, the dynamic of variations in
cancer pharmacogenomics is much more complex and require
identification of target-shifting players, such as molecules and
pathways at a certain time point along with the treatment (Bozic
et al., 2013; Xia et al., 2014; Dienstmann et al., 2015). Therefore,
only a high-resolution and broader view of signaling systems
of the cancer genome could allow us to understanding the
complex mechanisms that make tumor cells to subvert single-
and multi-agent therapies.

In 1946, Louis Goodman and Alfred Gilman Goodman at
Yale University were the first researchers to explore a synthetic
molecule called “synthetic lymphocidal chemical” in a patient
(J.D) with massive lymphoma. The patient presented partial
response to the treatment. Afterward, the nitrogen mustard
molecules were developed as chemical alkylating agents to
treat human patients by Haddow et al. (1948). Until today,

the screening of chemicals and natural products derived from
microbial and plant species have been a preferential route
to discover new candidates for cancer therapy (Neidle and
Thurston, 2005; Carragher et al., 2012). With advances in the
protein purification and crystallography methodologies, the so-
called in silico approach for predicting and designing ligands
to target structure using large virtual libraries have also been
used (Neidle and Thurston, 2005). Research Collaboratory
Structural Bioinformatics Protein Data Bank (RCSB PDB
database1) and PDBbind database2 are examples of repositories
of proteins structures, nucleic acids, and complex assemblies
for in silico experiments (Neidle and Thurston, 2005). The
open-source target validation programs for large scale protein
kinase inhibitor screening have been a fruitful way for sharing
knowledge and reagents to understanding protein kinases
signaling pathways and drug discovery (Edwards et al., 2015;
Campbell et al., 2016; Elkins et al., 2016). The development
of highly selective ATP-competitive inhibitors for intracellular
and membrane tyrosine and serine-threonine kinases (RTKs) has
had a great impact in cancer therapy. For instance, Imatinib
for the Abelson kinase (ABL), Lapatinib for epidermal growth
factor receptor (EGFR) and ERBB2 transmembrane protein
kinases, and novel inhibitors such as Vemurafenib to mutated
BRAFV600E protein kinase (Elkins et al., 2016). However, the
extensive redundancy of RTK-transducing pathways, cross-
reactivity, toxicity and tumor resistance remain major challenges
and limitations of targeting key protein kinases for cancer
treatment (Fabbro et al., 2015). Currently, 33 protein kinase
inhibitors approved by Food and Drug Administration (FDA)
are available for patient clinical treatment (Fabbro et al.,
2015).

In vitro and in vivo assays based on cancer cell lines, or
tumor xenograft in immunodeficient mice, are often used to
high-throughput screening and to assess the cytotoxic effects of
small molecules (Sharma et al., 2010). Various morphological and
biochemical methods are usually used as read-out for therapeutic
efficacy of compounds targeting cell death modulators of
apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy in
cancer cell lines (Wolpaw et al., 2011; Dixon et al., 2012; Wolpaw
and Stockwell, 2014). More recently, new in vivo mouse model
named Patient-Derived Xenografts model (PDX), or avatar, has
been developed to validate the activity and efficacy of novel agents
for systemic therapies (Hidalgo et al., 2014). NOD/scid/IL2rgnull

(NSG) mice, which lack T, B and NK cells, have been used
to generate collections of human tumor PDX models (Hidalgo
et al., 2014; Shultz et al., 2014). PDXs form well-organized three-
dimensional architecture and display phenotypic and functional
heterogeneity of tumors as well as cancer stem cells (CSC)
repopulation (Chaffer et al., 2011; Gupta et al., 2011; Williams
et al., 2013). This system also provides immune cells and non-
malignant components of stromal microenvironment that have
direct implications in CSC’s escape from immune surveillance
(Chaffer et al., 2011; Gupta et al., 2011; Östman and Pietras,
2013; Zitvogel et al., 2013) as well as metastasis (Chaffer and

1http://www.rcsb.org/pdb/home/home.do
2www.pdbbind.org.cn
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Weinberg, 2011). There is convincing data supporting can stem
cell origin and their possible de novo rise from non-CSCs in vitro
and in vivo (Chaffer et al., 2011; Gupta et al., 2011). Conditionally
reprogramming of epithelial cells (CRC) induced by a Rho
kinase inhibitor (Y-27632), in combination with fibroblast feeder
cells, is a cell culture technique that enable the growth and
establishment of rare cancer cell lines, including CSCs, from
animal and patient’s small biopsy (Liu et al., 2012; Gach et al.,
2013). These new systems will greatly accelerate the identification
of new biomarkers for cancer progression and small molecules
candidates to cancer therapy.

Considerable effort has been put in system pharmacology
approaches to discovery of new anticancer-drug lead compounds.
It has been facilitated by the creation of small molecular
profiles and chemical-structure databases and a complete
annotation of chemical-genetic profiles based on well-genomic
characterized cell lines. Weinstein et al. (1997) at the U.S.
National Cancer Institute (NCI) developed the first high-
throughput assay-based on 60 cancer cell lines, named NCI-
60, for screening cancer candidate drugs. The access to the
NCI-60 database is via the CellMiner web-based application3

(Reinhold et al., 2012, 2015). Various other researchers’ groups
developed similar pharmacologic and biochemical approaches
to screening compounds in large number of cell lines derived
from various types of cancers. The results of these large
pharmacogenomics studies are compiled in the following
platforms: the Cancer Cell Line Encyclopedia (CCLE4; Barretina
et al., 2012), Connectivity Map (CMAP5; Lamb et al., 2006),
Genomics of Drug Sensitivity in Cancer (GDSC6; Garnett et al.,
2012) and the Cancer Target Discovery and Development
Project7. Advances in high-throughput technologies have allowed
improvements and expansions in these data sets as described
in details elsewhere (Dan et al., 2002; Basu et al., 2013;
Yang et al., 2013; Covell, 2015; Klijn et al., 2015; Iorio
et al., 2016). Together, these website platforms display genomic
and pharmacogenomics datasets of over 1,000 cancers cell
lines and their responses to more than 25,000 therapeutic
agents.

This review will consist of an introduction of pharmaco-
genomics datasets for exploring potential inter-relationships
among cancer genomics and drug discovery for precision cancer
medicine. First, we will introduce cBio Cancer Genomics
Portal (cBioPortal) and discuss the key molecular and
clinical features using some examples of cancer genomics
datasets. Second, we will exemplify how to query cancer
candidate genes and small molecules and chemical with
advanced web bioinformatics profiling tools available in
CellMiner and Connectivity Map platforms. We illustrate in
each section examples of relevant studies showing potential
inter- relationships among cancer genomics and drug
discovery. Finally, we discuss on challenges, limitations

3http://discover.nci.nih.gov/cellminer/
4http://www.broadinstitute.org/ccle
5http://www.broadinstitute.org/cmap
6www.cancerRxgene.org
7https://ocg.cancer.gov/programs/ctd2

and new directions to personalized gene-targeted cancer
therapy.

cBioPortal

cBioPortal8 provides bioinformatics tools for gene-based
visualization and analysis of molecular profiles and clinical
attributes of cancer patients obtained in the large-scale clinical
studies (Cerami et al., 2012; Gao et al., 2013; Schroeder et al.,
2013). The portal was developed at Memorial Sloan-Kettering
Cancer Center (MSKCC) Computational Biology Center (cBio)
in partnership with The Cancer Genome Atlas (TCGA) and the
International Cancer Genomics Consortium (ICGC). Currently
users can access data from more than 10,000 tumor samples
of 126 studies (as July 2016) and many provisional cancer
studies are continuously updated. The data set includes DNA
copy number variation, DNA methylation values, mRNA and
microRNA expression based on microarrays, mutation profiles,
protein and phosphoprotein levels when available for that study.
The clinical data available include overall survival and disease-
free survival intervals, gender, age, stage, and tumor grade.
Recently, the portal has added digital images of each patient
tumor biopsy displaying their histological and proliferative
patterns. The cBioPortal provides Pathway Commons tools for
exploring biological networks and interactions with up to 50 of
the most highly altered neighboring genes in the selected cancer
study. Biological networks can be viewed using cytoscape9 tolls
for visualizing molecular interaction networks and integrating
these interactions with gene expression profiles of interest.
Furthermore, using the Genes and Drugs menu, users can
predict drug-target interactions in a network.

The cBioPortal platform presents a list of over 70 scientific
articles reporting on the growing number of clinical studies
available in portal database for interactive data analyses (Cerami
et al., 2012; Gao et al., 2013). CBioPortal has been cited in
hundreds studies to describing mutational patterns of most
common oncogene and tumor suppressor, insertion, deletion,
and amplification that drive specific tumor-type, and prognosis
in patients and entire cohort (Van Allen et al., 2013; Lawrence
et al., 2014; Forbes et al., 2015).

Short Protocol for the Use of the
cBioPortal
A stepwise protocol containing the instruction and guidance for
querying the database is described in tutorial of the cBioPortal
website. The user needs to follow up four-steps in the cBioPortal
web interface and click on specific bottom to select: (1) a cancer
study of interest, for example, skin cutaneous melanomas studies;
(2) one or more genomic profiles, for example, mutations and
copy number alterations; (3) a patient case set, for example,
all complete TCGA patients with mutation, copy number, and
mRNA data; and (4) a gene of interest using HUGO gene symbols
or gene sets or pathways of interest. In the example in Figure 1,

8http://www.cbioportal.org
9http://www.cytoscape.org/
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FIGURE 1 | Continued
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FIGURE 1 | cBioPortal data visualization and analysis. (A) Genomic alteration frequency in the BRAF gene in 123 cancer patient studies, NCI-60 and
CCLE-883 cancer cell lines. (B) Oncoprint showing frequencies of genomic alterations observed in BRAF, N-RAS, and c-KIT gene in 278 tumor samples in the
TCGA skin cutaneous melanoma. (B) The panel shows that 143 (51%) of patients of the skin cutaneous melanoma TCGA study had one or more BRAF alterations.
(C) The panel shows a genomic overview of one patient identified by the number TCGA-ER-A3PL-06. The upper view panel shows copy number variation and the
frequency of mutations observed in each chromosome of the patient. The lower view panel shows details of the four top genes from 283 genes in which at least one
alteration was identified. (D) The plot shows the correlation between BRAF mRNA expression and the putative copy-number alterations (gain or amplification). In this
plot is include the deep or shallow deletion (not mutated, missense and in frame mutation) BRAF mutation. (E) The Kaplan–Meier overall survival curve indicates that
the cases with BRAF mutation had higher overall survival than the cases without BRAF alterations. (F) This schematic representation shows the position and hot
spot mutations across BRAF protein domains. The missense mutations most frequently observed are V600E, D, K, and R. Inside (G) shows a stick model
representation for BRAF kinase domain and molecular inhibitory mechanism proposed to vemurafenib (Zelboraf; Plexxikon/Roche), a small molecule drug approved
to treat melanoma patients.

we entered BRAF gene and selected “All Cancer Studies.”
Based on the user input, the portal automatically generates a
complete Oncoprint, which is concise and compact graphical
summary of genomic alterations. In this report there are boxes
to access data sets, which include mutations, mRNA expression,
DNA methylation, clinical outcome, biologic pathways, network
neighborhood, and several other parameters. In addition, the
users can inquire on the expression of special set genes associated
with cell cycle control (34 genes), DNA damage response (DDR;
12 genes), and other genes involved in the canonical signaling and
pathways of the cells. Most of data generated can be exported as
PDF or SVG file.

Figure 1A shows the result of one query to interrogate
overall genomic alterations frequency in BRAF gene in all
123 oncogenomic datasets. The columns display in color the
frequency of each alteration (mutation, deletion, amplification,
and multiple) observed in 63 out of 123 studies deposited in
cBioPortal. We highlighted four studies performed by TCGA
and Broad Institute of MIT and Harvard Medical School, in
which BRAF may be the key driver gene of skin cutaneous
melanoma and thyroid carcinomas. In these studies, BRAF
genomic alteration frequency ranged from 51 to 62.8%. In panel
B, we show the oncoprint report for retrieval in which we
inquired for co-occurrence of genomic alterations in BRAF,
N-RAS and c-KIT genes in 278 total cases of skin cutaneous
melanoma analyzed by TCGA provisional study (not published).
The results show a statistical significance for mutual exclusivity
between BRAF and N-RAS within the patient cohort. The
same was not observed for N-RAS and c-KIT. BRAF missense
mutation occurred in 51% of population. Interesting, one third
of patients displayed both amplification and mutation in BRAF

gene (columns in red and green). The genomic overview of
one patient from this study identified by the number TCGA-
ER-A3PL-06 is presented in Figure 1C. The upper view of this
panel shows copy number variation and frequency of mutations
observed in each chromosome of this particular patient. The
lower view panel displays details of the four top genes from
283 genes in which at least one alteration was identified. A plot
shows the correlation between BRAF mRNA expression and
the putative copy-number alterations (gain or amplification;
Figure 1D). The Kaplan–Meier overall survival curve (Figure 1E)
indicates that the cases with BRAF mutation had higher overall
survival than the cases without BRAF alterations (Logrank
Test p = 0.0373). Figure 1F shows hot spot mutations across
BRAF protein amino sequence and highlight frequently observed
missense V600D/E/K/R mutations. Figure 1G shows a stick
model representation of BRAF kinase domain and its inhibitor
Vemurafenib bound to ATP-binding site of the active kinase. The
cBioPortal tools also allow the users to identify cancer mutational
landscapes using the Mutation Assessor application, predicting if
a genetic alteration may impact to clinical outcomes.

Advantages and Limitations
By integrating multiple cancer genomics projects, cBioPortal
enables the users to analyze complex data sets and translate into
biologic insights and immediate clinical applications. The Cancer
Genomic Data Server (CGDS) and Web API interface allow
the use of many programming language, such as Python, Java,
Perl, R or MatLab, as well as the Integrative Genomics Viewer,
which is an external link. All these applications and statistical
tools allow the development of predictive models and meaningful
interpretation of molecular and clinical data. The cBioPortal has
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also many options for saving, downloading, and sharing results
from a query. Since most of the studies in cBioPortal have been
published, the users can download the original articles for further
interpretation across relevant datasets.

Next-generation sequence (NGS) technologies for whole-
genome and exome sequencing continue to increase in quality
and accuracy to capture complex genomic alterations in DNA
molecules. Nonetheless, various cancer genome data were
obtained using different protocols from different laboratories and
many technical and statistical issues remain unsolved. DNA is
isolated from diversified heterogeneous tumor and normal tissues
with create potential bias to estimate the relative proportion of
the germline mutation, de novo variants and rare mutated alleles
in a sample. To overcome this problem, it will be necessary
to analyze separately whole exome sequencing of tumor tissue-
associated fibroblast cell lines, circulating tumor cells (CTCs) in
human blood extracts and single cell clones from tumor tissue to
enhance accuracy of oncogenomic data. These approaches should
become a priority in future studies.

CellMiner
CellMiner10 is a web-based suite of bioinformatics tools designed
to explore the drug activity in the NCI-60 cell lines (Reinhold
et al., 2015). The database is continually updated and maintained
by Center for Molecular Therapeutics (CMT) and Developmental
Therapeutics Program (DTP) of The U.S. National Cancer
Institute (NCI) (Weinstein et al., 1997; Reinhold et al., 2012,
2015). The NCI-60 cell lines have been characterized previously
regarding tissue of origin, age and sex of patient, histology, DNA
ploidy, p53 status, multidrug resistance function, and doubling
time. The results of the comparative genomic hybridization and
karyotypic analysis, DNA fingerprinting and mutation analysis
as well as the levels of RNA and miRNA transcript expression
and protein and phosphoprotein, amino acid changing genetic
variants, protein function affecting genetic variants in each cell
line have been described in previous publications (Nishizuka
et al., 2003; Shankavaram et al., 2007; Reinhold et al., 2012,
2014, 2015; Abaan et al., 2013; Varma et al., 2014). CellMiner
tools allow rapid data retrieval of transcripts for 22,379 genes,
92 proteins and 360 microRNAs along with activity reports for
more than 20,503 chemical compounds, which include 102 drugs
approved by the U.S. Food and Drug Administration (FDA). In
addition, quantitative proteome and kinome profiles of the NCI-
60 panel covering over 10,350 proteins and 375 protein kinases
are available11. This supplementary website displays protein and
peptide expression of 59 cell lines of NCI-60 panel allowing
comparison of differentially expressed proteins between samples
(Gholami et al., 2013). The database serves as reference to query
the abundance and distribution of proteins in each cell line as well
as protein signature for drug sensitivity and resistance (Gholami
et al., 2013; Reinhold et al., 2015).

The rcellminer is an R package that provides a wide range
of functionality to help R users to access and explore molecular
profiling and drug response data in the NCI-60 CellMiner

10http://discover.nci.nih.gov/cellminer/
11http://wzw.tum.de/proteomics/nci60

platform (Luna et al., 2016). This tool allows many statistics
and visualization analysis such as clustering sets of drugs with
similar mechanisms in heat maps to show their inter-relatedness,
and calculate correlations between gene expression, mutations or
deletion, and drug activity profiles. The Z-score is the number of
standard deviations away from the mean of expression and the
average z-score for each cell line is presented in the histograms.
For instance, the use of z-score average has confirmed that broad
chemotherapeutic resistance among NCI-60 cell lines correlates
with expression of MDR1 (Alvarez et al., 1995). Many other
studies using different types of cell lines have confirmed literature
results linking some specific gene mutations to EGFR, ERBB2,
MET, PDGFR, ALK, and BRAF gene with the NCI-60 cell line
sensitivity to kinase inhibitors (Paull et al., 1989; Ikediobi et al.,
2006; Shoemaker, 2006; Quintieri et al., 2007; McDermott et al.,
2008).

Due to the broader role of the DNA damage response (DDR)
in cancer cell response to cytotoxic agents (Jeggo et al., 2016),
a recent study has examined the relationship of 260 DNA
repair genes with overall drug responses in the NCI-60 cell
lines (Sousa et al., 2015). The authors identified, as expected,
that the checkpoint genes TP53, ATM (ATM serine/threonine
kinase), ATR (ATR serine/threonine kinase), MLH1 (mutL
homolog 1), MSH3 (mutL homolog 3), and APC (adenomatous
polyposis coli) were frequently mutated in these cell lines (Sousa
et al., 2015). Cell lines with homozygous deleterious mutation,
named as putative genetic knockout cell lines, were selected
and used as control to validate the predictive values of DNA
repair genes to DNA damaging drug activity (Sousa et al.,
2015). The results indicated a significant association between
the Fanconi anemia genes (FANCM, FANCP/SLX4, FANCI)
and the activity of alkylating agents, antifolates, topoisomerase
II and DNA synthesis inhibitors. Other significant associations
between specific DNA repair genes and drug activity were
RAD51C (FANCO) and UBE2N whose expression had a positive
association with topoisomerases I and II and DNA synthesis
inhibitors. In addition, this study confirmed the pivotal role of
Schlafen family gene SLFN 11 as major predictor of 147 clinically
relevant DNA damaging agents including topoisomerases I and
II inhibitors, alkylating agents and DNA synthesis inhibitors
(Zoppoli et al., 2012; Sousa et al., 2015). Functional studies for
synthetic lethality in yeast have identified mutually dependent
partners or pair of DNA repair genes that work together to
transduce the DNA damage signals and survival of normal cells
(Chan and Giaccia, 2011; Nijman, 2011). CellMiner database
is a useful tool to infer loss-of-function through heterozygous
or homozygous mutation and loss of expression during the
screening of DNA damaging agents across NCI60 cell lines.
Potential pairs of human genes present in certain cancer cell lines
can help the development of new drugs for synthetic lethality
chemical approach.

Short Protocol for the Use of the
CellMiner Database
Figure 2 shows the analysis tools tab with currently accessible
analytical parameters of the CellMiner platform. A step
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FIGURE 2 | CellMiner interface for querying genomic data and drug activity in the NCI-60 database. CellMiner web interface is accessible by clicking on
the NCI-60 Analysis Tools tab. The users select in step1 the square box for cell line signature, and next clicking to one of the radio boxes, including gene transcript
Z-scores, drug activity Z-scores, or genetic variant summation. The users can check the square box for pattern comparison analysis, and choose one of the radio
boxes for gene transcript, protein or Drug NSC number. The specific identifier or pattern of interest is selected in step 2, either by typing directly one gene symbol or
one NSC# drug number from the list. Alternatively, the query can be done using the “Input list” function, or by uploading a file using the “Upload file” function.
A maximum of 150 identifiers (genes, microRNAs, or drugs) can be input at once. The result is instantly e-mailed to the address entered in step 3.

by step to set up a protocol for querying and retrieval
information in NCI-60 database is described in great detail
elsewhere (Reinhold et al., 2015). The platform is continually
updated in new parameters and tools have been implemented
recently (Reinhold et al., 2014, 2015). To illustrate CellMiner
applicability we show in Figure 3 results of correlations of
mutated BRAF gene expression and Vemurafenib drug activity
against NCI-60 cell lines (Figure 3). There are in the list
colon cancer cell lines: CO:COLO205 and CO:HT29 and
melanoma cell lines: ME:LOXIMVI, MR:MALME_3M, ME:M14,
ME:MEL_28, ME:SK_MEL5, ME:UACC_257, ME:UACC_62,
ME:MDA_MB_435 e ME:MDA_N. Next, we used the toll
“pattern comparison” to discovery similar drugs to target
mutated BRAF (Figure 4). To submit the first job (Figure 3A),
we checked two boxes in step 1, at first “cell line signature”
(square box), and next “genetic variant summation” (radio
button). In step 2, we entered the gene symbol; in this case,
“BRAF.” To submit the second job (Figure 3B), in step 1, we
checked the box “genetic variant vs. drug visualization.” Then,
in step two, we entered the NSC number: gene symbol, in this
case, 761431:BRAF. NSC number of Vemurafenib is 761431.
This number can be found in the list of identifiers and drug

mechanism that is available for download (step 1 CellMiner
interface tools).

The tool “Pattern Comparison” allows comparisons to identify
compounds with similar toxic activity against NCI-60 cell lines
based on “Z-score determination.” To submit a job, in the step
1, we checked first the box “Pattern Comparison,” next, a radio
button for Drug NSC. In the step 2, we typed Vemurafenib
NSC number 761431. The CellMiner retrieval show an Excel file
containing a list of 725 compounds. The table in Figure 4 shows
the top 8 NSC numbers for the highly correlated compounds,
including the names if available, and its mechanism and FDA
status. The drug Dabrafenib/GSK2118436 with a correlation
of 0.881 is in fact a BRAF-targeted drug approved in clinical
trial to treat melanoma patients. The bar graphic showing
Z-score determination for each compound as compared to
Vemurafenib is shown in Figure 4. It is important to mention
that Vemurafenib and Dabrafenib have achieved clinical approval
against BRAFV600E melanoma patients. However, colon cancer
patients with BRAFV600E do not respond to these drugs (Solit
and Rosen, 2014). The list of cell lines that responded to BRAF
inhibitors is consistent with GDSC database (Yang et al., 2013).
The query is described as in Figure 3B. In step 1, we checked the
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FIGURE 3 | BRAF genetic variant and sensitive to drug activity. (A) Frequency of BRAFV600E mutation across the NCI-60 cell lines. The y-axis shows name of
cell line and x-axis shows “Summation of Variants.” Two colon cancer cell lines (CO:COLO205 and CO:HT29) and nine melanoma cell lines (ME:LOXIMVI,
MR:MALME_3M, ME:M14, ME:MEL_28, ME:SK_MEL5, ME:UACC_257, ME:UACC_62, ME:MDA_MB_435 e ME:MDA_N) are positive for BRAFV600E mutation.
(B) Vemurafenib drug activity in the NCI-60 cell lines. The bar graphic shows the Z-score for sensitive (0 to +3) and resistant cell lines (0 to −3). The results indicate
that 8 out of 9 melanoma cell lines and 2 out 7 colon cancer cell lines responded to the treatment according to BRAFV600E mutation status depicted in (A).

box “genetic variant vs. drug visualization.” Then, in step two,
we entered NSC number:gene symbol, in this case, 764134:BRAF.
NSC number of Dabrafenib is 761431.

Advantages and Limitations
Cell miner is a powerful and friendly tool to perform chemical-
genetic profiling based on gene and drug activity. The exploration
of CellMiner database has allowed the discovery of mechanisms
of action of uncharacterized and structurally similar compounds
(Shankavaram et al., 2007; Reinhold et al., 2014, 2015). The
use of z-score as normalization index facilitates integration of
data such as gene transcript expression levels and drug activity
rates. The Pattern Comparison algorithm is another advanced
tool developed by the NCI-60 group that enables investigators to
search for compounds or molecular targets with similar patterns
of activity in the NCI-60 cell lines (Paull et al., 1989; Zoppoli
et al., 2012; Reinhold et al., 2015). By comparing their chemical-
genetic profiles and hierarchical cluster analysis according to
mechanistic category of anticancer agents, potentially important
associations can be identified between cancer-specific genomic
alterations and pharmacological responses (Holbeck et al., 2010).
Moreover, users can identify if the presence wild-type or mutated
p53 gene expression influences drug cell death activity. A new
tool named “genetic variation and drug visualization” allows the

users to query on new compounds that display similar specificity
to mutated proteins (Reinhold et al., 2015). We exemplified the
use of this tool using mutated BRAF and Vemurafenib to discover
that Dabrafenib has same molecular target (Figure 4).

One limitation in the NCI-60 database is that
chemotherapeutic compounds were tested at a single dose
and cytotoxic or cytostatic effects were determined at 48 h
without considering cell doubling time and cell cycle stage
of a cell line. The screening was done in a small number of
cell lines representing the nine tissue-derived cancer cell lines
and therefore few tumor subtypes. There are a number of
compounds that induces cell death via chemical reactivity and
membrane disruption and should be clustered separately to
indicate a non-genetic mechanism. Some other discrepancies
in the multiple comparative pharmacogenomics studies were
discussed elsewhere (Haibe-Kains et al., 2013; Weinstein and
Lorenzi, 2013).

CONNECTIVITY MAP

The Connectivity Map12 uses the concept of connectivity based
on compound-gene signature developed by Todd Golub’s group

12www.broadinstitute.org/cmap
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FIGURE 4 | Pattern comparison in the NCI-60 cell lines to significant drug correlation using as an input Vemurafenib and BRAF mutation. (A) The table
displays NSC, names and FDA status for the top eight compounds highly correlated to Vemurafenib activity. (B) The bar graphs shows the “Z-score determination”
for the top three compounds: Vemurafenib, Dabrafenib and NSC 656082, respectively. Most of cell lines harboring BRAFV600E mutation responded positively to
Vemurafenib and Dabrafenib. The cell line responses were distinctly different to NSC 656082 compound.

at Broad Institute of MIT, Whitehead Institute and Harvard
Medical School, Massachusetts (Lamb et al., 2006; Lamb, 2007).
In their first study, the group examined the effects of exposure
cancer cell line MCF-7, HL-60, SKMEL5 and PC3 to 164
perturbagens on gene expression using Affymetrix GeneChip
microarrays. Perturbagens are a small molecule or a genetic
interference such as knockdown or overexpression of a gene,
using a genetic reagent such as shRNA (short hairpin RNA)
and CRISPR/cas9 system. The instance is the basic unit of data
obtained in one treatment, the source, the concentration, the cell
line used, and the scan numbers for the treatment and its control
(Lamb, 2007). For comparing two samples and to determine
cumulative probability function by the null hypothesis, CMAP
uses Kolmogorov–Smirnov test. CMAP database contains the
results obtained with 1309 compounds and more than 7,000 core
reference expression profiles. To date, the Broad Institute’s LINCS
program has expanded the compound collection to over 20,000
using 50 types of cells, which gave over 1,800,000 perturbation

profiles13. Differentially expressed genes between disease and
normal conditions were used to form a signature for the disease.
Some of these experiments were done using a hybrid capture
sequencing method, which examine mRNA expression levels of
1,000 landmarker genes.

These genes are minimally redundant and widely expressed
in different cellular contexts. The CMAP 2.0 software identifies
chemicals with similarity in gene profiling among the matched
genes or query gene signatures that were previously identified
as common gene-expression changes to one or more known
compounds of the CMAP database. The software reveals both
compounds with positive and negative connectivity using the
up-regulated query genes and down-regulated query genes
representing a biological process. As a result of the comparisons,
all drug profiles in the reference database will be given a
connectivity score range from 1 to −1 representing their

13http://www.lincsproject.org/
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connections to the query signature. The method also allows the
exploration of gene signatures of cellular states, development, and
disease. Thus, CMAP can predict the regulatory networks and
molecular interactions that take place in different types of cells
under various conditions (Qu and Rajpal, 2012).

Yu et al. (2015) use CMAP to find key apoptosis genes
induced after exposure to 191 anticancer drugs. The authors
identified BCL2L11 (also named as BIM) and TNFAIP3 (also
named zinc finger protein A20) among 13 top critical regulators
of anticancer agents induced cell death. Cancer cells resistant
to many cytotoxic compounds have been linked to widespread
occurrence of deleted or down-regulated gene of the extrinsic
signaling pathways, such as TNF family members and up-
regulation or amplification of BCL2 protein family members of
the intrinsic mitochondria pathways. In fact, a recent study using
CMAP showed that LY294002, a PI3K inhibitor, and gossypol
and AT-101, MCL1 or other anti-apoptotic BCL-2 family member
inhibitors, were capable of reversing the prednisolone-resistance
of MLL-rearranged Acute Lymphoblastic Leukemia (ALL) in
infants (Spijkers-Hagelstein et al., 2014). Finally, CMAP database
has been used to drug repositioning which is a rational screening
to identify and compare drug efficacy and side effects of existing
drugs to specific diseases in concert with gene signature (Hu and
Agarwal, 2009; Qu and Rajpal, 2012).

Short Protocol for the Use of
Connectivity Map
A stepwise protocol for querying the database is described in
Connectivity Map webpage14 after a user has logged in. For
querying, the user needs to convert the list of genes to be
query into correspondent probeset of the Affymetrix array. This
can be done using tools available at http://www.affymetrix.com/
analysis/netaffx/index.affx. There is a “help page” explaining how
to make a .grp file from a tag list. The list of .grp files (add
to Microsoft Excel file) of up- and down regulated genes is
uploaded separately in the query. The permuted result page
shows a total of instances and functionally or structurally similar
perturbagens best connected (positively and negatively) along
with it the connectivity score, which is a combination of the up
score and down score. High (positive or negative) connectivity
score correlates with low p-score (permutation score).

We have done a study to evaluate the role of Dermcidin
(DCD) in breast cancer tumorigenesis using as model MDA-
MB-361, a breast carcinoma cell line widely used to investigate
breast cancer pathobiology (Moreira et al., 2008; Bancovic
et al., 2015). This work was aimed at finding the connections
between a molecular signature induced by DCD in breast
cancer and drugs that are likely to share some common
molecular mechanism. We collected and analyzed the global
mRNA expression levels of MDA-MB-361-pLKO (control) and
MDA-MB-IBC-I expressing shRNA against DCD (treatment)
using Affymetrix U133 Plus 2.0 chip. Next, we compared
132 up-regulated and 12 down-regulated genes in the dataset
generated using dCHIP software. We uploaded separately
the list of genes up and down-regulated. CMAP identified

14https://www.broadinstitute.org/cmap/

connectivity with a similar set of genes (signature) generally
elicited in cellular response to the drugs Sirolimus (p = 0.0002),
LY-294002 (p = 0.0004), and Wortmannin (p = 0.0011)
(Figure 5). These compounds are specific inhibitors of mTOR
(Mechanistic target of rapamycin), PI3K (Phosphatidylinositol-
4,5-bisphosphate 3-kinase) and AKT (V-Akt murine lymphoma
viral oncogene homolog), respectively. This result suggests that
DCD controls the expression of same set of genes modulated
by these inhibitors and may exert related effects on the
cells.

Advantages and Limitations
CMAP offers simple Web interface tools that allow users to
query gene signatures from a large number of small molecule
compounds. The comparative studies using parenteral and gene
knockout cell lines and their expression profiles have shown
that small molecules clustered with knockouts of targeted genes
(Lamb et al., 2006). The CMAP collection incorporated thousand
drugs able of inducing or reversing diseases states based on genes
up- and down regulated. This dataset has allowed the discovery
of unknown off-targets or unknown disease mechanisms of
great clinical interest. The portal can automatically generate
cross queries and identify structure-effect relationships based
on chemical-induced gene expression profiles which translate
molecule’s capacity to modulate the function of protein-network
components. The biological interpretation of predicted results
can be confirmed using the gene ontology, associations and
relationships of genes with diseases and biological pathways on
whole organisms provided by various resources like the Omin
database15.

One disadvantage is that compounds-signature profiles are
based on measurements of 1,000 landmarker genes in few human
tumor cell lines derived from breast, prostate, and leukemia.
Various experimental bias including off-target transcriptional
effects, specific genomic alterations of cancer cell types, doses,
and time points may impact on cell-line-specific response to
drugs. Additional molecular features to improve the power
of CMAP, such as comparison in the levels and modification
(phosphorylation) of proteins of activated signaling pathways are
necessary to confirm correlative or mechanistic approaches being
observed for all targeted agents and experimental conditions.

CONCLUDING REMARKS AND NEW
DIRECTIONS

Over the past 15 years, technological and bioinformatics advances
have made possible the integration of multiple omics datasets and
application of meta-analysis bioinformatics and systems biology
approaches to analyze complex biological networks of cancer
genomic datasets. As results, hundreds of novel oncogenes, tumor
suppressor genes, DNA repair genes, focal adhesion, integrin
signaling, extra-cellular matrix, actin/cytoskeleton genes have
been retrieved from these cancer genome databases (Cline et al.,
2013; The Cancer Genome Atlas Research et al., 2013; Lawrence

15http://www.ncbi.nlm.nih.gov/omim
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FIGURE 5 | Connectivity Map portal retrieval. The figure shows barview icons of a query to interrogate potential relationship between the mRNA expression
profiles induced by Dermcidin (DCD) and those induced by drugs and small molecules of CMAP database. The barview icons were constructed using 4,217
instances, each representing an individual treatment instance. The results were ordered by their corresponding connectivity scores and p levels. The data support
the prediction that DCD-induced gene signature is strongly correlated with signatures induced with small molecules LY-294002, wortmannin and sirolimus, which are
potent inhibitors of PI3K, AKT and mTOR signaling pathways, respectively. The chemical structures were obtained from ChemBank. The figure was reproduced with
the permission from Moreira et al. (2008).

et al., 2014; Forbes et al., 2015). The molecular, clinical and
epidemiological features of over 126 large scale cancer types
have been studied (as July 2016) and they are available for
research community in cBioPortal platform. The well-known
oncogenes and tumor suppressors TP53, EGFR, PIK3CA, PTEN,
APC, KRAS, and BRAF have broadly used to classify tumor
pathologies and tumor subtypes (Lawrence et al., 2014). This
has been the basis for development of global new patient-centric
clinical targeted therapy and precision oncology in development
nowadays (Biankin et al., 2015). A large number of molecular
aberrations and multiple recurrent chromosomal gains and losses
identified in these oncogenomic databases remain unknown and
represent important open question for investigation (Cline et al.,
2013; Lawrence et al., 2014).

The tumor’s molecular signature varies widely in several
human malignancies and spectrum of gene mutations that
may have potential as predictive biomarkers continues to grow
(Chang et al., 2016). From a clinical point of view, a major
challenge in the interpretation of mutation profiles is to assess
genomic variants that impact on drug treatment and clonal
evolution. Recently, COSMIC Web portal updates on 2 million
mutated variants in over 1 million tumor samples in the cancer
genome examined (Forbes et al., 2015). We know that a very
small number of rare mutations substantially contribute to
oncogenesis and cancer progression. How many mutations could
be made druggable? We do not know. What we know is that
pathway-targeted therapies for many diverse variants converge
on similar deregulated sub-pathways. For instance, cutaneous
skin melanoma cells bearing BRAFV600E mutation that respond
positively to Vemurafenib, the first BRAF kinase inhibitor

approved to treat metastatic melanoma, progress to resistant cells
(Bollag et al., 2012; Sullivan and Flaherty, 2013). The resistant
cells display activation of parallel signaling pathways, such as
ERK signaling, through KRAS and BRAFV600E amplification
and mutations in the MAP2K1 and MAP2K2 genes (Solit and
Rosen, 2014). Clonogenic growth of resistance BRAF-mutant
melanoma cells treated with a combinatory drug therapy using
BRAF and MEK inhibitors activate parallel P13K/AKT pathway
(McCubrey et al., 2012; Solit and Rosen, 2014). There are
many other similarities in clonogenic resistance mechanisms
induced by receptor tyrosine kinase inhibitors in different types
of tumors and cell lines (McCubrey et al., 2012; Wilson et al.,
2012; Obenauf et al., 2015; Campbell et al., 2016; Kirouac et al.,
2016). It is interesting that not only genetic mutation and
amplification of these driver oncogenes, but also changes in
cellular environment increase dependency in Ras/Raf/MEK/ERK
and PI3K/PTEN/Akt/mTOR cascades (Campbell et al., 2016;
Kirouac et al., 2016). How many sub-pathways are there? It is
not yet imaginable. These results drive up some concerns on the
promises of predictive genetics of drug sensitivity in the current
personalized cancer medicine (Rubio-Perez et al., 2015).

The CellMiner and Connectivity Map are two examples of the
multi-dimensionality cancer genomic platforms for predicting
and developing potential targeted strategies to cancer cells.
Using a variety of well-established cancer cell lines and in vitro
and in vivo experiments and systems pharmacology analysis,
several molecular mechanisms, pathways and cellular processes
directly affecting drug response to a larger number of anticancer
compounds have been revealed (Yang et al., 2010; Sharma
et al., 2010; Heiser et al., 2012; Covell, 2015; Goodspeed
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et al., 2015; Reinhold et al., 2015). To further evaluate the
suitability of any particular cell line as a model, CCLE and
CDSC consortiums’ groups have undertaken deeply Integrative
genomic and transcriptomic analyses of more than 1000 cell lines
(Barretina et al., 2012; Klijn et al., 2015; Stransky et al., 2015;
Iorio et al., 2016). From their reports it was clear that most cell
lines display stable genomes and conserve similarly to molecular
subtypes seen in patient’s tumor (Barretina et al., 2012; Klijn
et al., 2015; Stransky et al., 2015; Iorio et al., 2016). Nonetheless,
studies of RNA-Seq gene expression profiles demonstrated the
presence of over 2,200 gene fusions in 232 cell lines. Among
them, 168 are well known canonical oncogenic fusions, and
more than 1,400 are new fusions involving a wide variety of
gene patterns. In addition, it was observed that many human
cell lines have acquired DNA and RNA fragments from human
and murine viruses. More important, these studies confirmed
a co-expression of transcripts to MET, EGFR, ITGA3 (Integrin
α3), EPHA2 (the ephrin-A receptor 2), and CAV2 (Caveolin 2)
gene among many cell lines (Klijn et al., 2015). This suggests
that these cell lines have a constant activation of PI3K/AKT or
MAPK/ERB signaling pathways, as described in many studies
(Campbell et al., 2016; Kirouac et al., 2016). These popular cancer
cell line models are of fundamental importance and reliable tools
for implantation of systems pharmacology approaches (Keith
et al., 2005; Yang et al., 2010). Nonetheless, predictive models for
the complex combination of genetic alterations and biochemical
pathways that translate in drug sensitivity and resistance in real
solid tumors remain a challenge (Keith et al., 2005; Yang et al.,
2010; Domcke et al., 2013; Covell, 2015).

In order to make tumor cells sensitive to drugs, we need
to understand the role of programmed cell death proteins
and mechanisms they use for re-wiring signaling pathways
that control metabolism, cell growth, proliferation, invasion
and cell-to-cell variability (Yang et al., 2010; Xia et al., 2014).
Drug sensitivity varies according to the levels of concentration
of paracrine and autocrine ligands, nutrients and metabolites
present in the tumor microenvironment (Yang et al., 2010; Xia
et al., 2014; Obenauf et al., 2015). The tumor microenvironment
consists of mix population of cancer cells, stromal cells, vascular
cells, and inflammatory cells growing under an acidic and
low oxygen metabolic condition (Dang, 2012). Few de facto
chemotherapeutic agents exist for modulating tumor metabolism
(Galluzzi et al., 2013). Much remains to be learned about
cancer metabolic rewiring and the impact of oncogenes and
tumor suppressor genes, as examples c-Myc, Ras and p53,
in the pentose phosphate pathway, redox homeostasis and
mitochondrial respiration in cancer cells, and non-malignant
cells in fully tumor conditions in vivo (Galluzzi et al., 2013).
Translating these in vitro results to in vivo is not easy because
of biochemical and genetic differences between cultured cell lines
and heterogeneity within tumor cell populations.

Novel in vitro and in vivo approaches have been developed
that reproduce heterogeneous behavior and genetic diversity of
tumor cells that determine the evolution of resistance clones
in response to chemotherapy (Garnett et al., 2012; Goodspeed
et al., 2015). Conditional reprogramming (CR) induced by a
Rho kinase inhibitor (Y-27632) is an emerging cell culture

technology for generation of patient-derived stable cell lines
and explore their genetic diversity in organoid 2D and 3D
cell culture assays (Liu et al., 2012). Patient-derived tumor
xenografts are potential complementary models for screening
and development of anti-cancer agents in vivo (Williams et al.,
2013; Hidalgo et al., 2014). The proof of concept that it is
possible to successfully apply PDXs as model has been provided
in many large-scale pharmacogenomics PDX studies using
various cancer types (Dey et al., 2013; Hidalgo et al., 2014).
The development of breast carcinoma subtypes-in-mouse PDX
models has helped the identification of small chemical inhibitors
to PI3K (Lehmann et al., 2014), checkpoint kinase 1 (Ma et al.,
2012), aurora kinase (Romanelli et al., 2012), BCL-2 family-
BH3 mimetic (Whittle et al., 2015), and many other drugs
approved for treatment of breast cancers (Zardavas et al., 2013).
In a recent study, Krepler et al. (2015) generated 12 PDXs of
BRAF resistant melanoma patients. The authors applied genomic
and proteomic methods to reveal the major signaling pathways
and possible drivers of resistance in the PDXs. For instance,
NRAS mutations were found in 3 PDXs, MAP2K1 (MEK1)
mutations in 2, BRAF amplification in 4, and aberrant PTEN
in 7 (Krepler et al., 2015). Furthermore, the authors analyzed
potential combination of BRAF/MEK inhibitors Encorafenib and
Binimetinib, or a triple combination of both inhibitors plus
pan-PI3K inhibitor BKM120. They observed that only triple
combination exceptionally abrogated tumor growth in PDX
models (Krepler et al., 2015). Thus, this co-clinical model can be
used to refine precision medicine approaches and identification
of biomarkers for patient clinical outcome.

The CSCs, or cancer initiating cells, has emerged as target of
new therapeutic modality aiming at overcome drug resistance
in clinical cancer treatment (Frank et al., 2010; Egeblad, 2011;
McGranahan and Swanton, 2015; Xie and Bourne, 2015).
CSCs are characterized by their increased drug efflux capacity,
which is mediated by ATP-driven ABC drug transporters
(Dean et al., 2005). Verapamil and Cyclosporine, used to
block P-glycoprotein-mediated efflux, and second generation
ABC transporter inhibitors, such as PSC 833 and VX-710,
have failed in cancer clinical trials (Dean et al., 2005). In
addition, CSCs drug resistant have increased expression of
repairing enzyme to chemical lesions made by reactive oxygen
species and DNA damaging agents such as the topoisomerase
inhibitors Etoposide, Adriamycin, and radiation therapy (Wang
et al., 2015). In response to these agents, CSCs enter in a
quiescent state, or senescence, and become insensitive to cell-
cycle active chemotherapy (Campisi, 2013; Giuffrida et al.,
2016). It is known that loss of PTEN induces senescence via a
mechanism that requires p53. Survival factors released by cancer
secretomes, and stress signal produced by damaged cells in tumor
microenvironment, have key roles in cancer acquired resistance
(Obenauf et al., 2015; Wang et al., 2015). Thus, to further
dissection of these mechanisms we need to pursue new technical
ways and use multiple target therapies to reverse senescence and
kill proliferating CSCs.

Cancer stem cells exert multicellular functions in tumor
tissue-specific networks and immune surveillance. More
important, CSCs display differentiation-state plasticity that allow
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cancer cells to undergo epithelial to mesenchymal transition
(EMT), which is a process that cancer cells gain migratory
and invasive properties (Egeblad et al., 2010; Chaffer et al.,
2011; Clevers, 2011; Gupta et al., 2011; Wang et al., 2015). The
molecular profiling of CSCs are based on the expression of stem
cell markers (CD34, CD44, CD133, ALDH, etc) and EMT gene
drivers such as ETV5 (Ets Variant 5), NOTCH1, SNAI1 (Snail
family zinc finger 1), TGFB1, among other genes (Chaffer and
Weinberg, 2011; Clevers, 2011). Tumor-associated stromal cells
and immune cells secrete soluble and insoluble glycoproteins
in microenvironment that confer cell adhesion-mediated drug
resistance (Obenauf et al., 2015; Wang et al., 2015). Some of
these proteins may display potential biomarkers for targeted
therapies (Egeblad, 2011; McGranahan and Swanton, 2015;
Obenauf et al., 2015). The identification of microenvironmental
changes that take place during tumor regression and resistance
could be used for the design of more effective cancer treatment
strategies (Pietras and Ostman, 2010; Almendro et al., 2014).
Recent studies have used integrated proteogenomic approaches
on tumor fragments to investigate intratumor heterogeneity and
changes during chemotherapy in distinct cancer subtypes that
favor cancer resistance and tumor evolution (Almendro et al.,
2014; Mertins et al., 2016). Given the success of orthotopic
implantation of human tumors in humanized mice models
(Hidalgo et al., 2014; Shultz et al., 2014), we envisioned
that future PDX studies will help us to understanding how
conventional drugs drive selection of CSC clones within cancer
population at different human-mouse tissue microenvironments.
A significant promise is the use of multidimensional profiling of
individual patient-CSC lines in in vivo models. Culture system
of CTCs (circulating tumor cells) from individual patients is
now being applied to test the drug susceptibility to diverse
treatment regimens (Clevers, 2011; Almendro et al., 2014).
In this context, several biological agents and small molecules
targeting distinct components that control self-renewal and
differentiation of CSCs, such as Notch, Hedgehog and WNT
signaling pathway, are undergoing clinical trials (Zardavas et al.,
2013). In this direction, K+ ionophore antibiotic salinomycin
is one promising candidate under validation to CSC targeted
therapy to triple-negative breast cancer patients (Gupta et al.,
2009).

The validation of relevant compounds in clinical setting takes
long time and typically results in enormous costs and failure
rates. Co-clinical studies using matched cancer cell lines and PDX
models are likely to have routine and successful applications that
could bypass barriers to next generation cancer targeted gene
therapies. Finally, oncogenomic portals and cancer informatics
tools are ideal approaches for querying and retrieval of cancer’s
gene biomarkers coupled with drug sensitivity and resistance.
We anticipate that working in collaborative spirit, lab scientists,
and clinical oncologists will ultimately find, design and validate
novel and effective therapeutic strategies to improve personalized
cancer medicine.
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