
fphar-07-00354 September 28, 2016 Time: 15:55 # 1

ORIGINAL RESEARCH
published: 30 September 2016
doi: 10.3389/fphar.2016.00354

Edited by:
Lionel Dahan,

Paul Sabatier University, France

Reviewed by:
Hale Z. Toklu,

University of Florida, USA
Geoffrey A. Head,

Baker IDI Heart and Diabetes Institute,
Australia

*Correspondence:
Koichiro Ozawa

ozawak@hiroshima-u.ac.jp
Toru Hosoi

toruh@hiroshima-u.ac.jp

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 13 July 2016
Accepted: 16 September 2016
Published: 30 September 2016

Citation:
Hosoi T, Suyama Y, Kayano T and

Ozawa K (2016) Flurbiprofen
Ameliorates Glucose

Deprivation-Induced Leptin
Resistance. Front. Pharmacol. 7:354.

doi: 10.3389/fphar.2016.00354

Flurbiprofen Ameliorates Glucose
Deprivation-Induced Leptin
Resistance
Toru Hosoi*, Yuka Suyama, Takaaki Kayano and Koichiro Ozawa*

Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima,
Japan

Leptin resistance is one of the mechanisms involved in the pathophysiology of
obesity. The present study showed that glucose deprivation inhibited leptin-induced
phosphorylation of signal transducer and activator of transcription 3 (STAT3) and
signal transducer and activator of transcription 5 (STAT5) in neuronal cells. Flurbiprofen
reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation,
in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein
and glucose regulated protein 78 induction, indicating the activation of unfolded
protein responses (UPR). Flurbiprofen did not affect the glucose deprivation-induced
activation of UPR, but did attenuate the glucose deprivation-mediated induction of
AMP-activated protein kinase phosphorylation. Flurbiprofen may ameliorate glucose
deprivation-induced leptin resistance in neuronal cells.
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INTRODUCTION

Leptin is an anti-obesity hormone that attenuates food intake and enhances energy expenditure
(Zhang et al., 1994; Campfield et al., 1995). It exerts anti-obesity action through Ob-Rb, the
long isoform of the leptin receptor that is expressed mainly in hypothalamic neuronal cells (Fei
et al., 1997). Leptin activates both the Janus kinase 2 (JAK2)-signal transducer and activator of
transcription 3 (STAT3) and JAK2-STAT5 pathways upon activation of the Ob-Rb leptin receptor
(Ghilardi et al., 1996; Vaisse et al., 1996; Hosoi et al., 2002; Gong et al., 2007; Mütze et al., 2007).
Because leptin has an anti-obesity effect, the hormone was initially expected to decrease body
weight in obese patients. However, the majority of obese patients are leptin-resistant, and do not
respond to leptin efficiently (Heymsfield et al., 1999). Therefore, though leptin is now thought to
be unsuccessful for the treatment of obesity, understanding the mechanisms of the development
of “leptin resistance” has become a hot topic for research (Friedman and Halaas, 1998; Friedman,
2003). Several mechanisms of the pathogenesis have been proposed (Hosoi and Ozawa, 2010); we
and other research groups have recently suggested the possible involvement of ER stress (Hosoi
et al., 2008; Ozcan et al., 2009). The ER plays a key role in maintaining protein folding. However,
when unfolded proteins accumulate in the ER in response to stressful stimuli, cells activate the
UPR to cope with the stress (Walter and Ron, 2011). Upon induction of ER stress, cells induce

Abbreviations: AMPK, AMP-activated protein kinase; CHOP, C/EBP-homologous protein; ER, endoplasmic reticulum;
GRP78, glucose regulated protein 78; NSAID, non-steroidal anti-inflammatory drug; STAT3, signal transducer and activator
of transcription 3; STAT5, signal transducer and activator of transcription 5; POMC, proopiomelanocortin; UPR, unfolded
protein response.
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CHOP and GRP78 as one of the UPR (Walter and Ron, 2011).
Previously, a candidate drug was identified to ameliorate ER
stress-induced leptin resistance: flurbiprofen, a NSAID (Hosoi
et al., 2014). However, the action mechanisms of flurbiprofen on
leptin have not yet been elucidated in detail.

The hypothalamic neuronal cells senses nutrients, such as
glucose, in the blood and regulates energy balance. Glucose
up-regulates POMC in the hypothalamic neuron, thereby
inhibiting food intake (Zhang et al., 2011), whereas feeding
is increased when the glucose level is lowered by 2-deoxy-D-
glucose in the rat brain (Miselis and Epstein, 1975). Under
low glucose conditions, AMPK is activated. AMPK is a serine-
threonine kinase that is activated when the AMP/ATP ratio
increases. Glucose (25 mM) enhances leptin signaling by
inhibiting AMPK, while AMPK activation under low glucose
conditions (5 mM) inhibits leptin signaling (Su et al., 2012).
In addition to AMPK, glucose deprivation induced the UPR
(Hosoi et al., 2013). Given the important role of glucose
on neuronal function in regulating food intake, it is of
interest to analyze the pharmacological effect of flurbiprofen on
regulating neuronal function in the glucose-deprived state, i.e.,
leptin-induced STAT3 activation, AMPK activation in neuronal
cells.

The crosstalk between nutrients and hormone action plays
an important role in regulating neuronal activity, which
subsequently affects the feeding response. As the flurbiprofen has
anti-obesity effect (Hosoi et al., 2014), it is of interest to analyze
the effect of flurbiprofen on the regulation of glucose mediated
neuronal activity, which regulates energy homeostasis. In the
present study, we investigated the effect of flurbiprofen on leptin
action in the glucose-deprived state in neuronal cells.

MATERIALS AND METHODS

Reagents
Flurbiprofen was obtained from Cayman Chemical (MI). Human
leptin was obtained from Sigma (L4146; St. Louis, MO, USA) or
ENZO Life Sciences (SE-161; Plymouth Meeting, PA, USA).

Generation of Ob-Rb Leptin
Receptor-Transfected Cells
The human Ob-Rb leptin receptor construct was a kind gift from
Genetech, Inc. (CA). The construct was transfected into SH-SY5Y
cells using the LipofectAMINE PLUS Reagent (Life Technologies,
Inc.) according to the manufacturer’s instructions. The stable
transfectants were obtained by selection with the antibiotic G418
(Hosoi et al., 2006).

Cell Culture
Human neuroblastoma SH-SY5Y-Ob-Rb cells were maintained
in Dulbecco’s modified Eagle’s medium supplemented with 10%
(v/v) heat-inactivated fetal calf serum at 37◦C in a humidified
incubator under 5% CO2 and 95% air. We treated the cells
with flurbiprofen at the concentration of 100 µM in the present
experiment.

Western Blotting Analysis
Western blotting was performed as described previously
(Hosoi et al., 2015). Briefly, cells were washed with ice-cold
PBS and lysed in buffer containing 10 mM HEPES-
NaOH (pH 7.5), 150 mM NaCl, 1 mM EGTA, 1 mM
Na3VO4, 10 mM NaF, 10 µg/ml aprotinin, 10 µg/ml
leupeptin, 1 mM phenylmethylsulfonyl fluoride (PMSF),
and 1% NP-40 for 20 min. The lysates were centrifuged
at 15,000 rpm for 20 min at 4◦C, and supernatants were
collected. Samples were boiled with Laemmli buffer for
3 min, fractionated by sodium dodecylsulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), and transferred at 4◦C
to nitrocellulose membranes. These membranes were then
incubated with anti-phospho STAT3 (Tyr705: Cell Signaling;
1:1,000), anti-STAT3 (Santa Cruz; 1:1,000), anti-phospho
STAT5 (Tyr694: Cell Signaling; 1:1,000), and anti-GAPDH
(Chemicon; 1:1,000) antibodies, followed by an anti-
horseradish peroxidase-linked antibody. Peroxidase binding
was detected by chemiluminescence using an enhanced
chemiluminescence system (Thermo scientific). Multiple
independent experiments were performed and the numbers of
the experiments performed was indicated in the figure legends
(n= 3∼7).

Gene Expression Analysis
Total RNA was isolated using the TriPure Isolation Reagent
(Roche Molecular Biochemicals, Indianapolis, IN, USA). cDNA
was synthesized from 2 µg of total RNA by reverse transcription
using ReverTra Ace (Toyobo, Japan), Oligo (dt)16 primer
(SP230; Eurofins, Japan) in a 20 µl reaction mixture containing
RT buffer (Toyobo, Japan), 1 mM dNTP mix, 10 mM
dithiothreitol (DTT), and 40 U of RNase inhibitor (Y9240L;
Enzymatics, Beverly, MA, USA). Total RNA and the Oligo
(dt)16 primer were pre-incubated at 70◦C for 10 min prior
to the reverse transcription. After incubation for 1.5 h at
46◦C, the reaction was terminated by incubating samples
for 5 min at 100◦C. For PCR amplification, 1.2 µl of
cDNA was added to 10.8 µl of a reaction mix containing
0.2 µM of each primer, 0.2 mM of dNTP mix, 0.6 U
of Taq polymerase (3300226001; Expand High FidelityPLUS

PCR System, Roche Diagnostics, Switzerland). The following
primer sequences were used: GRP78; upstream, 5′-TGC TTG
ATG TAT GTC CCC TTA-3′, and downstream, 5′-CCT
TGT CTT CAG CTG TCA CT-3′, CHOP; upstream, 5′-
GCA CCT CCC AGA GCC CTC ACT CTC C-3′, and
downstream, 5′-GTC TAC TCC AAG CCT TCC CCC TGC
G-3′, GAPDH; upstream, 5′-AAA CCC ATC ACC ATC TTC
CAG-3′ and downstream, 5′-AGG GGC CAT CCA CAG
TCT TCT-3′. The PCR products (10 µl) were resolved by
electrophoresis using an 8% polyacrylamide gel. The gel
was stained with ethidium bromide and photographed under
ultraviolet light. The density of each band was measured
using Image J 1.37v (Wayne Rasband, NIH) software. Multiple
independent experiments were performed and the numbers of
the experiments performed was indicated in the figure legends
(n= 3∼4).
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Statistics
Results are expressed as the mean ± SE of the stated value.
Statistical analyses were performed using the Student’s t-test.

RESULTS

Flurbiprofen Specifically Ameliorated
Glucose Deprivation-Induced
Impairment of STAT3 but not STAT5 in
Leptin-Treated Cells
We investigated whether flurbiprofen could ameliorate glucose
deprivation-induced leptin resistance in neuronal cells. Leptin
(0.5 µg/mL, 15 min) was administered to a SH-SY5Y human
neuroblastoma cell line stably transfected with Ob-Rb leptin
receptor (SH-SY5Y Ob-Rb), and the cells were analyzed for
STAT3 and STAT5 activation. As shown in Figure 1, leptin
activated both STAT family proteins; i.e., STAT3 and STAT5
(Figure 1). Furthermore, glucose deprivation for 4 h impaired
the phosphorylation of STAT3 and STAT5 (Figure 1). No visible
cellular toxicity was observed at these conditions. Therefore,
we then analyzed whether flurbiprofen could ameliorate
glucose deprivation-induced impairment of STAT3 and
STAT5 phosphorylation. Interestingly, flurbiprofen (100 µM)
ameliorated the glucose deprivation-induced impairment of
STAT3, but not STAT5, phosphorylation in leptin (0.5 µg/mL,

15 min)-treated cells (Figure 1). Therefore, flurbiprofen could
ameliorate leptin resistance by specifically regulating STAT3.

Flurbiprofen Did Not Affect Glucose
Deprivation-Induced Induction of UPR
As flurbiprofen was reported to reduce ER stress (Hosoi
et al., 2014), we next analyzed the pharmacological effect
of flurbiprofen on regulating glucose deprivation-induced
activation of the UPR. Glucose deprivation time-dependently
(2, 4, 8 h) induced CHOP and GRP78 in SH-SY5Y Ob-Rb human
neuroblastoma cells (Figure 2). Therefore, we next analyzed
whether flurbiprofen was able to affect the glucose deprivation-
induced activation of the UPR. Cellular medium was replaced to
glucose-free medium; flurbiprofen was then added and incubated
for 4 or 8 h, and the expression levels of CHOP and GRP78
were analyzed. As shown in Figure 3, no changes in CHOP or
GRP78 levels were observed in flurbiprofen (100 µM)-treated
cells. These results suggest that flurbiprofen may not affect the
induction of the UPR caused by glucose deprivation in neuronal
cells.

Flurbiprofen Inhibited Glucose
Deprivation-Induced Induction of AMPK
Phosphorylation
AMP-activated protein kinase is activated under low glucose
conditions (Kahn et al., 2005). Furthermore, this activation is
involved in the pathogenesis of leptin resistance (Su et al., 2012).

FIGURE 1 | Flurbiprofen ameliorates inhibition of leptin-induced STAT3 but not STAT5 signaling in the glucose deprivation state. (A) SH-SY5Y Ob-Rb
cells were treated with flurbiprofen (Flu:100 µM) in the absence of glucose for 4 h. Leptin (Lep: 0.5 µg/mL, 15 min)-induced STAT3 and STAT5 phosphorylation was
then analyzed by Western blotting. (B) Densitometric analyses of phospho-STAT3 and phospho-STAT5 were conducted using image analysis software. Each set of
data was expressed as fold increase over leptin treatment (Glu+) cells. ∗∗P < 0.01 leptin (Glu-) versus leptin+flurbiprofen (Glu-). n = 7.
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FIGURE 2 | Glucose deprivation-induced UPR in SH-SY5Y Ob-Rb neuronal cells. (A) SH-SY5Y Ob-Rb cells were cultured in the presence or absence of
glucose for 2, 4, and 8 h. ER stress markers, CHOP and GRP78, were analyzed by RT-PCR using specific primers. (B) Densitometric analyses of CHOP and GRP78
were conducted using image analysis software. Each set of data was expressed as fold increase over control cells. n = 4.

Therefore, we investigated whether flurbiprofen affects AMPK
activation under this condition. Flurbiprofen was administered
with or without glucose for 4 h and the phosphorylation status
of AMPK was analyzed. We observed that the phosphorylation
level of AMPK increased in the glucose-deprived state in SH-
SY5Y Ob-Rb neuronal cells; however, treatment with flurbiprofen
(100 µM) ameliorated AMPK phosphorylation (Figure 4).
Therefore, flurbiprofen may be involved in the inhibition of
AMPK activation in the glucose-deprived state.

DISCUSSION

Obesity is one of the major risk factor of metabolic diseases
and a lot of effort was made to prevent the disease (Hosoi
and Ozawa, 2010; Carter et al., 2016; Scarpace et al., 2016;
Strehler et al., 2016). In the present study, we found that
flurbiprofen has a unique pharmacological effect on the
regulation of neuronal function in the glucose-deprived state.
Flurbiprofen can ameliorate glucose deprivation-induced leptin
resistance by specifically regulating STAT3, but not STAT5,
phosphorylation. Furthermore, while flurbiprofen did not
modulate the glucose deprivation-induced activation of the
UPR in neuronal cells, it did modulate AMPK activation
in the glucose-deprived state. The results of the present
study suggest an important pharmacological action of

flurbiprofen in regulating neuronal function during glucose
deprivation.

Glucose-sensing neurons in the CNS play an important
role in maintaining energy homeostasis (Campfield and Smith,
2003). Defects in the response of glucose-sensing neurons are
linked with diseases such as obesity and diabetes (Routh, 2010).
Therefore, identifying candidate drugs that can regulate the
responses of glucose-sensing neurons is important. Interestingly,
leptin action was reported to be regulated by glucose, with
glucose dose-dependently increasing leptin signaling and glucose
deprivation attenuating leptin-induced signaling (Su et al., 2012).
In the present study, we found that flurbiprofen increases leptin
action in neurons during glucose deprivation by modulating
AMPK activity. These results suggest that flurbiprofen has the
novel pharmacological action of ameliorating leptin resistance
possibly by regulating AMPK-mediated glucose metabolism. It is
an important future subject to analyze the effect of flurbiprofen
on leptin’s action at more physiological conditions.

In a previous study, we found that flurbiprofen has
chemical chaperon activity and could attenuate ER stress by
decreasing unfolded protein accumulation in the ER (Hosoi
et al., 2014). However, in the present study, we did not
observe an inhibition of glucose deprivation-induced activation
of the UPR in flurbiprofen-treated cells. We speculate these
differences would be due to the different mechanisms of UPR
induction between ER stress-inducing reagent- and glucose
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FIGURE 3 | Flurbiprofen did not affect glucose deprivation-induced induction of UPR. (A) SH-SY5Y Ob-Rb cells were treated with flurbiprofen (Flu:100 µM)
in the absence of glucose for 4 and 8 h. ER stress markers, CHOP and GRP78, were analyzed by RT-PCR. (B) Densitometric analyses of CHOP and GRP78 were
conducted using image analysis software. Each set of data was expressed as fold increase over control cells. n = 3.

FIGURE 4 | Flurbiprofen reduces AMPK phosphorylation in the glucose deprivation state. (A) SH-SY5Y Ob-Rb cells were treated with flurbiprofen
(Flu:100 µM) in the absence of glucose for 4 h. Phosphorylation status of AMPK was analyzed by Western blotting. (B) Densitometric analysis of phospho-AMPK
was conducted using image analysis software. ∗P < 0.05 control (Glu-) versus flurbiprofen (Glu-). Each set of data was expressed as fold increase over control cells.
n = 3.

deprivation-induced activation of UPR. Recently, the ER stress
sensor protein has been suggested to play an important
role in regulating physiological responses (Rutkowski and
Hegde, 2010). For example, it is suggested that ER stress
sensor protein would be activated by physiological stimulant
independently through the unfolded protein accumulation in
the ER (Karali et al., 2014). It is speculated that glucose
deprivation-induced activation of UPR would also be mediated
independently through the unfolded protein accumulation in
the ER. Thus, it is possible that the mechanisms of ER
stress-induced activation of UPR are different from those

of glucose deprivation-induced activation of the UPR, and
therefore, flurbiprofen’s action on UPR regulation yielded
different results. It would be interesting to further analyze the
mechanisms of flurbiprofen’s pharmacological action in neuronal
cells.

In the present study, we elucidated a unique pharmacological
property of flurbiprofen: the attenuation of leptin resistance
under glucose-deprivation. As the glucose in the hypothalamic
neurons may play a role in regulating energy homeostasis, current
finding may represent one of a key pharmacological tool for
attenuating obesity.
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