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A commentary on

Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor

by Rodrik-Outmezguine, V. S., Okaniwa, M., Yao, Z., Novotny, C. J., McWhirter, C., Banaji, A., et al.
(2016). Nature 534, 272–276. doi: 10.1038/nature17963

The mammalian target of rapamycin (mTOR) is a highly conserved serine-threonine kinase
belonging to the phosphatidylinositol kinase-related protein kinases family, which plays a central
role in regulation of cellularmetabolism, growth, and proliferation (Figure 1A) (Wullschleger et al.,
2006; Laplante and Sabatini, 2012). The PI3K-AKT-mTOR signaling axis is also one of the most
commonly activated pathways in human cancers (Vivanco and Sawyers, 2002; Zoncu et al., 2011).
A growing body of evidence identifies activation of mTOR signaling as a common occurrence
in human cancers (Menon and Manning, 2008). Recently, activating mutations of mTOR itself
have been identified through mining of human cancer genome databases (Hardt et al., 2011).
Hyper-activation of mTOR signaling makes it an attractive target for therapeutic intervention and
has driven the development of a number of mTOR inhibitors, many of which have progressed to
clinical trials (Chiang and Abraham, 2007).

Among these agents, first-generation mTOR inhibitors such as rapamycin and rapalogs, inhibit
mTOR by forming a complex with the immunophilin FKBP12, which then binds directly to
mammalian TOR complex 1 (mTORC1), but not to mTORC2 (Guertin and Sabatini, 2009).
Despite the mechanism by which FKBP12-rapamycin inhibits mTORC1 being not completely
understood, the recently published structure of the mTOR catalytic domain provided additional
insight, suggesting that the drug acts by blocking substrate recruitment (Yang et al., 2013).
Limitations of rapalogs-based clinical strategies (and in particular, the strong immune-suppressive
effects) have pushed toward the development of a second generation of mTOR inhibitors known
as ATP-competitive mTOR kinase inhibitors (TORKIs), which target the kinase domain of mTOR
and inhibit its catalytic activity. From a mechanistic point of view, the advantage of these drugs rely
on the ability of inhibiting the kinase activity of both the TORC1 and TORC2 complexes, while
also blocking the feedback activation of PI3K/Akt signaling (Thoreen et al., 2009). Numerous TKIs
have been developed and several of them are currently being tested in clinical trials (Benjamin et al.,
2011). Despite the many advantages of TORKIs, some drawbacks do exist. Although a number of
cancers respond to mono-therapy treatment with rapalogs and TORKIs have been proved effective
in rapamycin-insensitive cell lines, resistance remains a major concern (Feldman and Shokat,
2010). Another downside of TORKIs is their potential toxicity, which raises concerns about their
long-term efficacy. Given the limitations of currently available inhibitors, new approaches toward
the mTOR targeting are object of intense investigation. Combinatorial strategies may provide a way
to overcome such resistance and therefore improve efficacy of mTOR targeting agents in the clinical
context (Feldman and Shokat, 2010).
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In a recent report, Kevan Shokat and collaborators
describe the development of a third class of mTOR inhibitors
that overcomes resistance to existing first- and second-
generation inhibitors by exploiting the juxtaposition of two
drug-binding pockets (hence, the eponymous RapaLink)
(Rodrik-Outmezguine et al., 2016). By means of a resistance
screen performed in MCF-7 cells they identified three somatic
mutations within mTOR conferring resistance to either
rapamycin (namely, A2034V and F2108L, both located in the
FRB-FKBP12-rapamycin-binding- domain) or to the ATP
competitive inhibitor AZD8055 (located in the kinase domain,
at the M2327I position) (Figures 1B,C). The clinical relevance
of these mutations is supported by a case report of a patient

FIGURE 1 | (A) Cells grow and proliferate when nutrients, growth factors, and the energy status trigger carbohydrate catabolism and the synthesis of essential

building blocks such as proteins, nucleotides, and lipids. The mammalian target of rapamycin (mTOR) is a highly conserved serine-threonine kinase, which plays a

central role in regulation of cellular metabolism, growth, and proliferation. The importance of mTOR in regulation of multiple cell functions is critical for development of

cancer and its strong interaction with oncogenic pathways make this kinase an attractive target for therapeutic intervention. (B–C) Schematic representation of mTOR

domains and mutations isolated in rapamycin- and AZD8055-resistant cells. By means of a resistance screen/deep sequencing combined approach, clinically relevant

and I-II generation drug-resistant mTOR mutations (namely: A2034V, F2108L, and M2327I) were isolated. RapaLinks represent a novel class of bivalent mTOR

inhibitors capable of overcoming resistance to existing first- and second-generation inhibitors (Rodrik-Outmezguine et al., 2016).

under treatment with everolimus who acquired the identical
F2108L MTOR mutation after relapse (Wagle et al., 2014).
More importantly, the hyperactive M2327I mutation (as well
as other MTOR kinase domain mutations) has been identified
in drug-naive patients (Grabiner et al., 2014). Such mutations
might therefore impact the sensitivity to ATP-competitive
mTOR inhibitors of some cancerous cells, regardless of the
therapeutic regimen. In contrast to the FRB-domain mutations,
which exhibit a similar mechanism of resistance by disrupting
the interaction of mTOR with the FKBP12-rapamycin complex
and ultimately the drug binding, the M2327I mutation confers
hyperactivity to the kinase by an allosteric mechanism. These
observations led the authors to develop a modeling approach
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aimed at overcoming drug-resistant mutations in either the
FRB or the kinase domain. In principle, a bivalent mTOR
inhibitor consisting of a rapamycin-FRB-binding element
appropriately linked to a TORKi would be expected to inhibit
the FRB-domain mutants because the TORKi-binding site would
provide high-affinity recognition. Such an inhibitor would be
similarly effective against the kinase domain mutations by virtue
of an intact rapamycin-binding site, thus overcoming point
mutations that diminish drug binding or that hyper-activate the
kinase. In order to test such hypothesis, they generated bivalent
molecules constituted by rapamycin and the highly selective
TORKi MLN0128, separated by an inert chemical linker so that
the resulting inhibitor could simultaneously bind to both sites.
RapaLinks exerted a strong signaling and growth inhibition
both in vitro and in vivo, at levels comparable to rapamycin
or a combination of rapamycin with MLN0128. Strikingly,
the inhibitory effect of these drugs held true in both F2108L
mTOR- and M2327I mTOR-expressing cells, as well as in the
respective mouse xenograft models. Additionally, cells treated
with RapaLink did not develop resistance to the drug for the
9-month period of the study, as opposed to cells treated with
first- or second-generation mTOR inhibitors, which evolved
resistance within 3 months.

To summarize, mTOR inhibition remains an attractive
therapeutic option for the treatment of cancer and has the
potential to play an increasingly prominent role in future
treatment strategies. Although additional studies are required
to determine their specific role in the clinical setting, mTOR
inhibitors represent a promising therapeutic option for the
treatment of cancer. Indeed, encouraging data from preclinical

studies resulted in the initiation of multiple clinical trials. It is
conceivable to speculate that this new class of mTOR inhibitors
might be beneficial in patients bearing naïve hyperactive
MTOR kinase domain mutations, who originally respond to
rapalogs, as well as in those that have acquired resistance to
rapalogs or ATP-competitive inhibitors, or both. To evaluate
its potential as a cancer therapy, clinical trials will have to
be performed. In particular, it will be of critical importance
to assess whether these compounds cause the insurgence of
novel resistance mutations, as well as to evaluate whether a
higher degree of mTOR inhibition impact on their toxicity
profile. Finally, it is important to note how the design of
bivalent inhibitors for therapeutic purposes has not been
exploited in protein kinase inhibitor design, so far. Hence, the
methodological approach employed in this study could pave
the way toward the design of novel bivalent inhibitors and
be applied, more generally, to other disease-relevant signaling
pathways.
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