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Introduction: Recent findings indicate that metabolic disturbances are involved in

multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing

attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide,

a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and

weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a

broad spectrum of experimental models of brain disease. In this study we investigate the

potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the

experimental model, experimental autoimmune encephalitis (EAE).

Methods: EAE was induced in 30 female Lewis rats that subsequently received

twice-daily liraglutide (200µg/kg s.c.) or saline. Healthy controls were included (saline,

n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded

observers. Animals were killed at peak disease severity (day 11) or if exceeding

humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase

(MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were

determined.

Results: Liraglutide treatment delayed disease onset (group clinical score

significantly >0) by 2 days and markedly reduced disease severity (median clinical

score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached

the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of

liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial

antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP

(p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment

(p = 0.09).

Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of

EAE in Lewis rats and is associated with improved protective capacity against oxidative

stress. These data suggest GLP-1 receptor agonists should be investigated further as a

potential therapy for MS.
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INTRODUCTION

Current multiple sclerosis (MS) treatments are non-curative,
side-effect prone, and expensive, highlighting the need for
expanded treatment options for patients. Newly diagnosed
MS patients exhibit hyperinsulinemia and decreased insulin
sensitivity (Penesova et al., 2015) suggesting that obesity
is a potential risk factor for MS (Palavra et al., 2016).
Treating underlying metabolic syndrome with classic anti-
diabetic drugs such as metformin and pioglitazone ameliorates
metabolic disturbances, reduces MRI-evident lesion frequency
and dampens T-cell pro-inflammatory response in MS patients
(Negrotto et al., 2016). Metformin also reduces disease severity
and pro-inflammatory response in an experimental model of
MS (Nath et al., 2009; Sun et al., 2016). Recently, obese MS
patients have been shown to have a less pronounced response
to interferon treatment (Kvistad et al., 2015) underlining the
need for further investigation of metabolic disturbances and
pharmacological targets for treating MS through improved
metabolic control.

The glucagon-like peptide-1 (GLP-1) class of anti-diabetic
drugs improve metabolic control and moreover, have a direct
neuroprotective potential in humans (Gejl et al., 2014; Candeias
et al., 2015). In this study, we were interested in the GLP-1
receptor agonist, liraglutide: a long-acting GLP-1 analog designed
to extend the half-life of GLP-1 receptor activation (Knudsen
et al., 2000) that can cross the blood-brain barrier (Hunter
and Hölscher, 2012). Indeed, we have previously shown that
liraglutide stabilizes cerebral glucose consumption in healthy
subjects (Gejl et al., 2014) and Alzheimer’s patients (Gejl
et al., 2016) and reduces lesion size, cell death and oxidative
damage in experimental traumatic brain injury (DellaValle
et al., 2014). Liraglutide treatment is associated with increased
the levels of numerous neuroprotective proteins associated
with mitochondrial function (DellaValle et al., 2014) and
moreover; GLP-1 receptor activation has been shown to be anti-
inflammatory (Parthsarathy and Holscher, 2013; DellaValle et al.,
2014; Candeias et al., 2015).

Here we investigate the potential of liraglutide as a candidate
MS therapy by assessing pre-clinical efficacy in an active,
monophasic rat model of experimental autoimmune encephalitis
(EAE). This model is characterized by an aggressive onset and
we were primarily interested in the effect of liraglutide on the
induction phase of EAE.

MATERIALS AND METHODS

Female Lewis rats (Charles River, Germany) aged 11–12 weeks,
weighing∼210 g were housed under standard conditions. Studies
were conducted to minimize suffering and were approved by the
Danish Animal Inspectorate (2015-15-0201-00647). Weight was
monitored daily throughout the experiment.

Abbreviations: APP, Amyloid precursor protein; DK, Denmark; EAE,

Experimental autoimmune encephalitis; GAPDH, Glyceraldehyde 3-phosphate

dehydrogenase; GLP-1, Glucagon-like peptide-1; GFAP, Glial fibrillary acidic

protein; MnSOD, Manganese superoxide dismutase; MS, Multiple Sclerosis.

EAE Induction
EAE Emulsion: 100µL complete Freund’s adjuvant (CFA; BD
263810, Denmark (DK)), 200µg Mycobacterium tuberculosis
H37Ra (MT; BD, 231141, DK), 100µg guinea pig myelin basic
protein (MBP; Sigma-Aldrich, DK, M2295), and 100µL 0.9%
saline.

EAE-emulsion was administered intra-dermally under
isoflurane anesthesia at three sites at the base of the tail, totalling
two hundred microliters in volume. Animals were randomized
directly thereafter and blindly treated with vehicle (saline, n =

15) or liraglutide (200µg/kg; n = 15) s.c. twice-daily. This dose
is neuroprotective in mice (DellaValle et al., 2014) and clinically
relevant to the anti-diabetic effect in humans (Raun et al., 2007).
Healthy controls were treated similarly without EAE emulsion
(vehicle, n= 7; and liraglutide, n= 6).

Clinical Scoring and Predefined Endpoints
Clinical scoring was performed blinded by two observers twice-
daily using the following scale relating to progressive degrees
of paralysis: 0, No clinical signs of EAE; 1, Abolished tail tone;
2, Mild paresis of one or both hind legs; 3, Moderate paresis
of one or both hind legs; 4, Severe paresis of one or both
hind legs; 5, Paresis of one of both hind legs and incipient
paresis of one or both forelegs; 6, Moribund. Animals were
deemed terminally ill according to predefined humane endpoints
designed in consultation with the Danish Animal Inspectorate:
animals registering a clinical score of ≥4, a ≥20% loss of initial
body weight or when animal caretakers deemed an animal to be
moribund before clinical score of 4.

The study was designed to terminate on the peak of disease
severity to assess the effect of liraglutide on the acute phase
(day 11) before remission. Animals reaching predefined humane
endpoints before day 11 were terminated (clinical score of ≥4 or
a ≥20% loss of initial body weight).

Immunoblotting
Brains were removed and the right cerebrum and brainstem
were isolated and stored at −80◦C (vehicle, n = 6; liraglutide,
n = 7) for immunoblotting. In our previous work in this
model, the brainstem shows marked pathological changes in
gene expression at day 9 with increased pro-inflammatory and
reduced anti-inflammatory cytokines (Pedersen et al., 2013).
Brain tissue was homogenized with protease + phosphatase
inhibitors (Roche, complete mini; Phosphosafe; Millpore;
DK), protein content quantified, aliquoted and stored at
−22◦C. Thirty micrograms of protein was run on 12% bis-tris
gels in MES buffer, transferred to PVDF membranes and
blocked in 5% tris-buffered saline + skim milk powder +

0.05% Tween. Primary antibodies were applied in blocking
solution: anti-manganese superoxide dismutase (MnSOD),
Millipore 06-984, 1:1000; anti-amyloid precursor protein
(APP), Abcam 32136, UK, 1:1000; anti-glial fibrillary acidic
protein (GFAP), DAKO, IS52430, DK; anti-glyceraldehyde
3-phosphate dehydrogenase (GAPDH), Millipore MAB 374,
DK; 1:10,000. Secondary antibodies- anti-rabbit/anti-mouse
secondary antibodies (Dako, DK)—were applied 1:2000 and
1:3000, respectively, and visualized with SuperSignal Femto
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FIGURE 1 | EAE-emulsion induces weight loss in all animals. EAE was

induced with EAE emulsion at day 0. Animals were randomly selected for

vehicle (Veh) and liraglutide (Lira) treatment arms and treated by blinded

investigators twice-daily with saline (n = 15) or 200µg/kg of Lira (n = 15) (s.c.).

Healthy animals were treated equally without EAE emulsion (n = Veh:7, Lira:6).

Weight of EAE (closed line) and healthy (dotted line) animals for each treatment

arm (Veh:black; Lira:blue). Lira treatment induces weight loss at the initial

phase of the experiment. All animals receiving EAE-emulsion experienced a

weight loss, even in animals with clinical score of 0 at day 11. This reflects a

full penetrance of the induction. Arrows denote the interval when mean weight

loss began for Veh (black) and Lira (blue) and is described as EAE-associated

weight loss phase. Statistics are derived from: normality test (Shapiro–Wilk),

thereafter two-way ANOVA and Holm–Sidak multiple comparisons test.

substrate (Thermo Scientific, Denmark) and CCD camera (Bio-
Rad Chemidoc XRS imager, Denmark). Images were quantified
with ImageJ and reported relative to housekeeping protein
GAPDH.

Data Analysis
Clinical scores: Mann–Whitney for individual time points.
Cumulative survival: Log-Rank test. Weight: normality
(Shapiro–Wilk), thereafter two-way ANOVA and Holm–
Sidak multiple comparisons test. Immunoblotting: normality,
and Student’s t-test for parametric data (APP, GFAP,
MnSODcerebrum) and for non-parametric data (MnSODbrainstem):
log-transformation, normality test, and thereafter Student’s t-test.

RESULTS

The penetrance of the EAE induction (defined as a clinical
score >0 or EAE-induced weight-loss) was 100% for all rats
(Figures 1, 2) and was similar to our previous work in this model
(Pedersen et al., 2012). Liraglutide induced weight loss in all
animals in the initial days of the study (Figure 1). Weight of
healthy liraglutide-treated animals was indistinguishable from
healthy-vehicle weight by day 7 (p > 0.05).

Liraglutide Delays Disease Onset and
Disease Progression in EAE
EAE-associated weight loss—described as a downward slope
in mean weight- began at day 7 in EAE-vehicle rats and
day 9 in EAE-liraglutide rats, pre-empting the presence of
clinical symptoms (Figure 1). The disease onset (i.e., first
median clinical score statistically significantly >0, Figure 2A)

FIGURE 2 | Liraglutide treatment delays clinical presentation and

reduces clinical score in EAE. EAE was induced with EAE emulsion at day

0. Animals were randomly selected for vehicle (Veh) and liraglutide (Lira)

treatment arms and treated by blinded investigators twice-daily with saline

(n = 15) or 200 µg/kg of Lira (n = 15) (s.c.). Healthy animals were treated

equally without EAE emulsion (n = Veh:7, Lira:6). Clinical scores were

conducted twice-daily (A) and plotted as Veh (black) and Lira (blue) median ±

interquartile range. Disease debut: a groupwise clinical score that was

significantly higher than 0 is denoted in (A) with arrows for Veh (black) and Lira

(blue). Asterisks represent a significant difference in animals with EAE treated

with Veh vs. Lira. (B) Median clinical score at termination (via humane endpoint

or day 11) is significantly lower in Lira animals than Veh with EAE. Statistics are

derived from: (A,B) non-parametric analysis of clinical scoring. Statistical

significance is reported as *p < 0.05, ***p < 0.001.

was delayed by liraglutide treatment: day 8 for vehicle—(p <

0.05) and day 10 for liraglutide-treated rats (p < 0.05). Moreover,
EAE-vehicle rats were significantly more impaired than EAE-
liraglutide rats at day 8, 9 (p < 0.05), and 10, 11 (p < 0.0001;
Figure 2A). The clinical score at study termination (via humane
endpoint or day 11) was significantly lower for liraglutide-
treated animals: median of 2 vs. 5 (p = 0.0003, Figure 2B),
where 14 of 15 EAE-vehicle rats achieved the humane endpoint
compared to 5 of 15 EAE-liraglutide rats (93 vs. 33%, p =

0.0004).

Liraglutide Treatment Increases
Anti-Oxidant MnSOD Levels and Reduces
APP
Liraglutide increased the mitochondrial anti-oxidant protein
MnSOD by ∼1.6- (brainstem, p = 0.003) and ∼2.6-fold
(cerebrum, p < 0.0001) in liraglutide-treated animals relative
to the EAE-vehicle group (Figures 3A,B). Liraglutide decreased
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FIGURE 3 | Liraglutide treatment significantly increases antioxidant capacity and reduces neurodegenerative precursor APP in the EAE brain. Brains

were isolated from EAE animals and the brainstem and right hemisphere of the cerebrum were homogenized for immunoblotting. Manganese superoxide dismutase

(MnSOD) levels were significantly increased ∼1.6- and 2.6-fold of EAE animals treated with Lira in the brainstem and cerebrum, respectively. Levels of the marker of

axonal damage, amyloid-precursor protein (APP), were reduced by 30% in the cerebrum of Lira-treated animals. There was no difference in APP levels in the

brainstem of Lira-treated rats. APP was significantly higher in the brainstem than in the cerebrum. All data points are reported as dot plot of MnSOD, and APP levels

relative to housekeeping protein GAPDH and significance was tested with parametric analysis after normality was tested (Shapiro-Wilk) (B–D); (A) data was

log-transformed, re-tested for normality and tested with parametric analysis. Statistical significance is reported as *p < 0.05, **p < 0.01, ***p < 0.001; n = 6–7.

the neurodegenerative precursor APP (Figures 3C,D) in the
cerebrum by 30% (p = 0.036) relative to EAE-vehicle rats. APP
was significantly higher in the brainstem than the cerebrum

(p < 0.001) however, was not affected by treatment (p =

0.82). GFAP levels were not changed by liraglutide treatment
in the respective brain regions (Figures 4A,B). GFAP levels
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FIGURE 4 | Liraglutide treatment does not affect astroglial GFAP levels in EAE brain. Brains were isolated from EAE animals and the brainstem and right

hemisphere of the cerebrum were homogenized for immunoblotting. Astroglial marker glial fibrillary acidic protein (GFAP) levels (A,B) were significantly higher in the

cerebrum than the brainstem but were not affected by liraglutide treatment. All data points are reported as dot plot of GFAP levels relative to housekeeping protein

GAPDH and significance was tested with parametric analysis after normality was tested (Shapiro–Wilk); n = 6–7.

were significantly higher in the cerebrum than the brainstem
(p < 0.001, Figure 4).

DISCUSSION

This is, to our knowledge, the first investigation of GLP-1-class
agents in an experimental model of MS. Liraglutide reduces
clinical debut and severity in this aggressive monophasic model.
We look to expand on this clinical effect on the induction phase
with further preclinical analysis of different phases of the MS
spectrum through various EAE model systems.

Previous work has shown that metformin is effective in EAE
(Nath et al., 2009) and thereafter, in MS patients (Negrotto
et al., 2016) suggesting that the positive results in this EAE
model could be translated into a therapeutic option for MS.
Indeed, Negrotto et al. (2016) proposed that weight-loss delays
MS development and thus, the weight-reducing capacity of GLP-
1 analogs (Candeias et al., 2015) may be beneficial. Additionally,
GLP-1 analog treatment is known reduce the adipocyte hormone
leptin (Larsen et al., 2001; Iepsen et al., 2015), a pro-inflammatory
hormone that is elevated in MS patients and in EAE where a
reduction in leptin is protective (Matarese et al., 2010).

Although, these metabolic effects of liraglutide may contribute
to the effect of liraglutide described, liraglutide may also activate

neuroprotective pathways (Candeias et al., 2015) such as the
MnSOD-regulating CREB pathway (DellaValle et al., 2014).
Indeed, the increased MnSOD levels (Figure 2) observed in this
study supports an improved mitochondrial antioxidant capacity
that may play a role in buffering oxidative stress. Mitochondrial
dysfunction and frank oxidative damage are present in the brain
in EAE (Hasseldam et al., 2016) and previous work in this model
has shown that gene expression of the MnSOD-encoding gene,
Sod-2, is increased in the brainstem in Lewis rats with EAE
(Pedersen et al., 2013). These data suggest that this increase
in MnSOD is further potentiated with liraglutide treatment.
Moreover, we have previously shown that liraglutide reduces
reactive oxygen species after traumatic brain injury, preserves
mitochondrial function, and is associated with increasing the
CREB-regulated, antioxidants: peroxisome proliferator-activated
receptor-gamma coactivator-1 alpha and neuroglobin (DellaValle
et al., 2014). In recent work on liraglutide treatment in
experimental cerebral malaria—a neuropathology with preserved
mitochondrial function and without frank reactive oxygen
species damage—liraglutide is not protective and does not
activate the CREB system (DellaValle et al., 2016). This pre-
clinical work suggests that increased antioxidant capacity is
an important mechanism of liraglutide-driven neuroprotection.
The increased MnSOD levels further support an increased
antioxidant capacity at the mitochondrial level.
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The pathophysiological role of APP in MS is complex but
APP is a marker of cerebral lesions and a biomarker of disease
progression and axonal damage in MS and EAE (Matías-Guiu
et al., 2016). Recent genomic work suggests that APP may
primarily be a marker of early neuronal stress in EAE (Herold
et al., 2015). Thus, the reduction in APP observed in the
cerebrum (where pathology is diffuse) may reflect a protective
mechanism engaged by liraglutide treatment as the pathology
develops and/or a reduction in peripheral and central nervous
system inflammation in liraglutide-treated animals. Increased
MnSOD levels may play a role in controlling buffering these
stress signals. Liraglutide did not however affect APP in the
brainstem, where- as expected based on the caudal-rostral nature
of this model- the APP levels were significantly higher than the
cerebrum. This likely reflects increased neuronal stress in the
brainstem. This is supported by previous work in the brainstem
of this model describing increased gene expression of pro-
inflammatory cytokines, reduced anti-inflammatory cytokines
yet no signs of cell death signaling (Pedersen et al., 2013).

Liraglutide treatment did not change GFAP expression in
the brain although there tended to be an increase in the
brainstem of treated animals. Astroglial up-regulation of GLP-1
receptors may be an important mechanism of action for GLP-
1 agonism in the brain as GLP-1 receptors are up-regulated in
reactive astroglia after cortical lesion (Chowen et al., 1999) and
protect astrocytes in culture (Bao et al., 2015). Furthermore,
reactive astroglia express neuroglobin in murine EAE (DellaValle
et al., 2010), a neuroprotective protein that is up-regulated by
liraglutide treatment (DellaValle et al., 2014). We look explore
this mechanism further in future studies.

In this investigation we show a strong positive effect of a
drug that is already approved for human use, with a well-
described safety profile and good tolerance, apart from initial
gastrointestinal side effects (Gejl et al., 2016).We demonstrate for
the first time that liraglutide delays clinical disease progression

in EAE. Moreover, this is associated with improved antioxidant
capacity and reduced neuronal damage. Taken together with
the promising results in Alzheimer’s patients (Gejl et al.,
2016), and the prevalence of metabolic disturbances in patients
with MS, these data warrant further studies into GLP-1-
based therapy as a future contributor to the MS treatment
paradigm.
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