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In this paper, we discuss approaches for integrating biological information reflecting
diverse physiologic levels. In particular, we explore statistical and model-based
methods for integrating transcriptomic, proteomic and metabolomics data. Our case
studies reflect responses to a systemic inflammatory stimulus and in response to an
anti-inflammatory treatment. Our paper serves partly as a review of existing methods and
partly as a means to demonstrate, using case studies related to human endotoxemia
and response to methylprednisolone (MPL) treatment, how specific questions may
require specific methods, thus emphasizing the non-uniqueness of the approaches.
Finally, we explore novel ways for integrating -omics information with PKPD models,
toward the development of more integrated pharmacology models.
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INTRODUCTION

Life is complex at all scales. From a single cell to the whole body, there are myriad intricate
mechanisms that control every aspect of this complexity, Figure 1. The ultimate aim of biomedical
sciences is to establish a thorough understanding of how these control mechanisms function when
in a healthy state and how the control is lost (or shifted to a new mode) when symptoms of a disease
are displayed, in order to explain the observed phenotypic changes with the known paradigms at
the molecular level. Our ability to collect information about molecular events in our bodies has
tremendously increased with great advancements in technology. However, we still have a long way
to go finding the best ways to fully utilize this information.

Numerous -omics tools are available, each of which makes it possible to observe the physiologic
responses at their complementary level. They enable the examination of a broad array of cellular
or systemic elements and functions through the use of vast amounts of quantitative or semi-
quantitative data from various levels of biological organizations (Richards et al., 2010). Systems
biology rises on these new technologies and its most current and significant challenge is developing
methods to integrate the vast amount of information into a conceptual framework that is holistic,
quantitative and predictive (Kritikou et al., 2006). The intent is to reach a thorough understanding
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FIGURE 1 | Multiscale nature of inflammatory response.

of the biological mechanisms driving different processes in our
bodies and ascertain insights how to manipulate these processes
for our benefit.

Inflammation is one of those core processes through which we
produce responses against various stressors, such as pathogens or
trauma. It is a complex and multiscale biological phenomenon
that needs to be orchestrated under tight regulation (Laroux,
2004). Factors inducing physiological stress are sensed and
translated into biological cues that transmit signals throughout
organs and down to the cellular level. These incoming signals
are then recognized and processed to produce a response
in a dynamic and highly regulated manner. Collective cell
responses change the dynamic of biological metrics, manifesting
change at the individual organ level and ultimately throughout
the entire body. Under normal conditions, the outcome of
inflammation is the mounting of required immune response for
pathogen elimination or regeneration following injury; however,
in any instance of dysregulation of this complex process, the
uncontrolled response can induce further damage or lead to a
non-sustainable systemic disease state (Bone, 1996), Figure 2.

Considering its critical role in our survival, inherent complexity
and intricate relationships with other essential physiologic
processes; inflammation and inflammatory diseases are among
the research fields that can benefit from adapting the systems
approach. In this respect, the emerging -omics tools are very
promising, since they offer the advantage of observing the
inflammatory response at a much broader level together with
the ability to analyze multiple variables simultaneously which
empowers the application of systems analysis for rationalizing
and modeling the course of physiologic events.

Comprehending the continuum of physiologic responses
to pathologic stimuli is essential for making sense of how
molecular changes develop to induce observable symptoms
of a particular disease. Drugs, i.e., pharmacologic stimuli, are
intended to reverse this disease progression and reduce the
symptoms. For most cases, physiologic effects of drugs are
also complex and include re-directing physiologic responses to
alleviate symptoms of a particular pathologic condition as well
as inducing adverse-effects associated with off-target reactions.
Analyses of the physiologic effects of drugs by monitoring a
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FIGURE 2 | Inflammatory response is a complex process, which has to be tightly regulated in order to balance the defense mechanisms of the host
with the severity of infection/tissue damage. Loss of this control in favor of either side may have fatal consequences.

handful of markers for the targeted effects has been used for
building models of drug action for many years. Extensive -
omics analyses done at multiple physiologic levels, however,
also impacted this research area tremendously and initiated a
shift from classic pharmacokinetic/pharmacodynamic modeling
(PK/PD) toward a systems approach defined as quantitative
systems pharmacology (QSP) (Iyengar et al., 2012; Jusko,
2013; Androulakis, 2015, 2016). The ultimate direction for this
field is the realization of personalized and precision medicine
by building progressively more accurate drug action models.
However, the first steps toward these goals involve devising
methods to fully utilize the wealth of information produced by
the extensive analyses of pharmacologic responses.

This paper is centered on integrating information from
multiple physiologic levels. We focused on how critical
relationships are shaped over time during the development of the
response to a systemic inflammatory stimulus and in response to
an anti-inflammatory treatment. The systems approach allowed
us to track the continuum of physiologic responses through
their evolution and in relation to multiple dynamics running
in harmony. We extracted the coherent dynamic responses
represented in the -omics analyses at multiple physiologic
levels and integrated them using multiple approaches. The
analyses described in the sections that follow include metabolic
and transcriptional responses to endotoxemia, an experimental
model in humans that recapitulates the dynamics of systemic

inflammatory response. We then switch to an anti-inflammatory
therapy and focus on the effects of a commonly used synthetic
glucocorticoid in liver. This analysis represents a more direct
integration approach, in which we evaluate the concordance
of the hepatic response to the drug treatment at gene and
protein expression levels. Finally, we discuss a network-based
approach that integrates -omics information with existing
pharmacokinetic/pharmacodynamic models.

INTEGRATION OF -OMICS DATA: WHY
AND HOW?
“Why” and “how” are, likely, the most critical questions that
need to be addressed as we aggressively enter the -omics era. The
answer to “why” is straightforward: life is a complex organization
of functional entities each manifesting the actions and activities
of appropriate levels through corresponding markers at a suitable
level, broadly described as -omics data. Therefore, the -omics
data provide a snapshot of the system across multiple levels
of organization. The suffix “ome” is used to identify groups
of objects sharing common characteristics, either descriptive or
functional. At an elementary level we routinely think of genomic
(sequence of the genome), transcriptomic (expression of the
genome), proteomic (expression of the proteome), metabolomics
(expression of the metabolome) and the list is continuously
expanded to include the epigenome (Koch, 2016), interactome
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(Karagoz et al., 2016), regulome (Cheng et al., 2015), microbiome
(Althani et al., 2016) to name only a few.

Clearly, one of the key challenges in the -omics era is
“integration” and most precisely how to integrate. It is important
to realize that although the various -omics components at
some elementary level augment the number of descriptors, the
augmentation is not passive, i.e., it is not simply increasing
the dimensionality of the space. Rather, it introduces additional
layers of knowledge which are not independent of other layers,
that is the various -omics data are functionally related, most likely
implicitly among themselves. Seemingly simple, yet profound,
challenges emerge (Gomez-Cabrero et al., 2014) while a wide
range of methods have been proposed and extensively reviewed
(Rogers, 2011; Meng et al., 2014). Broadly speaking we will argue
that integration can be accomplished either (a) via statistical
means considering the computational challenges associated with
simultaneous analysis of disparate data sources (Meng et al.,
2014; Gligorijevic et al., 2016) or (b) realizing that the -omics
information comes together, eventually, in the form of a yet to
be determined, dynamics model expressing interactions, cross-
functionality and constraints (Chen et al., 1999; Palsson, 2002;
Joyce and Palsson, 2006; Hyduke et al., 2013). However, the
purpose of the present discussion is not to provide a detailed
account of the field and/or the approaches, but rather articulate,
through the use of specific examples: (1) how the nature of the
data can guide, and to some extent constrain, the type of question
that can be asked; and (2) how questions can guide the approach
that need to be developed and pursued. Both of these topics will
be discussed in the context of specific applications related to
inflammation and anti-inflammatory drugs. Each of the sections
below is primarily concerned with addressing one particular
questions and outlining one, of the likely many approaches that
exist for addressing it.

DATA-DRIVEN INTEGRATION OF
TRANSCRIPTOMIC AND PROTEOMIC
DATA AT THE SAME LEVEL OF
PHYSIOLOGICAL ORGANIZATION

The first case study refers to a scenario where the -omics data
reflect different processes, principally within the same cell type,
reflecting a sequence of events. Likely the most characteristic
example of this would be transcriptomic and proteomic
information. The fundamental question arising here is how
to upgrade the longitudinal information quantifying gene and
protein expression simultaneously, for a particular cell type in
response to an external perturbation or environmental condition.
In a simplistic way, one can view this problem as an extension
of the so-called central dogma. We demonstrate the alternatives
by focusing on the analysis of transcriptomic and proteomic
data obtained from the in vivo response of a rodent model
following bolus administration of synthetic glucocorticoids.
Studies focusing on understanding the relationship between
global mRNA transcription and protein translation have
produced mixed results, many of which concluded that the

transcriptomic and proteomic data is far from being easily
described as complementary (Greenbaum et al., 2003; Hegde
et al., 2003; Nicholson et al., 2004; Waters et al., 2006; Haider
and Pal, 2013; Motta and Pappalardo, 2013; Castiglione et al.,
2014). Nevertheless, both data types reflect the dynamics of
the cellular response to any given perturbation, thus capture
critical information reflecting different facets of the response.
Without considering any type of functional relation between
transcriptomic and proteomic data, each can be considered
independently or in tandem. In any “data driven” query, the
approach undertaken largely reflects the “biases” imposed by the
type of question one wishes to address (Androulakis et al., 2007).

In the sections that follow, we will address a basic question:
assuming that the response to drug elicits changes at both the
transcriptional and translational level, is it reasonable to assume
that one would focus on gene transcripts and corresponding
protein abundance both exhibiting substantial temporal changes
relative to base? (Note: in the analysis that follows, we assume
that the base line expression levels, i.e., in the absence of the drug,
are represented by mRNA and protein abundance levels prior
to drug administration). In a number of previous publications,
we have illustrated the analysis of longitudinal data with a time-
varying base line (Androulakis et al., 2007; Yang et al., 2007b,
2008a, 2009b, 2012a,b; Yang E.H. et al., 2009; Almon et al.,
2008a,b; Nguyen et al., 2009, 2010a,b, 2011, 2014a; Ovacik et al.,
2010; Scheff et al., 2010a; Swiss et al., 2011). However, temporal
relations among time-varying quantities are known to be non-
trivial, extending far beyond the classic view of correlation (Qian
et al., 2001).

Synthetic Glucocorticoids
Synthetic corticosteroids (CS), such as MPL, are widely used
anti-inflammatory and immunosuppressive agents for the
treatment of many inflammatory and auto-immune conditions
including organ transplantation, rheumatoid arthritis, lupus
erythematosus, asthma and allergic rhinitis (Swartz and
Dluhy, 1978; Barnes, 1998). The mechanism of action of CS
drugs is basically magnifying the physiological actions of
the endogenous glucocorticoid hormones, which have anti-
inflammatory properties depending on their secretion level and
the time at which they are secreted. These hormones also have
diverse effects on a variety of physiological processes including
carbohydrate, lipid and protein metabolism, immune-regulation,
bone homeostasis and developmental processes (Barnes, 1998;
Vegiopoulos and Herzig, 2007). The well-established molecular
mechanism of action for CS includes the passive diffusion of
the highly lipophilic CS molecule through the cell membrane
and binding to the cytosolic glucocorticoid receptor, which is
held inactive through the association with heat shock proteins
(Schaaf and Cidlowski, 2002). Binding of the drug to the receptor
causes conformational changes, phosphorylation and activation
of receptor, resulting in the formation of a homodimer of the
drug receptor complex (Schaaf and Cidlowski, 2002; Oakley
and Cidlowski, 2011). This activated complex translocates
into the nucleus and binds to regulator sites, glucocorticoid
regulatory elements (GREs) in the DNA, resulting in the
regulation of transcription rate. In addition to direct binding,
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FIGURE 3 | (Top) Schematic representation of the network-based indirect response model to MPL (D). Once the drug-receptor complex translocates into the
nucleus (DRn), it induces its effects on the transcription of its target genes (mRNA1, mRNA2) either by stimulation (open rectangle) or by inhibiting it (closed rectangle).
(Bottom) When transcribed messages are translated to the active proteins (Protein1, Protein2), they can also have effects, either stimulatory (green) or inhibitory
(red), on the transcription of target genes affected by MPL. All these effects are considered as indirect as there might be additional biological processes in between.

the activated complex can regulate gene expression by other
mechanisms including tethering and composite binding to
other transcription factors, activators, or repressors (Barnes,
1998; Schaaf and Cidlowski, 2002). Studies have shown that
CS can regulate pathways by signaling through receptors
in a transcription-independent manner, although the exact
mechanisms for the non-genomic effects are still unclear (Schaaf
and Cidlowski, 2002). While short-term use of CSs is beneficial
for reducing the inflammation, long-term use is associated
with serious side-effects – including hyperglycemia, negative
nitrogen balance, and fat redistribution, leading to complications
including diabetes, muscle wasting, osteoporosis, hypertension,
cataracts, peptic ulcers, and reduced resistance to infection and
adrenal insufficiency following withdrawal of therapy (Andrews
and Walker, 1999; Morand and Leech, 1999). The undesirable
metabolic effects of CS cannot usually be separated from their
favorable anti-inflammatory effects since most actions manifest
via the same glucocorticoid system.

The analysis of the diverse physiological effects of synthetic
glucocorticoids has been the subject of many pharmacokinetic
and pharmacodynamic modeling efforts. A series of models has
been developed to explain the dynamics of receptor regulation
and enzyme induction following MPL administration (Sun
et al., 1998; Ramakrishnan et al., 2002), Figure 3 (top). The
models were progressively enhanced to capture the effects of the

drug under several doses and dosing regimens. However, these
models were based on the data generated by traditional message
quantification methods that only allow measurements of single
end points. Because of the diverse effects of CS and different
molecular mechanisms potentially involved in these actions, a
high-throughput transcriptomic, i.e., microarray, approach was
effective in gaining better understanding of the temporal and
tissue-specific effects of CS on different pathways and functions
(Almon et al., 2007a,b). The diversity of the available models
describing gene induction by MPL have been expanded to
several pharmacogenomics models that explain the response of
numerous genes with various dynamic patterns (Almon et al.,
2003, 2005, 2007a,b; Jin et al., 2003; Nguyen et al., 2014a). Our
earlier studies in collaboration with Prof. Jusko, characterized
global dynamics of the systems that are regulated by CS at the
transcriptional level across multiple tissues in adrenalectomized
(ADX) and intact male rats, following single and chronic
dosing of MPL enabling us to: (a) develop transcription-level
understanding of MPL (acute vs. chronic) effects; (b) elaborate
on tissue-specific transcriptional differences; (c) assess MPL-
induced dose- and tissue-specific transcriptional regulation; and
(d) assess circadian dynamics and regulation of intact and MPL-
dosed animals (Yang et al., 2007b, 2008a; Yang E.H. et al., 2009;
Almon et al., 2008a; Nguyen et al., 2010a,b, 2014a; Ovacik et al.,
2010; Scheff et al., 2010a, 2011).
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Although transcriptional information is useful and highly
relevant, direct profiling of the protein expression changes
and integration of the information from proteomic data
will provide deeper insights into CS actions (Nouri-Nigjeh
et al., 2014). Recently, high-throughput, ion current-based
liquid chromatography/mass spectrometry (LC/MS), allowed
comprehensive and accurate profiling of the tissue proteome
(Tu et al., 2012). Using this methodology, the temporal changes
in the expression of almost a 1000 proteins in rat liver
following MPL administration were characterized (Nouri-Nigjeh
et al., 2014). The analysis of the combined transcriptomic and
proteomic data confirmed that significant indirect regulation
by MPL was evident, notably indicated by significant changes
in mRNA and protein levels in the absence of glucocorticoid
responsive promoter elements. With this new information
from the protein expression level, it was possible to evaluate
complementarities between transcription and translation of the
target genes and elaborate on the interplay between gene
and protein expression in liver toward a more complete
understanding of the indirect mechanisms of action of MPL
(Kamisoglu et al., 2014). This data confirmed that MPL effects
are propagated across a network of interacting genes and
proteins, Figure 3 (bottom). Without considering any type
of functional relation between transcriptomic and proteomic
data, each can be considered independently (Androulakis
et al., 2007) and using statistical methods one can analyze
temporal trends at each level. This was the approach undertaken
recently in our lab and an extensive discussion of the
methods and results was recently presented (Kamisoglu et al.,
2014).

Animal Model, Proteomic and
Transcriptomic Data
Proteomic Studies
Sixty adrenalectomized (ADX) Wistar rats were injected
with 50 mg/kg methylprednisolone (MPL) intramuscularly
and sacrificed at 12 different time points between 0.5 and
66 h post-dosing (five animals/time point). Five animals,
injected with saline and sacrificed at random time points
in the same time window, served as controls. In order to
remove the high concentrations of blood protein, it was
necessary to use perfused tissue for proteomic analyses,
which precluded the use of the same tissues employed
for transcriptomics (below). Proteins from perfused and
flash frozen livers were extracted, digested and analyzed
using a nano-LC/LTQ/Orbitrap instrument. The Nano Flow
Ultra-high Pressure LC system (nano-UPLC) consisted of
a Spark Endurance autosampler (Emmen, Holland) and an
ultra-high pressure Eksigent (Dublin, CA, USA) Nano-2D
Ultra capillary/nano-LC system, with a LTQ Orbitrap mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)
used for detection. Protein quantification was based on the
area under the curve (AUC) of the ion-current-peaks. A more
extensive description of the experimental setup and the analytical
methodology can be found in the previously published study
(Nouri-Nigjeh et al., 2014).

Transcriptomic Studies
Forty-three ADX Wistar rats were given a bolus dose of
50 mg/kg MPL intravenously. Animals were sacrificed at 16
different time points between 0.25 and 72 h post-dosing.
Four untreated animals sacrificed at 0 h served as controls.
The mRNA expression profiles of the liver were arrayed via
Affymetrix GeneChips Rat Genome U34A (Affymetrix, Inc.),
which contained 8800 full-length sequences and approximately
1000 expressed sequence tag clusters (Jin et al., 2003). This
dataset was previously submitted to the GEO (GSE490). We
have previously presented extensive analyses and studies of the
transcription response to acute and chronic administration of
MPL on multiple tissues (Almon et al., 2008a,b; Yang et al., 2008a;
Nguyen et al., 2010a, 2014a; Ovacik et al., 2010).

All animal experiments were performed at the University
of Buffalo and protocols adhered to “Principles of Laboratory
Animal Care” (NIH publication 85-23, revised in 1985) and were
approved by the University at Buffalo IACUC committee.

Integration and Analysis of
Transcriptomic/Proteomic Data
Assessment of the problem greatly reflects the approach(es) taken
(Androulakis et al., 2007) whereas in (Kamisoglu et al., 2015b)
we described multiple approaches to integrate this temporal
information from the proteome level with the corresponding
dynamics in the transcriptomic level through data-driven
approaches. In the analysis that follows we addressed the
question in two different ways. First, we identified transcripts
and proteins which are over-expressed post MPL administration.
The intersection of the two sets indicates genes from which
both transcription and translation is significantly altered. The
simultaneous consideration enables us to consider the following
question: what is the dynamic correlation of the subset of MPL-
regulated transcripts and proteins? As mentioned earlier, and
shown later, the relation is far from trivial. However, such
analysis, only depicts part of the picture. It is highly likely
that transcriptional events do not manifest themselves at the
protein levels and also post-transcriptional alterations may not
include transcriptional alterations. For such an analysis, the
two -omics data need to be separated and analyses performed.
Therefore, in the former case the mining of the data is concurrent
but the functional interpretation separate, whereas in the latter
the mining of the data is separate but the functional analysis
concurrent. The case study discussed in the following section
demonstrates both approaches. Once again, it is important to
realize that we only discuss two of the many questions which
could be posed and addressed and the presentation is by no
means exhaustive or all-encompassing.

Augmenting the Feature Vector: Clustering of
Concatenated Dataset
This analysis will help us identify the genes which were
differentially expressed both at the transcriptional and
translational levels. Data analysis for both proteomic
and transcriptomic datasets started first by filtering for
differential expression over time. Proteins and transcripts
with differential temporal profiles were determined by using

Frontiers in Pharmacology | www.frontiersin.org 6 February 2017 | Volume 8 | Article 91

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00091 February 23, 2017 Time: 13:44 # 7

Kamisoglu et al. Physiology in Continuum: Omics Integration

FIGURE 4 | (Top) Clustering of concatenated transcriptomic-proteomic MPL data workflow; (Bottom) Sequential transcriptomic and proteomic – forward and
reverse – clustering analysis of MPL data workflow.

EDGE (Leek et al., 2006). We employed within-class differential
expression to extract profiles that have a differential expression
over time (Storey et al., 2005, 2007; Leek et al., 2006). Integration
of these two datasets for any further analysis required matching
the object identifiers which was achieved through running a
comparison between two filtered datasets in Ingenuity Pathway
Analysis (IPA, Ingenuity R© Systems)1.

In order to find potential co-regulatory relationships at these
two levels, hierarchical clustering was used for first-pass analysis.
For this purpose, temporal transcriptomic and proteomic data for
the common genes were first concatenated and then clustered
using the clustergram function in the Bioinformatics toolbox
of MATLAB (Mathworks, Natick, MA, USA). The two clusters
obtained by using correlation as the distance metric. The
workflow is illustrated in Figure 4 (top).

This study aimed to compare and contrast the transcriptional
and translational changes in liver induced by the exposure
to a synthetic CS at a pharmacological dose. Although
high-throughput -omics analyses have been obtained from
samples collected from two independent studies; the strain of
experimental animals, dose and type of pharmacologic agent,
sampled tissue, sampling procedures, and most of the time points

1www.ingenuity.com

for sample collection were the same for these studies. These
conditions allowed us to assume that the experiments are similar
enough to conduct individual and integrated bioinformatics
analyses.

The preprocessing before performing the first-pass analysis
involved identifying the significant genes whose both transcripts
and proteins existed in the individual datasets. Differential
expression analysis through EDGE identified that 475 out of
959 proteins and 1624 out of around 8800 transcripts had
temporal profiles that significantly varied over time (meeting
p-value < 0.05 and q-value < 0.01 cut-offs). After this filtering
step, both datasets were fed into IPA in order to match distinct
identifiers used (Swiss-Prot IDs for proteins and Affymetrix IDs
for transcripts). A comparison between two datasets indicated
that 163 genes were commonly found in both transcriptomic and
proteomic datasets; i.e., both mRNAs and proteins corresponding
to these genes were differentially expressed over time.

The analysis is described in greater in detail (Kamisoglu
et al., 2015b). However, we briefly report here that this analysis
identified two dominant patterns: one with corresponding
mRNA and protein expression profiles essentially parallel in
direction, and another where the directionality was reversed. The
early response appears to be the most critical time period during
which mRNA and protein expression profiles change direction.

Frontiers in Pharmacology | www.frontiersin.org 7 February 2017 | Volume 8 | Article 91

www.ingenuity.com
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00091 February 23, 2017 Time: 13:44 # 8

Kamisoglu et al. Physiology in Continuum: Omics Integration

Genes in Cluster 1 display up-regulation for both mRNA and
protein expression profiles in the first 8 h, followed by down-
regulation, most markedly in the transcriptional profiles. In the
second cluster of response profiles, down-regulation dominates
for transcriptional profiles; however, corresponding protein
expression profiles are not parallel. While down-regulation is
observed in these transcripts most notably in the first 8 h;
expression of the same proteins seems to be up-regulated in the
same time frame. After the 8th hour; both transcriptional and
protein expression profiles approach basal levels, though from
opposite directions; elevated mRNA levels start to be down-
regulated and reduced protein levels start to be up-regulated.
Functional annotation of the genes in these two clusters,
indicated that the first cluster contains a number of genes coding
for heat shock proteins, which take part in the negative regulation
of CS signaling through direct protein-protein interaction with
glucocorticoid receptor to prevent its translocation to nucleus
(Chrousos and Kino, 2005). Complementary transcriptional and
proteomic profiles of these genes indicated that this is a negative
feedback control induced by MPL delivery, which is regulated at
the transcriptional level. Proteins functioning in the regulation of
protein degradation and translation machinery were also among
the genes in the first cluster, implying that these processes are
also controlled at the transcriptional level after CS exposure.
In contrast, functions enriched by the genes in the second
cluster appear to be regulated at post-transcriptional levels,
likely through control of mRNA processing, initiation of protein
translation or protein stability, since the transcriptional profiles
are not emulated by protein expression, (Waters et al., 2006).
Among these functions, most notable are the modulation of
oxidative stress, lipid metabolism and bile acid biosynthesis.
Concurrent analysis of promoter region identified upstream
regulators that can explain the observed changes in gene/protein
expression based on the prior knowledge of expected effects
between the upstream regulators and target genes/proteins in the
dataset.

Two-Way Sequential Clustering of Individual
Proteomic and Transcriptomic Datasets
While the hierarchical clustering analysis described above
identifies the potential co-regulatory schemes for the genes in
the intersection of transcriptomic and proteomic datasets; it
fails to capture the dynamics in the rest of the genes which
may also show differences in expression over time, although
they may not co-exist in both datasets. In order to evaluate the
overall dynamic patterns and extract the most useful information
integrating these two datasets, a consensus clustering (Nguyen
et al., 2009) method was applied to these two datasets separately.
First, proteins with differential temporal profiles were clustered
using p-values of 0.05 for significant clusters and an agreement
level of 0.70 for the genes in each cluster. Then, probe sets
corresponding to the proteins in each cluster were identified
through the comparison function in IPA as before. Temporal
profiles of these probe sets corresponding to the proteins
were compiled and separately sub-clustered through the less
stringent hierarchical clustering method, again using clustergram
function in MATLAB. The reverse of the same procedure was

also performed – starting from transcriptional analysis and
continuing with the corresponding proteomic analysis. Here,
differential transcriptional profiles were first determined and
then clustered using the same procedures described above. As
with the previous analysis, proteins that correspond to the probe
sets within each of these clusters were then identified and sub-
clustered. The workflow is illustrated in Figure 4 (bottom).
Functional annotations of proteins and transcripts at each level
of analysis were conducted in IPA by running a core analysis
for each cluster and evaluating the enriched canonical pathways
(at p-value threshold of 0.05) and predicted upstream regulators
obtained in IPA.

Summarizing the observations described in great detail in
(Kamisoglu et al., 2015b) we note that EDGE identified 475 out of
959 while the ensuing consensus clustering revealed five coherent
temporal profiles containing 217 of the 475 regulated proteins. Of
the 217 clustered proteins, 158 showed regulation of at the mRNA
level as well. This analysis was repeated in the reverse direction;
i.e., starting from the transcriptomic dataset and progressing to
the proteomic dataset. 1624 of the probe sets were differentially
expressed, 1132 of those were in five clusters obtained by
consensus clustering. Only 217 of these 1132 probe sets had
corresponding proteins in the proteomic dataset. Compared to
the first part of sequential clustering analysis, considerably fewer
proteins actually correlate with the transcriptional profile of their
respective clusters. Considering that protein expression is a more
reliable predictor of function, the annotation analysis was based
on the proteomic data in this part of the analysis. Elaboration
on the results enabled a more complete characterization of the
functional implications and relations among gene and proteins
(Kamisoglu et al., 2015b).

DATA-DRIVEN INTEGRATION -OMICS
DATA ACROSS MULTIPLE LEVELS OF
PHYSIOLOGICAL ORGANIZATION

The second study addresses a question of increasing importance.
Blood sampling is the most widely utilized way of probing
dynamic responses, and it has tremendous translational potential
as it is the most readily accessible sample in humans.
Metabolomics in particular is becoming a readily available tool
given the ability of the serum metabolome to capture biological
responses at a higher level (Minami et al., 2009; Fitzpatrick and
Young, 2013; Kosmides et al., 2013; Kaddurah-Daouk et al., 2014;
Kell and Goodacre, 2014; Carroll et al., 2016). Likely one of the
most celebrated examples was the Inflammation and the Host
Response to Injury, so-called, “Glue Grant,” aiming at providing
a blue-print of the host response to injury and trauma based
on sophisticated analysis of blood samples (Nathens et al., 2005;
Cuenca et al., 2011; Tompkins, 2015). However, despite the fact
that the majority of studies attempting to integrate various types
of -omics information, analyses based on blood measurement
add an extra level of complexity. Namely, circulating metabolites
originate from a wide variety of tissues and organs and eventually
accumulate in systemic circulation. Therefore, although the
various data structures provide actual information describing
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the host response, the fact that the origin of each type of
information is not unique, as well as non-specific, significantly
complicates the analysis. One such example, to be discussed
shortly, relates to combining transcriptomic and metabolomics
information from blood samples. In this direction, the question
we pursued was based on the hypothesis that the drastic changes
in the immediate environment of blood leukocytes might have
an adaptive effect on shaping their transcriptional response in
the regulation of metabolism in conjunction with the initial
inflammatory stimuli. The coupling of leukocyte transcriptomic
and systemic metabolomics information may enable us to provide
a more complete picture of the drivers of the response of immune
cells under inflammatory conditions.

Human Endotoxemia
Elective administration of bacterial endotoxin
(lipopolysaccharide; LPS) to healthy human subjects has
been used as a reproducible experimental procedure providing
mechanistic insights into how cells, tissues and organs respond
to systemic inflammation. Low doses of LPS transiently alter
many physiologic and metabolic processes in a qualitatively
similar manner to those observed after acute injury and systemic
inflammation (Lowry, 2005; Calvano and Coyle, 2012), thus
allowing the analysis of the responses to infectious stress at
multiple physiologic levels. This model has been extensively
employed for the development and assessment of rational clinical
therapies to prevent or attenuate systemic inflammatory response
syndrome (SIRS) (Calvano and Coyle, 2012).

Response to endotoxemia is closely associated with alterations
in metabolism. Inflammatory processes change the direction of
the substrate flow from the periphery toward splanchnic organs
while also triggering the release of catabolic signals in order
to meet increased energy and substrate demands (Fong et al.,
1990; Khovidhunkit et al., 2004); and hence, considerably alter
the levels of plasma metabolites. Individual changes in the major
metabolites, such as some lipids, amino acids, and glucose, are
previously documented for the case of human endotoxemia
(Fong et al., 1990). However, an untargeted bioinformatics-
empowered approach to elucidate the effects of endotoxemia on
plasma metabolite levels is lacking.

Analysis of the complete metabolic response to systemic
inflammation is of special interest since metabolic composition of
a tissue is uniquely altered in response to stimuli due to collective
effects of the regulations at various levels of cellular processes
including transcription, translation and signal transduction.
Concentrations of metabolites in a sample at a given time, i.e.,
the “metabolome” (Nicholson and Lindon, 2008), can be thought
of as the metabolic fingerprint representative of the state of body
at that time and provide information on the dominant regulatory
mechanisms. The emerging field of metabonomics, combines this
unique metabolic information with bioinformatics approaches
to provide an integrated temporal picture of the interactions
in the system (Nicholson, 2006; Holmes et al., 2008). Since
the metabolic phenotype is determined by eventual production
of metabolites through the complex cellular processes trickling
down from transcription, translation and signal transduction,
this field offers promise in advancing the knowledge in

many clinical conditions. For endotoxemia, understanding the
alterations in plasma metabolome is critical; since, metabolite
levels impacts the regulation of anti-inflammatory defenses, in
turn, through steering critical cellular processes in immune cells
(Pearce and Pearce, 2013).

Global transcriptomic studies of circulating leukocytes
in experimental human endotoxemia previously elucidated
the intricate regulatory schemes governing the inflammatory
response (Calvano et al., 2005; Nguyen et al., 2011). However,
inflammatory response is also closely associated with alterations
in metabolism. In Kamisoglu et al. (2013) we discussed the drastic
effect of a mild inflammatory stimulus on the homeostasis of
the whole-body metabolism. This single level analysis uncovered
the temporal patterns in the host metabolism reflecting collective
impacts of regulations at various organs and at multiple levels of
cellular processes including transcription, translation and signal
transduction. For endotoxemia, understanding the alterations in
plasma metabolome is critical, since metabolite levels impact the
regulation of anti-inflammatory defenses, in turn, by directing
critical cellular processes in immune cells (Pearce and Pearce,
2013).

Building on this knowledge; we integrated the transcriptional
response of leukocytes with systemic metabolic response
to understand how inflammation-induced changes in the
composition of plasma, in turn, affecting the transcriptional
processes in the leukocytes.

Metabolomic Studies
Archived blood plasma samples, which had been flash frozen,
were used in this proof-of-principle study. These samples were
collected from 19 healthy subjects, ages 18–40. Fifteen of the
subjects (11 males and 4 females; mean age of 22.7) were
administered National Institutes of Health (NIH) Clinical Center
Reference Endotoxin, at a bolus dose of 2 ng/kg body weight as
previously described Alvarez et al. (2007); Jan et al. (2009) and Jan
et al. (2010). Four control subjects (three males and one female;
mean age of 22.2) were administered placebo (saline). During the
protocol, subjects received a solution of 5% dextrose and 0.45%
saline crystalloid. Blood draws were conducted sequentially at
t = 1, 2, 6, and 24 h from both groups, samples were inventoried
and stored at −80◦C until the analysis. Metabolomic analysis
was performed by Metabolon (Durham, NC, USA) according to
previously published methods (Evans et al., 2009). The resulting
extracts were subjected to either liquid chromatography (LC) or
gas chromatography (GC) followed by mass spectroscopy (MS)
analysis. Identification of known chemical entities was based on
comparison to metabolomic library entries of purified standards.
Complete details of the profiling of plasma metabolome are
previously described (Kamisoglu et al., 2013, 2015a).

Transcriptomic Studies
For the transcriptomic study, four subjects (one female and
three male) received LPS at a bolus dose of 2 ng/kg body
weight and four subjects (one female and three male) received
saline. Blood samples were collected before (t = 0 h) and 2,
4, 6, 9, and 24 h after LPS administration. Leukocytes were
recovered by centrifugation; total cellular RNA was isolated
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from the leukocyte pellets and hybridized onto Hu133A and
Hu133B oligonucleotide arrays (Affymetrix). Further details
about the experimental design are presented in the original
analysis (Calvano et al., 2005). The transcriptional analysis
generated expression measurement data of over 44000 probe
sets in total, which is also publicly available through the
GEO Omnibus Database2 under the Accession No: GSE3284.
Integration and analysis of transcriptomic/metabolomic data
from different tissues. We presented extensive data analysis
and modeling associated with the transcriptional response to
endotoxin in humans (Foteinou et al., 2009a,b,c, 2010, 2011;
Dong et al., 2010; Nguyen et al., 2011, 2013; Yang et al., 2011b;
Scheff et al., 2013).

Integration and Analysis of
Transcriptomic/Metabolomic Data
Data analysis for both transcriptomic and metabolomic datasets
started first by filtering for differential expression over time.
Transcripts and metabolites with differential temporal profiles
were determined using EDGE software (Leek et al., 2006). The
significance cut-off for the transcriptomic dataset were p < 0.05 at
0.10 false discovery rate. To determine the potential co-regulatory
relationships, differentially expressed transcripts and metabolites
with differential temporal profiles were hierarchically clustered
using clustergram function in the Bioinformatics toolbox of
MATLAB (Mathworks, Natick, MA, USA). The two clusters were
obtained by using correlation as the distance metric.

Pathway enrichment analysis of genes in the clusters were
completed in Enrichr (Chen et al., 2013) using the gene-set
libraries of Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000). Three types of enrichment scores
are calculated by Enrichr to assess the significance of overlap
between the input list and the gene sets in each gene-set library
for ranking a term’s relevance to the input list. These are Fisher
exact test, z-score of the deviation from the expected rank by the
Fisher exact test, and a combined score that multiplies the log of
the p-value computed with the Fisher exact test by the z-score.
The pathways which have a combined score higher than 1.0 were
called significant. The combined score was devised because Fisher
exact test had a slight bias that affects the ranking of terms solely
based on the length of the gene sets in each gene-set library (Chen
et al., 2013).

The goal in the current analysis was to reveal transcriptional
regulation of leukocyte metabolic processes, specifically, then to
assess if these regulatory patterns might have been affected by
concurrent fluctuations of metabolite levels in the surrounding
plasma along with the initial stimuli. For this purpose, we
opted to focus the transcriptional analysis to the genes that
are associated with metabolic processes only. Therefore, any
differential transcripts which code for genes that are not
associated with any of the metabolic pathways were filtered
out. Gene set libraries and pathway classifications in KEGG
database were used as reference at this filtering process. Then,
clustering analysis was repeated for the remaining transcripts.
Clustered metabolism-associated genes were functionally

2http://www.ncbi.nlm.nih.gov/geo/

annotated through Enrichr similar to the analysis of the complete
transcriptome described above. A detailed account of the results
is described in length in (Kamisoglu et al., 2013, 2014, 2015a).

The study aimed at defining the impact of altered plasma
composition on the transcriptional response of leukocytes
during an inflammatory challenge. Earlier transcriptional studies
(Calvano et al., 2005) highlighted components of pro- and anti-
inflammatory processes, whereas the integrative analysis focused
on metabolic processes controlled at the transcriptional level and
enabled the development of guiding principles driving the impact
of the immediate leukocyte environment.

One of the key observations indicated that leukocytes tune
the activity of lipid and protein associated processes at the
transcriptional level in accordance with the fluctuations in
metabolite compositions of surrounding plasma. A closer look
into the transcriptional control of metabolic pathways uncovered
alterations in bioenergetics and defenses against oxidative stress
closely associated with mitochondrial dysfunction and shifts in
energy production observed during inflammatory processes. We
observed that in parallel with the peaking lipid and plunging
amino acid levels in plasma, lipid associated metabolic pathways
were activated while protein translation machinery slowed. We
hypothesize that drastic changes in the immediate environment
of the leukocytes might have an adaptive effect in this response in
conjunction with the initial stimuli. Furthermore, focusing only
on metabolism associated transcripts uncovered alterations in
bioenergetics and defenses against oxidative stress that can shed
light into the mechanisms underlying mitochondrial dysfunction
and shifts in energy production observed during inflammatory
processes. Besides describing the metabolic response of human
body to a basic inflammatory cue at the systemic level together
with affected immune mechanisms, this study can inspire future
translational studies as the -omics analyses becomes more routine
in clinical practice. Blood is one of the most rapid and least
invasive biological samples collected from patients, yielding
useful information about the state of the body. Benchmarking
the metabolic state of the system and transcriptional state of the
immune cells by a single biological sample may expedite clinical
decision making and help reduce mortality in critical cases. The
studies of (Langley et al., 2013, 2014), which formed the basis
for our comparative analysis between endotoxemia and sepsis
(Kamisoglu et al., 2015a), specifically aimed at benchmarking the
metabolic state and identifying critical biomarkers. The analysis
presented earlier, based on (Kamisoglu et al., 2015a), points
to directions where control studies (human endotoxemia) with
established links to clinical cases (sepsis) can be used to elaborate
on likely markers and/or expected dynamics enabling easier
translation of clinical data.

The integration of multiple temporal data of diverse nature,
raises several issues: the temporal resolution of sampling is
often assumed. The hypothesis is that if one is interested
in deciphering the dynamic interactions between an input
and its output, the sampling frequency and timing of the
sampling need to be similar. However, data acquisition in
living systems reflects a balance between what is physiologically
appropriate and what is realistically feasible, accounting not
only for cost, but for other practical and ethical constraints.
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In human studies for example, sampling frequency is limited
due to ethical and other constraints. In animal studies,
practicality of experiments and their cost often limit sampling,
especially if/when it involves sacrificing the animal, in addition
to ethical considerations evaluated by the appropriate IRB.
Therefore, multiple confounding factors exist, including pre-
existing conditions, multiple drugs, age, sex, ethnicity etc.
It is the hope that large scale studies will provide some
stratification and generate somewhat more coherent data.
Furthermore, deciphering evolution of dynamics following an
external perturbation needs to take into consideration that the
“homeostatic” dynamics may in fact demonstrate a baseline
dynamics response – most likely in the form of circadian
variation (Almon et al., 2008a,b; Nguyen et al., 2010b, 2014b;
Ovacik et al., 2010; Rao et al., 2016b). Therefore, deviations
from homeostasis in response to a pharmacological agent need
to consider the homeostatic dynamics as well. This is evident
not only in terms of data, but also in the context of model
development and its implications (Scheff et al., 2010b; Mavroudis
et al., 2013, 2015; Pierre et al., 2016; Rao et al., 2016a).

MODEL-BASED INTEGRATION OF
-OMICS DATA

Modeling the responses of the body to a drug is a fundamental
process in the drug development and it helps us quantitatively
reflect the time-course of the effects of drug on the body. Building
and successful utilization of these models allow quantification
of drug-system interactions and prediction of both therapeutic
and adverse effects (Mager et al., 2003; Felmlee et al., 2012).
Diverse physiological effects of synthetic glucocorticoids are the
subject of many of these pharmacokinetic and pharmacodynamic
modeling efforts. A series of models were developed to explain the
dynamics of receptor regulation and enzyme induction following
MPL administration (Sun et al., 1998; Ramakrishnan et al., 2002).
The models progressively enhanced to capture the effects of
the drug under several doses and dosing regimens. However,
these models were based on the data generated by traditional
message quantification methods that only allow measurements
of single end points. Together with the analysis of MPL effects
on various tissues via high-throughput technologies such as gene
microarrays (Almon et al., 2007a,b), the diversity of the available
models increased. The fifth-generation model that described
the simple gene induction by MPL was expanded to several
pharmacogenomics models that may explain the response of all
the hepatic genes with various dynamic patterns (Jin et al., 2003).
Earlier modeling analyses have primarily concentrated on the
effects observed at the gene expression level (Almon et al., 2003,
2005, 2007a,b; Jin et al., 2003; Nguyen et al., 2010a, 2014a). The
next quest in the development of more comprehensive models is
the incorporation of information at the protein expression level.
This information, made available by a novel high-throughput
and reproducible method, allows the temporal profiling of tissue
proteome (Nouri-Nigjeh et al., 2014). A future direction we
envision is to achieve integration of this information from
complementary studies with a model-driven approach. With this,

the current PK/PD models of MPL response could be augmented
to reflect the physiological response observed at the protein
expression level.

As our results demonstrated earlier, transcriptional and
proteomic expression patterns roughly correlate for some of
the genes, yet for others, the dynamics are more unexpected.
One way to work with the existing PK/PD models would be
teasing out the protein counterparts of the transcriptional clusters
that are described by the observed dynamics and examining
the potential mechanisms that could explain the observed
protein expression profiles corresponding to the same genes.
Another approach is considering the physiologic response as
systems response composed of dynamics of individual elements.
However, studies focusing on understanding the relationship
between global mRNA transcription and protein translation have
produced mixed results, often concluding that the transcriptomic
and proteomic data is far from being easily described as
complementary (Greenbaum et al., 2003; Hegde et al., 2003;
Nicholson et al., 2004; Waters et al., 2006; Haider and Pal, 2013).
Nevertheless, both data types reflect the dynamics of the cellular
response, thus capture critical information reflecting different
facets of the response. The key challenge is realizing that although
the various -omics (genomic, transcriptomic and proteomic in
this case) components at some elementary level augment the
number of descriptors, the augmentation is not passive, i.e., it is
not simply increasing the dimensionality of the space.

We will present a preliminary study applying this second
approach. In our study, the driver of the response is the drug-
receptor complex in the nucleus; transcripts and proteins, the
nodes of the network, are the individual elements with diverse
dynamics. The observed phenotype reflects the systems response
arising from the dynamics of these individual elements, and
these elements include genes and proteins, directly and indirectly,
affected by the MPL. A number of target genes to be included in
the network depends on the available biological data, literature
information about the interaction of the nodes, as well as
the desired complexity level. As more nodes are added into
the network, the direct and indirect interactions between the
elements of the network, as well as the number of parameters to
be estimated, increases.

Building the Response Network
A functional approach was undertaken to construct a proof-
of-concept initial network. Genes included in this network are
selected from the most informative transcripts that are both
differentially expressed at the transcriptomic and proteomic
levels, Figure 5 (left). The list was further reduced by focusing
on genes functionally related to the major metabolic effects of
MPL on metabolism, including hyperglycemia, dyslipidemia and
muscle wasting (Schäcke et al., 2002). Genes functioning in
glutathione metabolism and redox regulation, associated with
oxidative stress, are situated at the major cross-roads critical for
the regulation of both inflammation and metabolism (Pearce and
Pearce, 2013). These nodes seem to be closely connected to one of
the core genes in pyruvate metabolism, also coding for enzymes
catalyzing the rate limiting step of fatty acid synthesis. Another
critical response to inflammation, regulation of cytoskeleton,

Frontiers in Pharmacology | www.frontiersin.org 11 February 2017 | Volume 8 | Article 91

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00091 February 23, 2017 Time: 13:44 # 12

Kamisoglu et al. Physiology in Continuum: Omics Integration

FIGURE 5 | (Left) Concurrent analysis of temporal mRNA and protein liver-specific data post MPL dosing revealed two dominant patterns. The first populated with
genes whose corresponding mRNA and protein expression profiles were parallel in direction; while in the second directionality was reversed. Heat shock proteins
and proteins regulating protein degradation and translation were in the first cluster. The second pattern was dominated by proteins involved in the modulation of
oxidative stress, lipid metabolism and bile-acid biosynthesis. Such analyses likely point to transcriptional or post-translational regulatory events. (Right) Liver-specific
differentially expressed proteins and transcripts following a dose of MP were determined using EDGE and common functionally enriched pathways using Enrichr.
Direct and indirect regulatory relations identified using four databases (Biocarta, KEGG, NCI, and Reactome) established a global network subsequently reduced (6
nodes, 16 edges) using a variation of Dijkstra’s algorithm. Network includes: oxidative stress genes in glutathione metabolism and redox regulation critical for the
regulation of inflammation and metabolism; core genes in pyruvate metabolism and fatty acid synthesis; regulation of cytoskeleton as well as metabolic genes.

although mostly epithelial in origin, is also represented in
this network in collaboration with other genes functioning in
metabolic pathways.

In order to establish regulatory connections between the
sub-set of genes and proteins, we explored several databases,
including Ingenuity Pathway Analysis (Calvano et al., 2005),
KEGG (Lissauer et al., 2009), Biocarta (Amirian et al., 2011)
and PSTIING (Ng et al., 2011), which provide network data.
The network was constructed by combining the transcriptomic
and proteomic data along with functionally annotated biological
information and literature-based functional associations, with
emphasis on regulatory relations. Utilizing the regulatory
relations between genes/proteins from the databases, first a
“global network” in which regulatory links are well known
was established. The analysis produced a small, yet complex
network (6 nodes, 16 connections) providing an avenue to
explore both therapeutic and adverse effects of MPL, Figure 5
(right). Refinement and further extension of the network through
modeling will yield an accurate representation of the complete
effects of the drug. Once the sub-set of genes and proteins of
interest has been identified, we then need to establish a network
structure expressing putative regulatory relations. A variety of
computational methodologies for further refining regulatory
network structures are discussed elsewhere (Yang et al., 2007b;
Foteinou et al., 2009d; Nguyen and Androulakis, 2009; Nguyen
et al., 2011; Saharidis et al., 2011).

Integrating the Network With an Existing
PK/PD Model for MPL
Inference (regression) methods (Fujii et al., 2017) correlate inputs
and outputs without prior knowledge of the underlying network

structure. Instead we pursued a “reaction-based” approach
(Newman et al., 2013) which is an a priori biological knowledge
enabling the quantification of the dynamics (Androulakis et al.,
2007, 2013) exploring the principles of mass action (Aldridge
et al., 2006) and indirect response modeling (Krzyzanski
and Jusko, 1998a,b) for expressing the rates of synthesis and
degradation of mRNA and protein. The general structure of
the model is composed of three sub-units: (a) the PK of MPL
describes a bolus injection which has already been described
using a two-compartment model and is maintained throughout
(Jin et al., 2003); (b) the PD module describes the transduction
cascade leading to the formation of the active, nuclear, complex
binding to the GRE (Jin et al., 2003); and (c) the module
describing the transcription/translation dynamics. For the latter,
we model the transcription/translation process as a dynamic
system where the basal rate of transcription of mRNA is regulated
by the activity of regulating proteins, whereas the translation
is proportional to the amount of mRNA. The basic formalism
dmRNAi

dt = ks,m fi(P)− kd,m mRNAi;
dPi
dt = ks,P mRNAi − kd,PPi

reflects the fundamental dynamics of transcription and
translation processes through the use of ordinary differential
equations (Meister et al., 2013). The function f(P) reflects the
regulatory action of the various proteins on the transcription
mRNA. The f(P) formally reflects the likelihood of the regulatory
events and its functional form will reflect mechanistic
interpretations. In its most general form, and based on
thermodynamic arguments, it includes regulatory complexes
as well as activation or repression of transcription (Bintu et al.,
2005a,b):

fi(P) = a0(1+ DRn)+

∑m
j=1 λij

∏
k∈Sij

Pk(
1+
∑m

j=1 µij
∏

k∈Sij
Pk

) .
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The set Sij defines a regulatory complex and the coefficients
λij, µij reflect activation and repression constants respectively.
Discrete optimization formalisms (Yang et al., 2008b,c; Foteinou
et al., 2009d; Saharidis et al., 2011), could also be used in order to
augment the network connectivity. In all cases, the basic structure
of the network will be as identified via the network analysis,
while allowing for the possibility of minor adjustments based on
the estimation results. The estimation of the model parameters
take appropriate measures of identifiability and uncertainty into
consideration in order to achieve robust parameter estimation
and is discussed elsewhere (Yang et al., 2011a,b; Wu et al., 2015).

The network structure for Figure 5 along with the
corresponding data of the same figure was used to develop
a simple model (Equations 1–9).

D = C1 · e−λ1·t + C2 · e−λ2·t (1)

dRm
dt = ksyn_Rm ·

(
1− DRn

IC50_Rm+DRn

)
− kdgr_Rm · Rm (2)

dR
dt = ksyn_R · Rm + Rf · kre · DRn − kon · D · R-kdgr_R · R (3)

dDR
dt = kon · D · R-kT · DR; (4)

dDRn
dt = kT · DR− kre · DRn (5)

dmRNA
dt = f − kdgr_m ·mRNA (6)

f = kP · (1+ DRn +
∑N

j=1 aij · Pj) (7)

aij =

{
1, if protein j regulates gene i
0, otherwise

(8)

dP
dt = ksyn_P ·mRNA− kdgr_P · P (9)

In this model, the PK and PD of MPL, i.e., the equations
for D, Rm, R, DR and DRn, and their corresponding kinetic
parameters, are as established earlier in Sukumaran et al. (2011).
The kinetics for mRNA follow standard mass action kinetics
with a 0th order transcription and 1st order degradation.
The transcription, however, is conditionally regulated by MPL
and/or other proteins, depending on the network structure
expressed through the matrix aij. The dynamics of protein
synthesis was assumed in its simplest form (1st order translation
and degradation). The normalized data associated with the
mRNA and protein levels of the network in Figure 5 were
used for estimating the parameters involved in the mRNA and
protein dynamics only (the remaining were fixed based on prior
deconvolution of the PK/PD model). MPL plasma concentration
(D) exhibit a biexponential decline. Following the binding of
the drug to the glucocorticoid receptor (DR), this complex
translocates into the nucleus [DR(N)] and acts as the driving force
for MPL-induced response patterns. Firstly, this effect is observed
as inhibition of mRNA expression for the glucocorticoid receptor
(Rm), and consecutively the receptor protein (R). DR(N) is also
introduced as a stimulatory factor to all of the nodes in the
network. Level of mRNA expression is modeled to be controlled
by the presence of drug-receptor complex in the nucleus together
with indirect interactions between the proteins of the network.
Degradation of mRNA, protein translation from mRNA, and
protein degradation are all modeled as linear processes.

FIGURE 6 | Preliminary results indicative of the potential to capture the
complex dynamics of the interplay between the PK dynamics of MPL
and the putative mRNA/protein cross-regulation in the form of
networked interactions. Despite the simplicity of the model equations, key
characteristics are captured. The simple form of the added model of
regulation clearly needs to be augmented. Furthermore, the preliminary
calculations did not take into account the error in measurements. Open
symbol/dashed line: data, solid line: model.

The initial, motivating, results, Figure 6, are only beginning
to scratch the surface and point to directions for improvement,
as they should with any iterative model development process.
In general, for most network elements early dynamics seem
to be represented well compared to later fluctuations in the
response. However, significant improvements and refinements
are expected. We anticipate the need to develop complex
representations, likely requiring precursor and receptor-
mediated indirect responses (Sharma et al., 1998; Sharma and
Jusko, 1998; Almon et al., 2002; Hazra et al., 2007). It is important
to realize that model structure adjustments have the potential to
lead testable hypotheses in the laboratory to further elaborate
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on the actual PK/PD. Given prior experience with both the
modeling principles (Wang et al., 2012; Stamatelos et al., 2013;
Mavroudis et al., 2014; Mavroudis et al., 2015) as well as the
associated parameter estimation of such pharmacology models
in terms of structure (Yang et al., 2007a, 2008b,c, 2009a; Foteinou
et al., 2009d; Saharidis et al., 2011) and parameter identification
(Yang et al., 2011a,b; Wang et al., 2012; Stamatelos et al., 2013;
Wu et al., 2015), a reasonable estimation problem can be
formulated. Some of these efforts might include introducing time
delays to the elements which demonstrate more pronounced
dynamics in the later phase of the response. The synthesis of
the network mRNAs currently involves linear relationships.
Michaelis–Menten kinetics can be introduced to allow self-
limiting responses. Finally, the network structure can also be
reshaped by eliminating the nodes that are not insightful as
well as introducing new nodes that carry important regulatory
information about the existing parts of the network. Once the
model is matured to fully capture the experimental data, it can be
utilized to make predictions about long-term effects, or different
delivery kinetics.

Another layer of information that can be incorporated into
this model in the future is the metabolome layer. As we
have previously pointed out, gene expression signatures give
information about the lowest level of organization, shedding
light on the origin of a specific phenotype. Proteomics provide
information about the abundance of proteins, elucidating the
next level up from gene expression data. The integration
of these fields provides a unified picture of cellular-level
responses from transcription through translation. However,
there are multiple other levels of processes that control the
sequence of events from the translation of a protein until it
becomes a fully functional piece of the organism that can
shape processes affecting the metabolic phenotype. Metabolomics
complements these more traditional -omics techniques by
allowing the investigation of properties that cannot be directly
assessed through gene and protein expression. Integration of
metabolomics with transcriptomics and proteomics can help
make the relationship between the levels of information produced
by each technique clearer. Changes in gene expression levels and
protein concentrations can be linked to physiologic changes and
interpreted in the biological context.

Future metabolomic studies in the same animal model
can elicit the metabolic shifts occurring in response to MPL
administration that ultimately cause the development of the
adverse effects. Careful assessment of the connections of these
shifts with the defined alterations in hepatic gene and protein
expression levels can help identify the critical nodes that
control the metabolism-associated adverse effects of the drug.
Importantly, the indirect effects of the drug on whole body
metabolism through altering the microbiome would have to
be considered here as well, since the symbiotic organisms
might have tremendous influence on shaping the metabolic
response to the drug. Nevertheless, integration of information
from the whole-body metabolism with existing information on
the hepatic response to MPL can be useful in multiple ways.
Firstly, alterations in the critical nodes that are linked to long-
term adverse effects can be identified and adjunct therapies that

can alleviate these alterations can be devised. Secondly, patient
populations which would be more susceptible to experiencing
those adverse effects, or who have better drug response, can be
pre-determined based on their genomic profiles. Thirdly, more
realistic models of drug response can be designed integrating
information from this ultimate phenotypic level and be used
to evaluate different scenarios, helping in the design and
development of better therapies.

CONCLUSION

The purpose of this review article is to provide a perspective on
the opportunities and challenges associated with the integration
of disparate -omics data sources. Without a doubt the next
frontier in PK/PD modeling will take advantage of our increasing
abilities to incorporate biological information across multiple and
diverse layers of physiologic organization. Although the richness
of the data is impressive, rationalizing the content in a systematic
and coherent manner remains a challenge. Given the overall
difficulty of the problem, upgrading the information content of
the data is a major challenge.

In this review, we have attempted to discuss three topics,
based on our own experience. We discussed challenges associated
with integrating -omics information within and between tissues.
Interestingly, the nature of the data, to some extent, drives the
type of question and the corresponding methods needed for
answering the question. Finally, we provided a brief summary
of what we feel is a promising new frontier: integrating -
omics information in a model-based manner. The expectations
are twofold: (1) we may achieve a better rationalization of
the information; and (2) perhaps more importantly, we may
be able to further advance the frontiers of PK/PD modeling
which could have significant impact. This preliminary work
introduces an approach for bridging the classic PK/PD modeling
efforts with the multi-level systems response. This allows us to
explore the paths of utilizing the vast amount of information
made available by new -omic profiling tools. These tools
make it possible to evaluate the response as a whole at a
certain biological level over time. The model-based integration
approach discussed here ultimately aims to connect this valuable
information coming from multiple layers in a useful framework
which reflects the continuity of biological events in response to
pharmacological stimuli. Achieving such integration will allow
the development of model-based approaches for rationalizing
the genomic, transcriptomic and proteomic data in the context
of integrated dynamic regulatory network models, critical for
the development of MPL PK/PD/pharmacogenomics models,
enabling us to move beyond using -omics as a complex descriptor
toward the development of pharmacologically relevant and
predictive computational models.

Without a doubt, we are only scratching the surface.
Numerous challenges and open questions remain, charting an
exciting future. To name a few, our case studies present a
modeler’s idealized scenario: relatively homogenous cohorts,
whether a single animal strain in our MPL studies or a population
of relatively healthy humans in our human endotoxemia studies;
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single dosing with a single pharmaceutical agent. Hidden within
is reasonable biological variability; however the main focus
of these designs was to tease the agent’s primary effects. As
we consider moving integrative -omics to the next level, we
must expect a number of challenges: (1) as we hinted in
the comparison of metabolomics profiles between a controlled
human endotoxemia study and the clinical cases, -omics data
from clinical studies and/or patient population will, unavoidably,
express and capture many confounding factors beyond responses
elicited by the agent under study; (2) circulating, i.e., systemic,
markers pose, as discussed in the manuscript, additional
challenges since the tissue-specificity is lost, complicating further
the interpretation of the observed responses in a cause-and-
effect sense; (3) the temporal granularity of the data will
remain a key challenge. The disparities in temporal resolution
of the responses at different physiologic levels will further
complicate any data driven-approach. In such cases, it is
likely that methods aiming at features and/or models – as
discussed in the paper – will prove more beneficial; (4)
patient history, including medication, will constantly nuance
the data obtained; (5) despite the ability to probe an ever
increasing number of likely biological descriptors and mediators
(genome, transcriptome, proteome, metabolome, epigenome,
fluxome, etc.) leading to an increase in the dimensionality of
the “input” space, the actual “output” space, that is the number
of subjects, volunteers and/or patients, being sampled will
always lack, especially if appropriate population stratifications
are implemented. This is a classic problem in machine
learning often referred to as classification/feature selection in
“almost empty spaces” (Duin, 2000) Therefore, key challenges
will remain, primarily focusing on the many aspects of the
heterogeneous nature of the data. However, as our ability
to collect, archive, annotate and query new challenges and
opportunities emerges (Toga et al., 2015; Dinov et al., 2016),

large cohort studies are already emerging (Hood and Price,
2015).

Finally, one of the key themes of this presentation is that
integration can occur at two levels: (a) the level of the features of
the data, or (b) the level of the features of the models that could
describe the dynamics of the data. Each method offers distinct
advantages and challenges. Considering features of the data,
characteristics of the responses and likely important biomarkers
are able to describe intricacies of the response. Features of the
models underlying the dynamics of the data, on the other hand,
enable a likely quantification of cause-and-effect relations, as well
as the likelihood of expressing, and predicting, complex dynamics
and emergent behaviors, not necessarily obvious while studying
the features themselves. However, it is important to realize that
the approaches are complimentary and are often combined to
improve the overall effectiveness of the analysis. To some extent,
effectiveness is also an emergent property of the concurrent and
multi-prong analysis of information-rich -omics data.
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