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Prostate cancer is the most common cancer among men worldwide. However, current
treatments for prostate cancer patients in advanced stage often fail because of relapse.
Prostate cancer stem cells (PCSCs) are resistant to most standard therapies, and
are considered to be a major mechanism of cancer metastasis and recurrence. In
this review, we summarized current understanding of PCSCs and their self-renewal
signaling pathways with a specific focus on Wnt signaling. Although multiple Wnt
inhibitors have been developed to target PCSCs, their application is still limited by
inefficient delivery and toxicity in vivo. Recently, nanotechnology has opened a new
avenue for cancer drug delivery, which significantly increases specificity and reduces
toxicity. These nanotechnology-based drug delivery methods showed great potential
in targeting PCSCs. Here, we summarized current advancement of nanotechnology-
based therapeutic strategies for targeting PCSCs and highlighted the challenges and
perspectives in designing future therapies to eliminate PCSCs.
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INTRODUCTION

Prostate cancer continues to be the most frequently diagnosed cancer in males and the third leading
malignancy of cancer-related deaths in the USA (Siegel et al., 2017). Advanced/metastatic prostate
cancer has been the major clinical challenge for prostate cancer. Recently, several new treatments
have led to significant improvement of overall survival. These include novel androgen receptor
pathway inhibitors abiraterone acetate (de Bono et al., 2011; Ryan et al., 2013) and enzalutamide
(Scher et al., 2012; Beer et al., 2014), chemotherapy drugs taxanes, docetaxel and cabazitaxel (de
Bono et al., 2010), an immunotherapeutic agent Sipuleucel-T (Kantoff et al., 2010), and a bone
targeting alpha-emitting radionuclide, radium-223 chloride (Parker et al., 2013; Gillessen et al.,
2015). However, resistance and recurrence still persists, which limits patient benefit.

Although still controversial, the resistant to the current treatment (hormonal therapy,
chemotherapy, or radiotherapy) can be at least partially explained by the existence of prostate
cancer stem cells (PCSCs). These cells can self-renew to initiate tumor in vivo in severe combined
immunodeficient (SCID) mice (Hurt et al., 2008). PCSCs usually have low or undetectable
androgen receptor expression that can lead to the failure of androgen deprivation therapy
(hormonal therapy), the standard primary treatment for advanced prostate cancer (Lee et al., 2013;
Di Zazzo et al., 2016). The slow growth rate of PCSCs allows them to survive routine chemotherapy
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and radiotherapy which are designed to attack actively dividing
neoplastic cells. Moreover, PCSCs are highly resistant to
drugs and toxins through a variety of mechanisms including
enhanced drug efflux, expression of anti-apoptosis genes, and
active DNA repair (Ni et al., 2014). The surviving PCSCs
can regenerate the bulk of the tumor, or give rise to
distant metastasis (Hurt et al., 2008; Salvatori et al., 2012;
Shiozawa et al., 2016). Therefore, therapeutic strategies that
specifically target PCSCs may eradicate tumors more effectively
and reduce the risk of relapse and metastasis. PCSCs use
various signaling pathways to maintain their self-renewal and
differentiation, including Wnt/β-catenin, Hedgehog, TGF-β
(Bisson and Prowse, 2009; Chang et al., 2011; Chen et al., 2015).
Targeting these pathways to eliminate PCSCs is predicted to
have high therapeutic potential in prostate cancer treatment.
However, delivering drugs precisely to the vicinity of the
tumor to target PCSCs is still a major challenge in clinical
treatment.

Recently, developed nanotechnology opens a novel avenue
for drug delivery in cancer therapy. Nanotechnology is the
engineering and manufacturing of materials from 1 to 100
nanometers in size in at least one dimension. Nanotechnology
has been widely used in cancer diagnosis and therapy such as
molecular imaging, molecular diagnosis, and targeting therapy
(Toy et al., 2014; Wicki et al., 2015). For example, nanovectors
are used in the clinic to facilitate the targeted delivery of imaging
contrast agents for diagnosis and anticancer drugs for treatment.
Nanowires and nanocantilever arrays are used for precancerous
and malignant lesion detection in biological fluids (Ferrari, 2005).
Some of these nanoparticle-based strategies have already been
approved for clinical use, and even more are in clinical trials or
in preclinical development (Zhang L. et al., 2008; Van Audenhove
and Gettemans, 2016).

Here, we summarized current advances in PCSCs with a
focus on their identification, origin, and maintenance signals.
Furthermore, we reviewed current advances in the application
of nanotechnology toward the diagnosis and therapy of prostate
cancer with a specific focus on targeting PCSCs.

IDENTIFICATION OF PCSCs

Bonnet and Dick (1997) reported that a small subset of leukemic
cells (CD34+CD38−) were capable of initiating human acute
myeloid leukemia (AML) in a xenograft mouse model, this
provided the first experimental evidence for the existence of
cancer stem cells. Since then, although many groups have
tried to identify cancer stem cells in solid tumors, it was
not achieved until 2003. Al-Hajj et al. (2003) showed that
CD44+CD24−/lowLineage− breast cancer cells were able to
initiate tumor in immunodeficient mice, which proved the
existence of cancer stem cells in solid tumors. Since then, cancer
stem cell markers in different solid tumors have been identified,
such as brain tumors (CD133+) (Singh et al., 2003), lung cancer
(CD133+) (Eramo et al., 2008), colon cancer (CD133+) (O’Brien
et al., 2007), pancreatic cancer (CD44+CD24+ESA+) (Li et al.,
2007), ovarian cancer (CD44+CD117+) (Zhang S. et al., 2008),

hepatic carcinoma (CD45−CD90+) (Yang et al., 2008), and
melanoma (ABCB5+) (Schatton et al., 2008).

Prostate cancer stem cells were first identified by Collins
et al. (2005). Their studies showed that CD44+α2β1

hiCD133+
cells isolated from prostate cancer patients have a high potential
for self-renewal and proliferation; these cells were also able
to differentiate to heterogeneous cancer cells in ex vivo
culture (Collins et al., 2005). Since, CSCs are conceptually
considered to share similar self-renewal maintenance signals
with normal stem cells, researchers intended to adapt knowledge
from normal stem cell studies to explain CSC regulation
mechanisms. For example, Hurt et al. (2008) found that
CD44+CD24− enriched PCSC population has high level Oct3/4
and BMI-1 expression, which are critical for embryonic
and quiescent adult stem cell maintenance (Masui et al.,
2007; Tian et al., 2011). These isolated PCSCs have high
tumorigenic and metastatic potential in immunodeficient
xenograft mouse models (Hurt et al., 2008; Salvatori et al.,
2012). This evidence indicated that CSCs might hijack self-
renewal maintenance signals from normal stem cells during
their evolution. Besides cell surface markers, some intracellular
functional proteins can also be used for CSC identification.
Increased aldehyde dehydrogenase (ALDH) activity is found
in prostate stem/progenitor cells (Burger et al., 2009) and
multiple types of CSCs, including PCSCs (Pearce et al.,
2005; Ginestier et al., 2007; Jiang et al., 2009; Li et al.,
2010). Prostate cancer cells with high ALDH activity showed
enhanced tumorigenic and metastatic ability (van den Hoogen
et al., 2010). A study identified prostate cancer cells with
ALDH+CD44+α2β1

+ phenotype could form xenograft tumors
in non-obese diabetic (NOD)/SCID mice, which have impaired
T and B cell lymphocyte development (SCID mutation) and
deficient natural killer (NK) cell function (NOD background)
(Qin et al., 2012). In addition, drug resistant genes such as ATP-
binding cassette (ABC) transporter ABCG2 was used to further
purify PCSCs from CD133+CD44+CD24− population. These
purified PCSCs have increased clone and sphere formation ability
(Hirschmann-Jax et al., 2004; Pfeiffer et al., 2011; Castellon et al.,
2012). Overall, these studies suggest that both self-renewal and
drug resistance characteristics should be considered for CSC
identification.

THE ORIGIN OF PCSCs

The origin of CSCs is still controversial. There is experimental
evidence to show they could originate from normal stem cells
because CSCs share similar cell surface markers with normal
stem cells. For example, the first CSC study showed that
CD34+CD38− CSCs in AML share the same surface marker
with hematopoietic stem cells (HSCs) (Issaad et al., 1993; Petzer
et al., 1996; Bonnet and Dick, 1997). In prostate, epithelial
stem cells located in the basal layer of prostate gland have
cell surface markers such as CD44, α2β1, and CD133 (Collins
et al., 2001; Richardson et al., 2004; Garraway et al., 2010).
Interestingly, the CD44+α2β1

hiCD133+ prostate cancer cells
have been shown to be PCSCs (Collins et al., 2005). It seems that
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during carcinogenesis, normal prostate stem cells gain mutations
in oncogenes and tumor suppressor genes that drive them to
become PCSCs.

Prostate cancer stem cells can also be derived from
reprograming of differentiated cells via epithelial-mesenchymal
transition (EMT), in which epithelial cells lose their polarity and
cell–cell adhesion and gain migratory and invasive properties
of mesenchymal cells (Kong et al., 2010; Talati et al., 2015; Lee
et al., 2016). Kong et al. (2010) reported that overexpression
of platelet-derived growth factor D (PDGFD) resulted in the
loss of epithelial markers and increasing mesenchymal markers
in prostate cancer cells. These EMT transformed prostate
cancer cells have enhanced clone and sphere (prostasphere)-
forming ability in vitro and tumorigenicity in mice. They
also have increased stem-cell genes such as Sox2, Nanog,
Oct4, Lin28B, and Notch1 (Kong et al., 2010). Suppressing
DNA methyltransferase 1 (DNMT1) by 5-azacitidine (5-Aza)
in prostate cancer cells can also induce EMT and stimulate
transition of PCSCs. 5-Aza treated prostate cancer cells
showed enhanced CD133+CD44+ phenotype and prostasphere
formation ability, and elevated expression of stem cell-related
transcription factors KLF4 and Sox2 (Lee et al., 2016). Activation
of Jak2-Stat5a/b signaling promotes metastasis by inducing
EMT and stem cell properties in prostate cancer cells, as
shown by sphere formation and expression of CSC markers
BMI-1, CD44, and Sox2 (Talati et al., 2015). Recently, there
is an emerging concept that EMT represents a spectrum of
differentiation status ranging from fully epithelial to fully
mesenchymal status (Nieto et al., 2016). It is interesting to
investigate the specific EMT status that may be associated
with stem cell properties. PDGFD and 5-Aza both can induce
stemness of prostate cancer cells and expression of mesenchymal
markers but no expression of E-cadherin (Kong et al., 2010; Lee
et al., 2016); prolactin can induce the stem-like features and
an intermediate EMT phenotype, with low levels of E-cadherin
and concomitant mesenchymal features (Talati et al., 2015).
Therefore, it seems that in prostate cancer, different degrees
of EMT can be associated with stem cell properties. Overall,
the EMT transformed PCSCs might have more metastatic
potential compared to normal stem cell derived PCSCs. More
experimental evidence is needed to fully understand the origin
of PCSCs.

Prostate cancer cells can also dedifferentiate to PCSCs in
bone marrow. Nearly 80–90% of patients with prostate cancer
have bone metastasis (Petrylak et al., 2004; Tannock et al.,
2004). Although the mechanism of the tendency to metastasize
to bone is not clear, experimental evidences suggest that bone
marrow may provide a microenvironment to support PCSCs,
as it does for HSCs (Lymperi et al., 2010; Zhao and Li, 2015).
Interestingly, disseminated tumor cells (DTCs) from prostate
cancer, particularly PCSCs, can compete with HSCs to occupy
bone marrow osteoblastic niche for their maintenance (Shiozawa
et al., 2011). Shiozawa et al. (2011) performed a assay to recover
human DTCs grown in SCID mice from bone marrow. Using this
approach, they found that after intracardiac injections of non-
CSC prostate cancer cells (CD133−CD44−), the CSC population
(CD133+CD44+) was observed and accounted for approximately

35% of the total prostate cancer cells isolated from mouse
marrow. This suggests that the enrichment of CSCs is due to
the conversion of non-CSCs into CSCs. Further mechanistic
analysis showed this conversion may be regulated by osteoblastic
niche-derived GAS6 through the Mer/mTOR signaling (Shiozawa
et al., 2016). Overall, these studies suggest PCSCs can arise from
normal stem cells or from differentiated cells depending on the
context.

SELF-RENEWAL SIGNALING PATHWAYS
IN PCSCs

Wnt signaling is critical for embryonic stem cell transition
from the pluripotent state and adult stem cell self-renewal
maintenance. This raises the possibility that tightly regulated
self-renewal capability in normal stem cells mediated by Wnt
signal, could be hijacked by CSCs for malignant progress
(Holland et al., 2013). Aberrant Wnt signaling has been reported
in various tumors, including prostate cancer (Voeller et al.,
1998; Chesire et al., 2000; de la Taille et al., 2003; Takebe
et al., 2011). Prostate cancer patients have about 5% β-catenin
activation mutation rate and this rate increases to 25–38% in
metastatic and androgen-independent prostate cancer patients
(Chesire and Isaacs, 2002; de la Taille et al., 2003). Two
studies showed that the high incidence of β-catenin activation
can induce formation of PCSCs. First, Wnt3a treatment in
prostate cancer cells activated Wnt signaling and expanded
PCSC numbers and increased their sphere forming ability
in vitro (Bisson and Prowse, 2009). Second, activation of the
Wnt pathway by AR79, a glycogen synthase kinase 3 (GSK-
3) inhibitor, can increase the proportion of ALDH+CD133+
stem-like prostate cancer cells (Jiang et al., 2013). However,
certain GSK-3 inhibitors might have varying non-specific
effects, which lead to inconsistent results (Kroon et al.,
2014). Therefore, targeting Wnt signaling is critical for PCSC
treatment. Saikosaponin-d (SSd), a triterpenoid saponin derived
from bupleurum, blocks Wnt/β-catenin signaling pathway by
decreasing GSK-3β phosphorylation. SSd suppressed prostate
cancer cell growth and inhibited their migration and invasion
abilities. This was also accompanied by a reversal of the
EMT process and inhibition of CSC phenotypes (measured
by its ability to reduce tumor sphere formation and CD44
expression) (Zhong et al., 2016). In prostate cancer, PTEN
is frequently mutated, which leads to activation of PI3K/Akt
pathway that promotes PCSC maintenance and self-renewal
(Li et al., 1997; Dubrovska et al., 2009). PI3K/Akt pathway
can directly phosphorylate β-catenin at serine 552 to induce
its nuclear localization, which leads to activation of Wnt
signaling (Fang et al., 2007; He et al., 2007). Akt can
also activate Wnt signaling through phosphorylation and
inactivation of GSK-3β (Sharma et al., 2002). However, this
mechanism is not universally supported. In a traumatic brain
injury rat model, the peak time points of Akt and GSK-
3β phosphorylation are not synchronous, suggesting GSK-3β

may not be phosphorylated by Akt pathway (Zhao et al.,
2012). Moreover, simultaneous activation of Wnt/β-catenin
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and PI3K/Akt signaling is required to drive self-renewal
and expansion of HSCs (Perry et al., 2011). These findings
indicate that Wnt/β-catenin and PI3K/Akt signaling can
cooperatively promote CSC self-renewal. Thus, how to target
these two pathways simultaneously may be critical to eliminate
PCSCs.

Androgen signaling controls the growth of prostate gland
and AR plays important roles throughout the various stages
of prostate cancer (Augello et al., 2014). Interestingly, the
expression and function of AR in PCSCs are still debatable.
In many reported PCSC populations, AR expression is often
low or undetectable. For example, the CD44+α2β1

+CD133+
cells purified from human prostate tumor samples (Collins
et al., 2005), the CD44+ cells in several prostate cancer
xenografts (Patrawala et al., 2006), and the BCRP+ putative
PCSCs (Huss et al., 2005) are all AR−. However, some studies
show conflicting data. It was reported that the CD133+
cancer-initiating population and CD44+CD24− putative
PCSCs in prostate cancer cell lines are AR+ (Sharifi et al.,
2008; Vander Griend et al., 2008). Deng and Tang provide
a hypothesis that PCSCs in primary and untreated tumors
and models are mainly AR−, whereas PCSCs in castration
resistant tumors could be either AR+ or AR−/lo (Deng and
Tang, 2015). Interestingly, androgen signaling can interact
with Wnt signaling and PI3K/Akt signaling at multiple
levels (Terry et al., 2006; Lee et al., 2015). β-catenin can
directly bind to ligand-engaged AR protein to promote its
transcription activity. This binding can also facilitate the
translocation of β-catenin into the nucleus (Truica et al.,
2000; Mulholland et al., 2002; Yang et al., 2002). GSK-3β

phosphorylates AR, thereby inhibits AR-driven transcription,
which can be abrogated by the GSK-3 inhibitor LiCl (Salas
et al., 2004). Human AR gene promoter contains LEF-
1/TCF binding elements and activation of Wnt signaling
upregulates AR transcription. In contrast, Wnt activation
suppresses AR protein level by increasing phosphorylation
of Akt and its downstream target MDM2, which promotes
degradation of AR protein (Yang et al., 2006). Moreover,
AR inhibition can activate Akt signaling by reducing levels
of AKT phosphatase PHLPP in prostate PTEN-deficient
murine prostate cancer model and in human prostate
cancer xenografts (Carver et al., 2011). Overall, these findings
indicate that androgen signaling has complex crosstalk with
Wnt/β-catenin and PI3K/Akt signaling, and may enable prostate
cancer cell stemness through Wnt/β-catenin and PI3K/Akt
signaling.

The importance of Wnt/β-catenin signaling in tumors has
spurred the development of inhibitors for cancer therapy. Cell-
line studies have suggested some Wnt inhibitors exert inhibitory
effects on prostate cancer cell proliferation and several Wnt
inhibitors have been proven to be effective at inhibiting PCSCs.
PKF118-310 suppresses prostate cancer cell growth by inhibiting
β-catenin and TCF complex mediated transcription activation
(Lepourcelet et al., 2004; Lu et al., 2009). 3289–8625 suppresses
prostate cancer cell proliferation and reduces β-catenin level by
inhibiting DVL-1 which links frizzled receptors and downstream
signals (Grandy et al., 2009). Pyrvinium inhibits AR dependent

gene expression and prostate cancer cell growth, which may
result from its inhibitory effect on Wnt signaling through
potentiating casein kinase 1α (CK1α) kinase activity (Jones
et al., 2009; Thorne et al., 2010). Additionally, a study showed
niclosamide, a drug used for the treatment of tapeworm,
suppresses prostate cancer cell growth by inducing degradation
of the Wnt receptor LRP6 (Lu et al., 2011). Importantly,
DKK1 and sFRP2, two inhibitors that block Wnt signaling
by binding to Wnt receptor LRP5/6 (DKK1) or Wnt proteins
(sFRP2) (Kawano and Kypta, 2003), significantly inhibit the
self-renewal capacity of PCSCs as evidenced by their ability to
decrease prostasphere size and formation (Bisson and Prowse,
2009).

Several other signaling pathways are also implicated in PCSC
regulation. Sanchez et al. (2004) found that sonic hedgehog
(SHH) pathway components, such as GLI1, PTCH1, and SHH
are upregulated in human prostate cancer tissues compared
with normal prostatic epithelia. SHH signaling can be activated
by androgen deprivation (Chen et al., 2009). Activation of
SHH signaling supports androgen independent cell growth in
a low androgen environment and enhances therapy resistance
by increasing the level of ABC transporter (Chen et al., 2010;
Statkiewicz et al., 2014). Blocking SHH pathway with an anti-
SHH antibody or cyclopamine, a SMOH inhibitor, suppressed
prostate cell proliferation (Chen et al., 2002; Sanchez et al.,
2004). Overexpression of hedgehog leads to the formation of
PCSCs with increased metastasizing potential (Chang et al.,
2011). Darinaparsin, an organic arsenical compound with
potent antineoplastic ability (Mann et al., 2009), and Genistein,
an isoflavone with inhibitory effect on tyrosine kinases and
topoisomerase-II (Salti et al., 2000; Qin et al., 2015), can both
inhibit stemness of PCSCs and reduce tumor formation in
xenograft models through targeting SHH signaling pathway
(Zhang et al., 2012; Bansal et al., 2015).

Prostate carcinoma have high levels of TGF-β and TGF-
β receptor expression (Cardillo et al., 2000). During prostate
cancer progression, TGF-β plays an inconsistent role. During
tumor initiation, TGF-β suppresses tumor growth by inducing
apoptosis (Diener et al., 2010), while during tumor progression
TGF-β induces EMT for invasion and metastasis (Moustakas
and Heldin, 2016). This phenomenon is known as the TGF-
β paradox (Tian and Schiemann, 2009). Activation of TGF-β
signal expanded the CD44+CD24− population in prostate cancer
cells through downregulating poly r(C) binding protein (PCBP)-
1 (Chen et al., 2015), which suggested that TGF-β might regulate
PCSC maintenance.

Non-coding RNAs are also involved in regulation of PCSCs
stemness. Long non-coding RNA (lncRNA) H19 is highly
expressed in PCSCs and knockdown of H19 decreases the colony-
forming efficiency and reduces the expression of stem-cell genes
(Oct4, Sox2, and Notch1). On the other hand, overexpression
of H19 favors stemness of PCSCs (Bauderlique-Le Roy et al.,
2015). lncRNA Hotair works synchronously with PRC2 to
transcriptionally downregulate AR, leading to the increase of
the CD133+ stem cell population (Li et al., 2015). In addition,
microRNAs (miRNAs) are shown to regulate PCSCs through
several stemness-related pathways such as Wnt, Akt, and TGF-β
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pathway. Increasing β-catenin expression through decreasing
miRNA-320 in prostate cancer cells significantly increased their
tumor spheres formation and clonogenic capacity, along with an
increase in chemotherapy resistance in vitro and tumor growth in
prostate cancer xenografts (Hsieh et al., 2013). Reduced miR-708
expression enhances PCSC stemness by upregulating AKT2,
while re-expressing miR-708 suppresses the clonogenicity in vitro
and leads to tumor regression in prostate cancer xenografts (Saini
et al., 2012). MiR-128 overexpression in prostate cancer cells
inhibits clonogenic and sphere-forming activities by decreasing
stem cell regulatory factors BMI-1, Nanog, and TGFβR1 (Jin
et al., 2014).

Conceivably, these self-renewal signaling pathways could
serve as PCSC therapeutic targets in the future. However, most
of the inhibitors against self-renewal pathways have clinical side
effects and toxicities, which limit their clinical use. Since somatic
stem cell homeostatic and regenerative processes after injury also
rely on the self-renewal pathways for tissue regeneration and
stem cells maintenance, inhibitors targeting these pathways may
cause systemic toxicities (Pattabiraman and Weinberg, 2014). For
example, it is well-known that Wnt signaling is essential for the
regulation and homeostasis of intestinal stem cells (Pinto et al.,
2003). Wnt inhibitors may lead to a depletion of normal intestinal
stem cells (Kahn, 2014). Nanotechnology-based drug delivery
systems can greatly improve this situation by increasing targeting
specificity and reducing toxicities through restriction of drugs to
the immediate vicinity of the tumor.

APPLICATION OF NANOTECHNOLOGY
IN PROSTATE CANCER

Recently, nanotechnology has been extensively explored in
biomedical field to facilitate diagnosis and drug delivery for
cancer treatment (Wu et al., 2010; Liao et al., 2011). Nanoparticles
are small in size but with large surface-to-volume ratios allowing
attachment of various molecules such as drugs and antibodies,
which makes them suitable for medical use (Whitesides et al.,
1991). Currently, prostate cancer diagnosis methods in the
clinic include biochemical assays, digital rectal examination,
transrectal ultrasonography, and biopsy. Biochemical assays are
usually the first step for prostate cancer screening that examines
the serum level of prostate specific antigen (PSA) (Catalona
et al., 1991). PSA is a serine protease secreted by normal
and malignant prostatic epithelium into seminal fluid, with
minor amounts leaking into circulation in normal state, but
increased amounts are observed in prostatic cancer (Stenman
et al., 1999). According to the guidelines approved by the
US Food and Drug Administration (FDA), a concentration of
PSA > 4 ng/mL is considered as the gold standard of prostate
cancer in initial screening. However, currently used enzyme-
linked immunosorbent assay (ELISA) detection method for PSA
shows poor sensitivity and specificity, with approximately 70%
false-positive rate (Catalona et al., 1991; Bretton, 1994; Kang
B.J. et al., 2015). Various nanomaterials with unique properties
such as strong electronic, optic, and magnetic properties have
been developed for PSA detection with better sensitivity. Among

these nanotechnology-based bioassays, the most popular method
is the electrochemical assay. In this assay, PSA captured by
specific antibody alters the current that runs through carbon
nanotubes, which gives this assay a higher sensitivity and a
quicker speed than the standard ELISA method (Panini et al.,
2008; Kim et al., 2009; Pandey et al., 2012; Huang et al., 2013;
Salimi et al., 2013; Wang et al., 2013). Gold nanoparticles, with
high surface area to volume ratio allowing more antibodies
loading, can significantly improved PSA detection sensitivity in
both serum (Thaxton et al., 2009) and urine samples (Yuhi
et al., 2006). Besides PSA, other biomarkers such as prostate
specific membrane antigen (PSMA), PF-4, IL-6, and ANXA3
can also be used for prostate cancer diagnosis, which have been
tested using nanomaterials (Chikkaveeraiah et al., 2009; Kim
et al., 2013). miRNAs are expressed in a tissue- and function-
specific manner and are protected from nuclease degradation in
the bloodstream. This makes them new candidate biomarkers
for detecting cancers (Lu et al., 2005; Mitchell et al., 2008).
MiR-141, with an elevated level in the blood of patients having
metastatic prostate cancer (Mitchell et al., 2008), can be detected
by a polymer-based nanomaterial (Tran et al., 2013). Another
interesting study used spherical gold nanoparticle-nucleic acid
conjugates to develop a microRNA array system for detection
of microRNA profiles in prostate cancer samples. Through this
system, they found several differentially expressed microRNAs
(miR-200c,−21,−210,−205,−20a,−143∗,−143, and−16) that
can be used as biomarkers (Alhasan et al., 2012).

Despite many chemotherapeutic agents show promising
results in preclinical settings, their application in clinic often
meets limitations largely due to inefficient bioavailability.
Nanotechnology can improve drug bioavailability by developing
a variety of nanoparticles that encapsulate anti-tumor drugs and
release drugs in a controlled and time-dependent manner. Green
tea polyphenol epigallocatechin-3-gallate (EGCG) can induce
apoptosis of prostate cancer cells (Stuart et al., 2006). A polylactic
acid-polyethylene glycol nanoparticle that encapsulated EGCG
showed better pro-apoptotic and angiogenesis-inhibitory effects
in vitro and larger inhibitory effect on prostate tumor growth
in xenograft mice model than the non-encapsulated EGCG
(Siddiqui et al., 2009). Camptothecin (CPT) is a pentacyclic
alkaloid with a wide spectrum of anti-cancer activities, but is
poorly soluble and has a fast degradation rate. CPT encapsulated
β-cyclodextrin-nanosponges has been reported to improve the
inhibitory effect on prostate cancer cell growth (Gigliotti et al.,
2016). Besides improving bioavailability, nanotechnology can
also specifically deliver chemotherapeutic agents to cancer cells
without damaging the healthy cells. This targeted delivery is
achieved by conjugating antibodies against tumor antigens to
nanoparticles. In prostate cancer, PSMA and prostate stem cell
antigen (PSCA) are the mostly used conjugated antibodies,
both of which are highly expressed in prostate cancer cells
(Reiter et al., 1998; Ghosh and Heston, 2004). The unique
magnetic properties of some nanomaterials can be utilized in
real-time monitoring of drug distribution. Nanoparticles that
contain anti-tumor drugs and targeting ligands/antibodies can
be coupled with the real-time imaging for the quantification of
targeting efficiency. These reagents are defined as theranostic
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nanomedicine (Cherian et al., 2014). For example, PSMA targeted
and PSCA targeted docetaxel-loaded superparamagnetic iron
oxide (SPIO) nanoparticles can be efficiently internalized in
prostate cancer cells and exhibit a higher inhibitory effect on
cell survival compared with free docetaxel in prostate cancer
cells. The distribution of these nanoparticles in cells can be
visualized because SPIO is a kind of magnetic resonance imaging
(MRI) contrast agent (Ling et al., 2011; Nagesh et al., 2016).
Abdalla et al. (2011) engineered an iron oxide nanoparticle that
targeted the drug noscapine (Nos) to tumors using urokinase
plasminogen activator (uPA), a natural ligand for uPA receptor
(uPAR) that is highly expressed by prostate cancer cells. The
uPAR-targeted Nos-loaded iron oxide nanoparticles enhance the
inhibitory effect of noscapine on prostate cancer cell growth and
maintain their T2 MRI contrast effect upon internalization into
tumor cells (Abdalla et al., 2011).

To date, nanotechnology has been applied to destroy PCSCs
(Table 1). Nanoparticles loaded with self-renewal pathway
inhibitors are designed in order to inhibit stemness of PCSCs.
The clinical use of cyclopamine, a hedgehog inhibitor, is
limited by its high hydrophobicity, systemic toxicity and poor
pharmacokinetics (Lipinski et al., 2008). N-(2-hydroxypropyl)
methacrylamide (HPMA) copolymers are great drug carriers
with the advantage of increased solubility, prolonging circulation
time and improved pharmacokinetic profiles of small molecule
drugs (Kopecek and Kopeckova, 2010; Zhou and Kopecek,
2013). HPMA copolymer-cyclopamine conjugate treatment
significantly decreased prostasphere forming capacity and
percentage of CD133+ PCSC enriched population in PC3 and
RC-92a/hTERT prostate cancer cells. RC-92a/hTERT cells are
human prostate cancer epithelial cells transduced to express
human telomerase reverse transcriptase, and exhibit high
levels of CD133 (Miki et al., 2007). In vivo experiment showed
that HPMA copolymer-cyclopamine conjugate administration
reduced tumor volume in PC3 tumor xenograft nude mice.
Moreover, combination of HPMA copolymer-cyclopamine
conjugate and HPMA copolymer-docetaxel conjugate led
to significantly reduced tumor volume over single drug
administration (Zhou et al., 2012, 2013). HPMA copolymer-
GDC-0980 (PI3K/mTOR inhibitor) conjugate treatment can
also decrease the percentage of CD133+ cells and the number
of prostaspheres in PC3 cells. In PC3 tumor xenograft model,
administration of HPMA copolymer-GDC-0980 conjugate
could prolong survival slightly, and combination use of HPMA
copolymer-GDC-0980 conjugate and HPMA copolymer-
docetaxel conjugate led to significantly prolonged survival
compared with either of the single treatments (Zhou et al.,
2015). Yang et al. (2016) synthesized poly(ethylene glycol)-block-
poly(2-methyl-2-carboxyl-propylene carbonate) (mPEG-b-PCC)
for loading cyclopamine and paclitaxel, respectively. Both
the cyclopamine and paclitaxel loaded nanoparticles can
release drugs slowly and inhibit colony-forming ability of
paclitaxel resistant PC3 cells. Administration of either of the
two nanoparticles to PC3 tumor xenograft nude mice can lower
tumor growth. Significant tumor inhibition was observed in
mice treated with the combination of cyclopamine and paclitaxel
loaded nanoparticles (Yang et al., 2016). These studies suggest

combination therapy targeting both CSCs and bulk tumor cells
is a promising approach to improve the therapeutic benefit
against prostate cancer. Cis-dichlorodiamminoplatinum (II)
(CDDP) is a highly effective anti-tumor agent toward a variety of
tumor types. Jafari Malek et al. (2014) generated CDDP loaded
glyconanoparticles using hyaluronic acid (HA), the endogenous
substrate for CD44. These CDDP loaded glyconanoparticles led
to a significant reduction of clonogenicity and sphere formation
capacity of prostate cancer DU145 and PC3 cells (Jafari Malek
et al., 2014). Alongside the drugs conjugated to nanoparticles,
some materials themselves can exert anti-tumor functions. An
interesting study found graphene oxide effectively inhibited
sphere formation not only in PC3 prostate cancer cells, but
also in SKOV3 ovarian cancer cells, U87 glioblastoma cells,
A549 lung cancer cells, and MIA-PaCa-2 pancreatic cancer
cells, highlighting its efficacy against CSCs across different
cancer types. Graphene oxide exerts this effect by inducing CSC
differentiation through blocking several key signaling pathways
including Wnt, Notch, and STAT (Fiorillo et al., 2015).

CHALLENGES AND PERSPECTIVES

There is a significant and rapid advancement in our knowledge
of PCSCs and their role in prostate cancer initiation and
progression. We can target PCSCs through their self-renewal
pathways, such as Wnt signaling. Several inhibitors such as DKK1
and sFRP2 for Wnt signaling are effective at inhibiting PCSC
self-renewal (Bisson and Prowse, 2009). However, their potential
adverse effects on normal stem cell self-renewal and tissue
homeostasis are a serious concern. More effective drug delivery
system is urgently needed. The application of nanotechnology-
based drug delivery such as nanoparticle capsules can improve
PCSC targeting specificity and reduce side effects by restricting
drugs to tumors and their surrounding areas.

Targeted delivery of drugs to CSCs without damaging
normal stem cells is challenging because of shared cell surface
markers. A variety of drug-loaded nanoparticles conjugated
with antibodies to these markers (CD44, CD133, and ABCG2)
have been developed that improve the drug delivery efficiency
to CSCs in colon cancer (Bourseau-Guilmain et al., 2012),
breast cancer (Swaminathan et al., 2013), and multiple myeloma
(Yang et al., 2014). Some nanomaterials with photo-thermal
properties, such as single-walled carbon nanotubes (SWNTs),
can be used for thermal destruction of glioblastoma stem-
like cells when conjugated with CD133 antibody (Wang et al.,
2011). Nanomaterials like HA, which has high CD44-binding
efficacy, can deliver drugs to CD44-expressing CSCs (Wei et al.,
2013). However, it is unknown whether these CSC-targeted
nanoparticles will have toxic effects on normal stem cells. One
possible solution is to identify markers with specific expression
on CSCs but not on normal stem cells.

Since, CSCs and normal stem cells often share the same self-
renewal pathways, identifying and targeting the key signaling
involved in CSCs but not in normal stem cells is a promising
strategy. Kang X. et al. (2015) found that Leukocyte-associated
immunoglobulin-like receptor 1 (LAIR1) deficiency exhausts
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TABLE 1 | Summary of nanosystems used in PCSC research.

Nanomaterial Drug Experimental subject Effect Reference

HPMA Cyclopamine RC-92a/hTERT and PC3 cell lines In vitro: sphere-forming capacity↓
percentage of CD133+ population↓

Zhou et al., 2012, 2013

PC3 tumor xenograft nude mice In vivo: tumor growth↓

HPMA GDC-0980 PC3 cell line In vitro: sphere-forming capacity↓
percentage of CD133+ population↓

Zhou et al., 2015

PC3 tumor xenograft nude mice In vivo: mouse survival↑

mPEG-b-PCC Cyclopamine Paclitaxel resistant PC3 cell line In vitro: colony-forming capacity↓ Yang et al., 2016
Paclitaxel PC3 tumor xenograft nude mice In vivo: tumor growth↓

HA CDDP DU145 and PC3 cells lines In vitro: sphere-forming capacity↓
colony-forming capacity↓

Jafari Malek et al., 2014

GO PC3 cell line In vitro: sphere-forming capacity↓ Fiorillo et al., 2015

CDDP, cis-dichlorodiamminoplatinum (II); GO, graphene oxide; HA, hyaluronic acid; HPMA, N-(2-hydroxypropyl) methacrylamide; mPEG-b-PCC, poly(ethylene glycol)-
block-poly(2-methyl-2-carboxyl-propylene carbonate).

FIGURE 1 | Schematic illustration of nanotechnology-based therapy for prostate cancer. Prostate cancer epithelial cell (PCEC) targeting nanoparticles are
conjugated with antibodies against PCEC surface markers and contain traditional chemotherapeutic drugs. PCSC targeting nanoparticles are conjugated with
antibodies against PCSC surface markers and contain self-renewal signaling pathway inhibitors. Combination use of the nanotechnology-based standard
chemotherapy and PCSC specific chemotherapy can eradicate the bulk of the tumor cells and PCSCs at the same time, thus may be the most efficacious treatment
for prostate cancer.

mouse AML stem cells, but does not affect normal hematopoiesis.
This discovery provides hope that there may likewise be
similar pathways in PCSCs. The hypoxia-inducible factor (HIF)
pathway may be one of such pathways in prostate cancer.
HIF signaling is elevated in PCSC population and promotes

stemness and self-renewal of PCSCs (Ma et al., 2011; Marhold
et al., 2015). Considering hypoxia often presents in the tumor
microenvironment instead of the normal state, targeting HIF
signaling may inhibit PCSCs without damaging normal stem
cells.
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Overall, there has been much advancement in the field
of nanotechnology for prostate cancer treatment. Various
approaches have been developed to specifically target PCSCs.
In the future, more nanotechnology-based therapeutic strategies
are urgently needed to target self-renewal pathways of PCSCs.
Wnt signaling with its critical role in PCSCs and existence of
a variety of small-molecule inhibitors is an attractive target.
Moreover, additional studies are still needed to investigate the
specific markers and pathways involved in PCSCs. By targeting
these markers and pathways, nanoparticles may avoid the toxic
effects on normal stem cells. It should also be noted that targeting
the PCSC alone may not be enough to eliminate tumor and
combination of a standard chemotherapy and a PCSC specific
chemotherapy may be the most efficacious treatment for prostate
cancer (Figure 1). Based on the studies mentioned in our review,
it is apparent that nanotechnology-based methods holds great

potential for the targeted destruction of PCSCs and may lead to
significant patient benefit.
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