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Statins are efficient cholesterol-lowering medicines utilized worldwide. However, 10% of
patients suffer from adverse effects specially related to skeletal muscle function. Pro- or
anti-oxidant effects of statins have been reported. Here we hypothesized that statins
induce muscle mitochondrial oxidative stress leading to mitochondrial permeability
transition (MPT) which may explain statin muscle toxicity. Thus, our aims were to
investigate the effects of statin chronic treatment on muscle mitochondrial respiration
rates, MPT and redox state indicators in the context of hypercholesterolemia. For
this purpose, we studied muscle biopsies of the hypercholesterolemic LDL receptor
knockout mice (LDLr−/−) treated with pravastatin during 3 months. Plantaris, but not
soleus muscle of treated mice showed significant inhibition of respiration rates induced
by ADP (–14%), oligomycin (–20%) or FCCP (–40%). Inhibitions of respiratory rates
were sensitive to EGTA (Ca2+ chelator), cyclosporin A (MPT inhibitor), ruthenium red
(inhibitor of mitochondria Ca2+ uptake) and coenzyme Q10 (antioxidant), indicating that
pravastatin treatment favors Ca2+ induced MPT. Diet supplementation with creatine
(antioxidant) also protected treated mice against pravastatin sensitization to Ca2+

induced MPT. Among several antioxidant enzymes analyzed, only catalase activity was
increased by 30% in plantaris muscle of pravastatin treated mice. Oxidized lipids, but not
proteins biomarkers were identified in treated LDLr−/− plantaris muscle. Taken together,
the present results suggest that chronic pravastatin administration to a model of familial
hypercholesterolemia promotes mitochondrial dysfunctions in plantaris muscle that can
be counteracted by antioxidants administered either in vitro (CoQ10) or in vivo (creatine).
Therefore, we propose that inhibition of muscle mitochondrial respiration by pravastatin
leads to an oxidative stress that, in the presence of calcium, opens the permeability
transition pore. This mitochondrial oxidative stress caused by statin treatment also
signals for cellular antioxidant system responses such as catalase upregulation. These
results suggest that the detrimental effects of statins on muscle mitochondria could be
prevented by co-administration of a safe antioxidant such as creatine or CoQ10.

Keywords: pravastatin, muscle mitochondria, mitochondrial permeability transition, catalase, LDL receptor
knockout mice
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INTRODUCTION

Statins are fungal-derived or synthetic cholesterol-lowering
medicines that act by inhibiting 3-hydroxy-3-methylglutaryl
coenzyme-A (HMG-CoA) reductase, the rate-limiting
enzyme in cholesterol synthesis (Endo, 1992; Tobert,
2003). These medicines are the most commonly prescribed
worldwide and represent the primary treatment strategy for
hypercholesterolemia and prevention of mortality related to
atherosclerosis (Naci et al., 2013). In addition to lowering plasma
cholesterol levels, statins are claimed to exhibit pleiotropic
effects that include an antioxidant action (Carneado et al., 2002;
Wassmann et al., 2002; Manfredini et al., 2010). Therefore,
it has been suggested that statins could also have beneficial
effects in the treatment of oxidative stress associated diseases
such as metabolic syndrome, sepsis, neurological conditions
and even tumors (Dobesh and Olsen, 2014; Malfitano et al.,
2014; Vallianou et al., 2014). On the other hand, approximately
10% of the patients under statin treatment develop a variety of
muscle symptoms including myalgia, muscle cramps, and rarely
rhabdomyolysis (Bruckert et al., 2005).

While inhibiting cholesterol synthesis, statins also inhibit the
production of ubiquinone (CoQ10) and other intermediaries
including dolichol and isoprenoids (Sirvent et al., 2008). CoQ10
is a component of the electron transport chain and also
displays antioxidant properties in its reduced form (ubiquinol).
Although the molecular mechanisms underlying statin-induced
myotoxicity are not yet fully understood, a common hypothesis
suggests that it is mediated by inhibition of mitochondrial
respiration as a consequence of CoQ10 depletion (Päivä et al.,
2005; Bookstaver et al., 2012; Larsen et al., 2013). In addition,
previous studies propose that statins cause cell death associated
with alterations in calcium homeostasis, inhibition of beta-
oxidation, inhibition of mitochondrial respiratory complexes I
and II followed by mitochondrial oxidative stress (Kaufmann
et al., 2006; Oliveira et al., 2008; Costa et al., 2013; La
Guardia et al., 2013) and also inhibition of complex III (Schirris
et al., 2015). We have previously shown that statins stimulate
Ca2+ induced mitochondrial permeability transition (MPT)
in mitochondria isolated from murine liver and muscle, and
from mice treated with lovastatin (Velho et al., 2006). Ca2+

and reactive oxygen species (ROS) act synergistically in the
mechanism of MPT, a non-specific permeabilization of the inner
mitochondrial membrane that (Kowaltowski et al., 2000) triggers
cell death under a variety of pathological conditions or drug
toxicity (Vercesi et al., 2006; Rasola and Bernardi, 2011; Javadov
and Kuznetsov, 2013). The close localization of mitochondria and
the endoplasmic reticulum (ER) in situ (Hajnóczky and Csordás,
2010) allows for rapid Ca2+ uptake by mitochondria from the
ER microdomains. The existence of a redox controlled cross talk
between mitochondria and the ER involving NADPH oxidases
has been described (Dikalov, 2011). These redox interactions may
control MPT and the execution of Ca2+ signaling for cell death
(Figueira et al., 2013).

Sacher et al. (2005) reported that simvastatin and lovastatin
activate the mitochondrial pathway of apoptosis in primary
cultures of human skeletal muscle obtained from healthy

individuals. We have further investigated the mechanisms of cell
death induced by simvastatin in PC3 prostate cancer cells that
underwent necrosis, in a manner sensitive to cyclosporine A
(CsA), an MPT inhibitor. The necrotic cell death was preceded
by increased cytosolic free Ca2+ concentration, ROS generation,
inhibition of respiration and mitochondrial membrane potential
disruption (Oliveira et al., 2008). Kwak et al. (2012) showed
that simvastatin impairs ADP-stimulated respiration at the
level of complex I, increases ROS generation and induces
apoptosis in human skeletal muscle primary culture. We
have also shown that in rat soleus muscle fibers incubated
with simvastatin, the content of CoQ10 was reduced by 40%
and addition of CoQ10 in these muscle biopsies prevented
the inhibition of respiration at complex I and II levels and
MPT, via free radical scavenging properties (Deichmann et al.,
2010; La Guardia et al., 2013). Therefore, findings regarding
statins redox effects are controversial and include antioxidant
(Carneado et al., 2002; Wassmann et al., 2002; Manfredini
et al., 2010; Zhou and Liao, 2010) and pro-oxidant actions
(Velho et al., 2006; Oliveira et al., 2008; Kwak et al., 2012;
La Guardia et al., 2013). In line with our previous works,
here we hypothesized that statins induce muscle mitochondrial
oxidative stress, which increases susceptibility to MPT. Thus, our
aims were to investigate the effects of statin chronic treatment
on muscle mitochondrial respiration rates, MPT and redox
state indicators in the context of hypercholesterolemia. For this
purpose, we used the mouse model that mimics the human
disease familial hypercholesterolemia, since statins are used to
treat specifically genetic hypercholesterolemic patients. We also
chose a therapeutic dose of a hydrophilic statin (pravastatin) and
two types of muscles predominantly aerobic (soleus) or anaerobic
(plantaris) as target tissues.

MATERIALS AND METHODS

Animals and Reagents
LDL receptor knockout mice (LDLr−/−) founders were
purchased from Jackson Laboratory (Bar Harbor, ME) and the
breeding colony was maintained at the Universidade Estadual
de Campinas (CEMIB-Unicamp), Campinas, Brazil. LDLr−/−

mice had access to standard laboratory rodent chow (AIN 93M,
PragSoluções, SP, Brazil), and water ad libitum and were housed
at 22 ± 2◦C on a 12h light-dark cycle. This study was performed
in accordance with the Guide for the Care and Use of Laboratory
Animals published by National Academy of Sciences and with
the approval of University Committee for Ethics in Animal
Experimentation (protocol # 3401-1). Chemicals were purchased
from Sigma (St. Louis, MO, USA).

Pravastatin Treatment and Creatine
Supplementation
Thirty-day-old male LDLr−/− mice received pravastatin sodium
(Medley) diluted in the drinking water (400 mg/L) during 2 or
3 months according to Lorza-Gil et al. (2016). The estimated
pravastatin dose of 40 mg/Kg body weight per day was based on
average consumption rate measurements (3.5 mL/day). Controls
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received filtered tap water without pravastatin. Additional groups
of mice were treated with 2% creatine supplemented into
standard diet (AIN 93M, PragSoluções, SP, Brazil) without
alteration of total calories during the last 15 days of pravastatin
treatment.

Plasma Cholesterol Analysis
Blood samples were collected with heparin from LDLr−/− mice
tail between 8 and 9 am after a 12-h fasting. Samples were
centrifuged and plasma was utilized for cholesterol measurement
using a standard commercial kit (Roche Diagnostics) according
to the manufacturer’s instructions. Plasma cholesterol levels in
pravastatin treated LDLr−/− mice were significantly reduced
compared to untreated mice (437± 57 vs. 390± 36, respectively,
P < 0.05).

Skeletal Muscle Sample Preparation
Plantaris and soleus muscles were harvested from LDLr−/−

mice and placed on ice-cold buffer containing 10 mM Ca-EGTA
buffer (2.77 mM of CaK2EGTA + 7.23 mM of K2EGTA, free
concentration of calcium 0.1 mmol/L), 20 mmol/L imidazole,
50 mmol/L K+/ 4-morpholinoethanesulfonic acid, 0.5 mmol/L
dithiothreitol, 7 mmol/L MgCl2, 5 mmol/L ATP, 15 mmol/L
phosphocreatine, pH 7.1. Individual fiber bundles from three
to 5 mg of soleus or plantaris skeletal muscle were separated
with forceps. Samples were permeabilized in ice-cold buffer
containing saponin (50 µg/mL) during 30 min, gently stirred and
washed three times with MiR05 medium (60 mmol/L potassium
lactobionate, 0.5 mmol/L EGTA, 3 mmol/L MgCl2, 20 mmol/L
taurine, 10 mmol/L KH2PO4, 20 mmol/L HEPES, 110 mmol/L
sucrose, 1 g/L BSA, pH 7.1) at 4◦C. Samples were dried with filter
paper and weighted (Kuznetsov et al., 2008; La Guardia et al.,
2013).

Oxygen Consumption
Oxygen consumption was evaluated in permeabilized skeletal
muscle according to Kuznetsov et al. (2008) and La Guardia
et al. (2013) with slight modifications. Permeabilized tissues
were added to MiR05 medium without EGTA containing Ca2+

(4.4 µM) at 37◦C supported with 10 mM glutamate plus 5 mM
malate in a high-resolution oxygraph OROBOROS (Innsbruck,
Austria). ADP (400 µM), oligomycin (0.63 µM), and FCCP
(0.6 µM) were added during the experiments. Some analyses were
evaluated in the presence of EGTA (500 µM), CsA (0.83 mM),
ruthenium red (1 µM) or coenzyme Q10 (10 µM). Figure 1A
shows the typical experimental respiratory profile.

Tissue Preparation and Enzymatic
Activities
Plantaris and soleus muscles were harvested from LDLr−/− mice
and homogenized in 9 volumes (1:10, w/v) of 20 mM sodium
phosphate buffer, pH 7.4 containing 140 mM KCl. Homogenates
were centrifuged at 1000 × g for 10 min at 4◦C for nuclei
and cell debris removal (Evelson et al., 2001). The pellet was
discarded and the total supernatant was used for enzymatic
activity determination.

Glutathione peroxidase, glutathione reductase, superoxide
dismutase and peroxiredoxin were determined according to
Wendel (1981), Carlberg and Mannervik (1985), Marklund
(1985), and Kim et al. (2005), respectively. Catalase activity
was analyzed by measuring the absorbance decrease at 240 nm
according to Aebi (1984) and one unit (U) of the enzyme is
defined as the metabolization of 1 µmol of H2O2 per min. The
specific activity was calculated and expressed as U/mg protein.
The activity of aconitase was measured according to Morrison
(1954), following the reduction of NADP+ at wavelengths
of excitation and emission of 340 and 466 nm, respectively.
Aconitase activity was expressed as nmol NADPH/min/mg
protein. Protein content was measured according to Lowry et al.
(1951) using bovine serum albumin as standard.

Reverse Transcriptase (RT)-qPCR
Catalase mRNA expression was quantified by RT-qPCR
using GAPDH housekeeping gene to normalize each sample.
Plantaris muscles were harvested from LDLr−/− mice, total
RNA was extracted using TRIzol (Thermo Fisher Scientific)
following manufacturer’s instructions. Total RNA was used as
template for cDNA synthesis in a reaction with oligo(dT)18
primer (Exxtend Biotecnologia) and SuperScript III Reverse
Transcriptase (Thermo Fisher Scientific) at 50◦C for 60 min.
The enzyme was then inactivated at 70◦C for 15 min. Real-time
PCR was performed on a Rotor Gene system (Qiagen, Hilden,
Germany) using Rotor Gene SYBR Green PCR kit (Qiagen)
and the following cycling conditions: 95◦C for 5 s and 60◦C
for 10 s. Data acquisition was performed during the annealing
step at 60◦C. Primers used in qPCR were as follows: CAT
(98 bp), 5′ GTTGAACGAGGAGGAGAGG 3′ (forward) and
3′ GTGAAATTCTTGACCGCTTTC 5′ (reverse); GAPDH
(175 bp), 5′ GCACCACCAACTGCTTAGC 3′ (forward) and 3′
ATGCAGGGATGATGTTCTGG 5′ (reverse). CAT and GAPDH
mRNA quantification was performed twice in N = 5 animals
from each group. Data were analyzed using the Delta CT method
of Rotor Gene Q series Software and catalase relative mRNA
expression levels were obtained by normalizing against the level
of GAPDH from the same sample and conditions. Efficiencies
of CAT and GAPDH qPCRs were 1.00 and 0.90, respectively.
Standard curves were prepared for each run using known
quantities of pGEM-T-easy plasmids (Promega) containing CAT
and GAPDH genes.

Sulfhydryl Content
Protein oxidative damage was evaluated by sulfhydryl content
measurement according to Aksenov and Markesbery (2001).
The reduction of 5,5′-dithio-bis (2-nitrobenzoic acid (DTNB)
by thiols present in the sample generates a yellow compound
(TNB) whose absorption is measured spectrophotometrically at
412 nm. Briefly, 30 µL of 10 mM DTNB and 980 µL of PBS
were added to 50 µL muscle supernatant followed by a 30 min
incubation at room temperature in the dark. The absorption
measured was proportional to the amount of thiol groups present
in the sample. Results were calculated as nmol TNB/mg of
protein.
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FIGURE 1 | Pravastatin treatment inhibits oxygen consumption by plantaris muscle from LDLr−/− mice in the presence of Ca2+. Respiration was
evaluated in a medium MiR05 at 37◦C containing 10 mM glutamate plus 5 mM malate as substrates in the presence of Ca2+ (4.4 µM). ADP (400 µM), oligomycin
(0.63 µM), and FCCP (0.6 µM) were added during the experiments. Representative traces of plantaris respiration where O2 concentration (blue line) is expressed as
nmol O2/mL and O2 flux per mass (red line) is expressed as ρmol O2/s. mg tissue (A). Bar graphs show plantaris (B) and soleus muscle (C) from LDLr−/− mice
treated or not with pravastatin (40 mg/Kg/day). Values are means ± standard deviation and are expressed as ρmol O2/s. mg tissue. ∗P = 0.0103, ∗∗P = 0.0442,
∗∗∗P = 0.0004 compared to control (Student’s t-test). N = 7–9, at least seven independent experiments.

Electrospray Ionization High Resolution
Mass Spectrometry (ESI-HRMS) Analysis
Plantaris muscles were removed from LDLr−/− mice and rapidly
homogenized with a methanol:H2O (50:50) solution under
sonication. Resulting homogenates were filtered through a 0.22
µm nylon membrane; 10 µL of the filtrate were further diluted
in methanol:H2O (50:50) solution containing 0.1% formic acid

to a final volume of 1 mL. Samples were directly infused in an
ESI-LTQ-XL Orbitrap Discovery instrument (Thermo Scientific,
Bremen, Germany). Typical operating conditions were as follows:
sheath gas at 10 arbitrary units, 4.5 kV and m/z range of 50–1000
in the positive ion mode. Structural elucidation was carried
out using mass accuracy as the main parameter, with a mass
shift (error) less than 2 ppm. Spectral data were submitted to
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a partial least squares discriminant analysis (PLS-DA) using
MetaboAnalyst 3.0 (Xia et al., 2015) to identify markers for
each condition. Data normalization was performed using log
transformation and range scaling. The selected ions were then
researched in the Lipid Maps database, where oxidized species
were identified.

Statistical Analysis
Results are presented as mean ± standard deviation of at least
eight mice Data were analyzed using one-way analysis of variance
(ANOVA) followed by the post hoc Tukey’s multiple comparison
test when F was significant. The Student’s t-test for unpaired
samples was also used for two-means comparisons. Differences
between groups were rated significant at P < 0.05. All analyses
were carried out using the GraphPad software.

RESULTS

Inhibition of Respiration Supported by
Site I Substrates in Plantaris Muscle
Biopsies from LDLr−/− Mice Treated with
Pravastatin
In order to investigate the effects of pravastatin chronic treatment
on mitochondrial respiration of soleus and plantaris muscle,
LDLr−/− mice received pravastatin (40 mg/kg/day) added to
the drinking water during 3 months. Oxygen consumption
supported by 10 mM glutamate plus 5 mM malate was evaluated
in the presence of Ca2+ (4.4 µM) with the addition of
ADP (400 µM), oligomycin (0.63 µM), and FCCP (0.6 µM)
during the experiments. Figure 1A shows typical traces of
mitochondrial respiration rates in all conditions. Figure 1B
shows that pravastatin treatment promoted significant inhibition
of mitochondrial respiration in all states: phosphorylating (ADP),
resting (oligomycin) and maximal (FCCP) respiration rates of
plantaris muscle in the presence of Ca2+. The inhibitions were
14, 24, and 40% for ADP-, oligomycin- and FCCP- stimulated
respiration, respectively [n = 8; P = 0.0103; P = 0.0442;
P = 0.0004]. The lower rate of FCCP-induced respiration
compared to ADP-induced respiration is in agreement with
recent data (Ruas et al., 2016) showing that oligomycin treatment
previous to FCCP addition leads to an underestimation of
maximal respiratory capacity induced by FCCP. In contrast to
plantaris, no significant alterations of oxygen consumption rates
were observed in soleus muscle (Figure 1C). Furthermore, no
differences in oxygen consumption were observed in plantaris
after only 2 months of pravastatin treatment (data not shown).

Pravastatin-Induced Inhibition of
Mitochondrial Respiration Is Dependent
on Mitochondrial Permeability Transition
Pore (PTP) Opening
Considering that Ca2+ is essential for PTP opening (Hunter et al.,
1976; Kowaltowski et al., 2001), and that toxic effects of statins
have been associated with alterations in calcium homeostasis

(Sirvent et al., 2005b; Sirvent et al., 2012), our next step was to
investigate the role of Ca2+ on oxygen consumption of plantaris
muscle of LDLr−/− mice. For this purpose, the Ca2+ chelator
EGTA, ruthenium red (a mitochondrial Ca2+ uptake inhibitor)
or cyclosporin A (CsA, a permeability transition inhibitor) were
added in the reaction medium before oxygen consumption
measurements. Figure 2 shows that all these compounds fully

FIGURE 2 | Pravastatin treatment does not inhibit oxygen
consumption in the presence of EGTA, cyclosporin A or ruthenium red
in permeabilized plantaris muscle of LDLr−/− mice. Respiration was
evaluated in a medium MiR05 at 37◦C containing 10 mM glutamate plus
5 mM malate as substrates in the presence of 500 µM EGTA (A), 0.83 mM
cyclosporin A (B) or 1 µM ruthenium red (C) in plantaris muscle from LDLr−/−

mice treated or not with pravastatin (40 mg/Kg/day). ADP (400 µM),
oligomycin (0.63 µM) and FCCP (0.6 µM) were added during the
experiments. Values are means ± standard deviation and are expressed as
ρmol O2/s. mg tissue. No significant difference was observed. N = 10–12, at
least ten independent experiments.

Frontiers in Pharmacology | www.frontiersin.org 5 April 2017 | Volume 8 | Article 185

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00185 April 3, 2017 Time: 14:45 # 6

Busanello et al. Pravastatin-Induced Mitochondrial Membrane Permeability Transition

reversed the mitochondrial respiration inhibition in plantaris
muscle of pravastatin treated LDLr−/− mice.

Both Creatine and Coenzyme Q10
Prevented Mitochondrial Respiratory
Inhibition Induced by Pravastatin
Creatine acts directly as antioxidant (Lawler et al., 2002). In
addition, creatine supplementation acts on ATP/ADP ratio

maintenance due to creatine kinase (CK) activation and CK is
part of the protein complex that is involved in MPT regulation
(Kowaltowski et al., 2001; Dolder et al., 2003; Meyer et al.,
2006). Therefore, we supplemented LDLr−/− mouse chow diet
with 2% of creatine during the last 15 days of pravastatin
treatment. Figure 3A shows that creatine diet supplementation
prevented the inhibitory action of pravastatin on ADP- and
FCCP-stimulated oxygen consumption in the presence of Ca2+

in plantaris muscle of LDLr−/− mice [n= 10; P < 0.05].

FIGURE 3 | Inhibition of oxygen consumption in the presence of Ca2+ is prevented by creatine (A) or Coenzyme Q10 (B) in plantaris muscle of LDLr−/−

mice treated with pravastatin (40 mg/kg/day). Respiration was evaluated in a medium MiR05 at 37◦C containing 10 mM glutamate plus 5 mM malate as substrates
in the presence of Ca2+ (4.4 µM). ADP (400 µM), oligomycin (0.63 µM), and FCCP (0.6 µM) were added during the experiments. Coenzyme Q10 (CoQ10, 10 µM)
was added in the reaction medium before the biopsies. Values are means ± standard deviation and are expressed as ρmol O2/s. mg tissue. ∗P < 0.05 compared to
control (One-Way ANOVA). N = 9–12, at least nine independent experiments.
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CoQ10, which was previously reported by us to protect against
mitochondrial dysfunction caused by simvastatin in rat soleus
muscle (La Guardia et al., 2013), also showed the same protective
effect under the experimental in vitro conditions of mouse
mitochondrial phosphorylation (ADP) and maximal respiration
(FCCP) rates [n= 10; P < 0.05] (Figure 3B).

Pravastatin Treatment Upregulates
Catalase Activity and Induces Lipid
Oxidation in Plantaris Muscle
Considering that several studies claim an antioxidant activity of
statins due to upregulation of antioxidant defenses (Carneado
et al., 2002; Wassmann et al., 2002; Manfredini et al., 2010;
Zhou and Liao, 2010), we investigated the activity of antioxidant
enzymes in muscle of LDLr−/− mice. Figure 4A shows that
pravastatin treatment increased catalase activity up to 30%
in plantaris muscle homogenates. In addition, creatine diet
supplementation abolished the differences in catalase activity
between control and pravastatin treated mice [n = 5, P < 0.05].
This increase is probably the consequence of a pravastatin effect
at a post-transcriptional step or on the enzymatic catalysis,
since catalase mRNA expression levels were not altered in
LDLr−/− mice muscle (Figure 4B). On the other hand,
pravastatin treatment caused no differences in superoxide
dismutase, glutathione reductase, glutathione peroxidase,
peroxiredoxin and glucose-6-phosphate dehydrogenase
activities either in plantaris or in soleus muscle (data not
shown).

To verify that ROS production may occur due to pravastatin
treatment, we investigated the presence of oxidized lipids in
LDLr−/− mice. Using electrospray ionization high-resolution
mass spectrometry analysis and a lipidomics approach, we
identified oxidized lipid markers, especially phosphatidic acid
and derivatives of arachidonic acid in plantaris muscle of
LDLr−/− mice under pravastatin treatment (Table 1).

To further investigate possible oxidative damage on other
cellular components, we evaluated aconitase activity, a ROS-
susceptible enzyme (Tretter and Adam-Vizi, 2000), and total
sulfhydryl content, a protein oxidative damage marker in

plantaris muscle of LDLr−/− mice. Both oxidative stress markers
were not altered, suggesting that oxidative damage to proteins
is probably not occurring in plantaris muscle of LDLr−/− mice
under pravastatin treatment (Supplementary Figure S1).

DISCUSSION

Most literature data on statins toxicity indicate a series of
metabolic alterations, such as inhibition of mitochondrial
respiration (Kwak et al., 2012; La Guardia et al., 2013), imbalance
in calcium homeostasis (Sirvent et al., 2005a; Oliveira et al.,
2008), inhibition of β -oxidation (Kaufmann et al., 2006;
Costa et al., 2013) and mitochondrial oxidative stress (Velho
et al., 2006; Oliveira et al., 2008; Kwak et al., 2012; Abdoli
et al., 2013; Costa et al., 2013; La Guardia et al., 2013).
However, these data were obtained in normocholesterolemic
wild type models or in cultured cells or isolated mitochondria.
Here, we investigated the mechanisms underlying mitochondrial
dysfunction and MPT in skeletal muscle biopsies of a familial
hypercholesterolemic mice model under chronic treatment with
therapeutic doses of the hydrophilic pravastatin. The present
work provides evidence that plantaris (but not soleus) muscle
from LDLr−/− mice treated during 3 months (but not less)
with pravastatin presents both inhibition of respiration (40%
reduction in maximal respiration rate) and MPT when Ca2+ is
present in the incubation medium, a condition that may lead
to cell death. The protection from these toxic statin effects by
the antioxidants CoQ10 and creatine suggests the participation of
ROS in this mechanism, in agreement with previous data (Velho
et al., 2006; Manfredini et al., 2010; Abdoli et al., 2013; La Guardia
et al., 2013).

Searching for possible oxidative damage signals, several
oxidized lipids species were identified in mitochondria of
pravastatin treated LDLr−/− plantaris muscle, reinforcing the
existence of an oxidative insult. However, since no protein
oxidation markers (diminished SH- groups content or aconitase
activity) were found, we may conclude that the nature of this
oxidative insult must be mild and/or partially counteracted by cell
defenses. Upregulation of catalase activity in pravastatin treated

FIGURE 4 | Catalase activity (A) and gene expression (B) evaluated in plantaris muscle of LDLr−/− mice. Plantaris muscles of control- and pravastatin-treated
(40 mg/kg/day) LDLr−/− mice and both groups with creatine diet supplementation were used for catalase activity. Values are means ± standard deviation and are
expressed in U/mg protein for activity and normalized by GAPDH for mRNA levels. ∗P < 0.05 compared to control (One-Way ANOVA and Student’s t-test). N = 12
for catalase activity and N = 5 for mRNA expression.
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TABLE 1 | Lipid markers identified by electrospray ionization high-resolution mass spectrometry in LDLr−/− mice.

[M+Na]+

Lipid Class Molecule Theoretical Mass Experimental Mass Error (ppm)

Control Glycerophosphoglycerol PG (12:1) + O 465.1860 465.1869 1.9

Prostaglandin D2 PGD2-G 449.2510 449.2508 –0.4

Prostaglandin D2 1a,1b-dihomo-PGD2 403.2455 403.2460 1.2

N-acyl amine N-arachidonoyl (iso)leucine 440.3135 440.3126 –2.0

Prostaglandin A2 PGA2 methyl ester, 15-acetate 413.2298 413.2292 –1.5

Pravastatin Phosphatidic acid PA (22:1) + O2 546.2934 546.2937 0.5

Lyso-phosphoethanolamine LysoPE (0:0/22:4) 552.3061 552.3072 2.0

N-acyl amine Arachidonoyl serotonin 485.3138 485.3132 –1.2

Fatty acyl carnitine O-arachidonoylcarnitine + O2 502.3139 502.313 –1.8

Unsaturated fatty acid C34:4+O2 555.4384 555.4381 –0.5

Structure assignment was based on mass accuracy of ions elected by PLS-DA analysis. The experimental mass is obtained for the ionized molecule ([M+Na]+) and
compared to the closest mass listed in the lipid map database LMID (theoretical mass). PLS-DA: Partial Least Squares Discriminant Analysis; Ppm: parts per million. Six
independent experiments.

LDLr−/− plantaris muscle is one of these cell defense responses
to oxidative stress (Kirkman and Gaetani, 2007; Jackson and
McArdle, 2011). This suggests the participation of a signaling
pathway linking mild mitochondrial oxidative stress to activation
of catalase (Zarse et al., 2012; Ristow, 2014). Indeed, it was
previously shown that the antioxidant effects of statins are
possibly related to their ability to upregulate antioxidant defenses,
including catalase expression and activity in vitro and in vivo
(Carneado et al., 2002; Wassmann et al., 2002; Manfredini et al.,
2010). The minor oxidative signs observed in pravastatin treated
LDLr−/− are in line with this homeostatic antioxidant response
to a chronic and mild oxidative stress. This is also in accordance
with the safety of these drugs and the fact that only 10%
of statin-treated hypercholesterolemic patients present adverse
effects (Bruckert et al., 2005).

Among the several oxidized lipids found in muscle of
pravastatin treated mice, we highlight two species, phosphatidic
acid and arachidonic acid derivatives. Phosphatidic acid acts
as second messenger that regulates several proteins (Testerink
and Munnik, 2005), including mTOR (mammalian target of
rapamycin). It is required for the stability and activity of this
protein kinase (Steed and Chow, 2001; Foster et al., 2014;
Shad et al., 2015; Yoon et al., 2015; Ghim et al., 2016). Thus,
we could speculate that the oxidation of phosphatidic acid
caused by pravastatin may impair mTOR pathway, affecting the
maintenance of muscle mass and protein turnover (Shad et al.,
2015). On the other hand, arachidonic acid metabolites, such
as prostaglandin and leukotriene are involved in inflammatory
muscle pain, and also in myogenesis and muscle repair
(Korotkova and Lundberg, 2014). Therefore, oxidized derivatives
of arachidonic acid could also impair muscle repair process in
LDLr−/− mice under pravastatin treatment.

Previous studies proposed that statin-induced myotoxicity
may be mediated by the reduction of ubiquinone content
(Sirvent et al., 2008). Accordingly, inhibition of mitochondrial
respiration was associated with ubiquinone depletion (Päivä
et al., 2005; Bookstaver et al., 2012; Larsen et al., 2013) and
ubiquinol treatment protected human rhabdomyosarcoma cells

against simvastatin-induced mitochondrial dysfunction and cell
death (Vaughan et al., 2013). While several studies propose
that ubiquinone depletion by statins may be deleterious due
to impairment of mitochondrial respiration (Päivä et al., 2005;
Bookstaver et al., 2012; Larsen et al., 2013; Vaughan et al., 2013),
we previously provided evidence that the decreased levels of
CoQ10 by statin are not enough to limit mitochondrial respiration
but rather impair its free radical scavenger action leading to
oxidative stress (La Guardia et al., 2013). In addition, the rate
of hydrogen peroxide production was increased in the presence
of simvastatin and was normalized by CoQ10, reinforcing the
involvement of oxidative stress in simvastatin-induced toxicity to
skeletal muscle (La Guardia et al., 2013).

Creatine supplementation, widely and safely used by athletes,
exerts beneficial effects on muscle growth and strength as
well as in rehabilitation (Hespel and Derave, 2007; D’Antona
et al., 2014). Creatine also has direct antioxidant properties
(Lawler et al., 2002; Sestili et al., 2006), inhibits PTP
opening and reduces muscle necrosis (O’Gorman et al.,
1996; Dolder et al., 2003). Based on these findings, we
evaluated whether creatine diet supplementation would prevent
pravastatin-induced myotoxicity. Indeed, creatine treatment
reversed mitochondrial dysfunction of plantaris muscle of
LDLr−/− mice.

An important finding of the present work is that the
mitochondrial respiratory inhibition provoked by chronic
pravastatin treatment was sensitive to Ca2+ chelator (EGTA),
ruthenium red (an inhibitor of Ca2+ uptake by mitochondria)
or CsA (MPT inhibitor). Therefore, mitochondrial permeability
transition may explain the occurrence of muscle dysfunctions in
patients sensitive to statin toxicity.

It is of note that these pravastatin effects on plantaris muscle
were not observed in soleus muscle under the same experimental
conditions. These distinct skeletal muscles present different
types of metabolism and fiber composition. Plantaris is mainly
composed by type II fibers, presenting less mitochondrial content
and higher glycolytic activity whereas soleus is rich in type I
fibers and presents higher mitochondrial content and oxidative
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capacity (Cornachione et al., 2011). Results from other studies
have also shown distinct sensitivities of different muscles to
statins (Waclawik et al., 1993) and insensitivity of soleus to these
drugs (Schaefer et al., 2004).

Taken together, the present results provide evidence that
chronic pravastatin administration to a murine model of familial
hypercholesterolemia promotes mitochondrial dysfunctions
in plantaris muscle that can be counteracted by antioxidants
administered either in vitro (CoQ10) or in vivo (creatine).
Therefore, we propose that inhibition of muscle mitochondrial
respiration by pravastatin leads to an oxidative stress that in
the presence of calcium opens the PTP. This mitochondrial
oxidative stress caused by statin treatment also signals
for cellular antioxidant system responses such as catalase
upregulation.
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