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Colorectal cancer (CRC) is the second-leading cause of cancer death in developed
countries. While early detection (e.g., colonoscopy) generally yields excellent outcomes,
metastatic and drug-resistant disease is uniformly fatal, and non-compliance for
screening remains over 25%. Familial CRCs (10% of total cases) primarily include
mutations in the gene APC. Somatic disease is linked to several environmental
several risk factors, including mutations in WNT, KRAS, and TGFβ. To reflect the
genesis/progression of CRC, a series of five discrete stages, from normal colon
mucosa to fully invasive carcinoma, each regulated by specific “gatekeeper” genes,
remains well-accepted after 20 years. However, many CRC tumors do not possess
those particular mutations, suggesting alternative mechanisms. More recently, embryo-
like “cancer stem cells” have been proposed to undergo self-renewal and drive
tumorigenesis (and possibly, metastasis), as governed by specific “epigenomic”
alterations. Here, we review recent literature describing possible mechanisms that
underlie these phenotypes, including cancer “stemness,” believed by many to associate
with the epithelial-to-mesenchymal transition (EMT). We further propose that the
maintenance of undifferentiated phenotypes, by the activity of distinct transcription
factors, facilitates chromatin remodeling and phenotypic plasticity. With that regard,
we support recent assertions that EMT is not an “either/or” event, but rather a
continuous spectrum of mesenchymal vs. epithelial phenotypes (in various degrees
of aberrant differentiation/undifferentiation). Finally, we discuss possible methods of
pharmacologically targeting such aberrant epigenomes, with regard to their possible
relevance toward halting, or even reversing, colorectal cancer progression.

Keywords: colorectal cancer, embryonic signaling pathways, epigenomics, epithelial-to-mesenchymal transition,
tumor progression

INTRODUCTION

Colorectal cancer (CRC) is the second-leading cause of cancer deaths in the United States, with
an estimated 50,130 deaths in 2014, a national expenditure of $14 billion, and an individual
lifetime risk of 1 in 20. While the 5-year survival rate for localized CRC is >90%, only 40% of
cases are detected at this (largely asymptomatic) stage, and for metastatic disease, survival falls to
8–12%. The risk of CRC increases with age (>50 years), diets high in red and processed meats,
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sedentary lifestyle, obesity, history of inflammatory bowel
disease, and smoking. Non-compliance with screening for
these at-risk individuals remains approximately 25% (Wong
et al., 2016), and 5–10% of CRC cases are due to hereditary
conditions, the majority of which include mutations in the
tumor suppressor gene APC. Consequently, while optimism
persists for increased compliance with preventative screening,
possibly due to healthcare reforms to alleviate cost, it appears
a large number of advanced cases will remain (Siegel et al.,
2014).

In this review, we set forth a model whereby “epigenomic”
anomalies in normal colon crypt stem cells, and their terminally
differentiated progeny cells, transform to an embryonic-like
state, followed by further benign and malignant progression.
Consideration of these mechanisms may support further study
of “epigenetic” therapies for this life-threatening pathology.

INITIATION AND PATHOLOGY OF
COLORECTAL CANCER

Colon Development
The colon is a quadrate-shaped organ possessing six
substructures, facilitating progression of solid waste through the
cecum (attached to the ilium of the small intestine), which is then
transported through the ascending, traverse, descending, and
sigmoid colon, which attaches to the rectum/anus (Colon Cancer
Alliance, 1983) The colon serves to remove water, salt, and
nutrients throughout the progressive elimination of solid waste,
in symbiosis with over 700 species of bacteria and various simple
eukaryotes (gut flora) (Colon Cancer Alliance, 1983). Six major
colonic cell types include surface columnar epithelial (absorptive
“colonocytes”), goblet (mucus-secreting) cells, vacuolated cells,
deep crypt secretory cells, M-fold cells, and crypt colonic stem
cells (Colony, 1996).

Colorectal Tumorigenesis
Colorectal cancer is well-accepted to proceed through
five distinct stages: (1) aberrant foci; (2) small adenoma
(adenomatous polyps); (3) large adenoma; (4) adenocarcinoma;
and (5) invasion/metastasis. The pathology of non-familial
CRCs is often associated with overactivity of the epidermal
growth factor receptor (EGFR), mutations in Wnt, loss of APC,
activating KRAS mutations, and mutations in NRAS, BRAF
(8–12%), PIK3CA, and TP53 (50% of cases). Additionally, a
balance between “gatekeeper” (anti-proliferation), “caretaker”
(maintain genomic stability) and “drivers” (oncogenes) has
been hypothesized to regulate other CRC phenotypes, including
(1) the development of microsatellite instability (MSI) (due
largely to loss of DNA mismatch repair), leading to overactivity
of COX-2, EGFR, and/or Wnt pathways (leading to small
adenomas); (2) KRAS and/or PIK3CA pathway overactivity
(leading to large adenomas); and (3) inactivation of the tumor
suppressor gene TP53 and downregulation of TGF-β signaling,
leading to invasive/metastatic carcinomas (Wang et al., 2002;
Markowitz and Bertagnolli, 2009; Vogelstein and Kinzler, 2015).
With regard to specific gene mutations in non-hereditary (i.e.,

somatic) CRC, APC is mutated in 85%, TP53 in 40–50%, PIK3CA
in 35% (activating mutations), and TGFBR2 in 45–50% of
sporadic CRCs (Markowitz and Bertagnolli, 2009).

While there is hope that increased screening (e.g.,
colonoscopy, laproscopy, highly sensitive human occult
fecal blood testing, etc. for persons over age 50) compliance
will further increase early detection and treatment, due to
increased education, access to health insurance, etc. However,
at present, the only option for unresectable metastatic disease
is conventional cytotoxic chemotherapy. While response to
those initial chemotherapy regimens usually occur, resistance
generally ensues within 6 months. Life-extending agents include
conventional cytotoxics, such as 5-fluoracil, capecitabine,
and topotecan, in various combinations with one another,
and “targeted” therapeutics, such as bevacizumab (VEGFR
antagonist) and the EGFR-inhibitory drugs cetuximab and
panitumumab (Aparo and Goel, 2012; Recondo et al., 2014),
Unfortunately, resistance to these agents eventually ensues, with
a mere 13.3-month subsequent survival rate (O’Connell et al.,
2008).

Epigenetics
Although mutated genes unequivocally contribute to the
progression of CRC, gatekeeper, caretaker, and driver genes are
not always altered in all CRC stages (Feinberg et al., 2006).
Consequently, many cancer investigators are now focusing on
the importance of epigenetics to the phenotypic plasticity that is
crucial for CRC tumor progression (Tam and Weinberg, 2013;
Pereira et al., 2015). Epigenetics refers to the regulation of
gene transcription absent DNA-coding sequence alterations, and
includes post-translational modifications to DNA and histones,
nucleosome repositioning, and microRNA regulation of mRNA
translation and/or stability (Goel and Boland, 2012). The most
well-known of these, methylation of deoxycytosine (commonly
referred to as the “fifth base” comprising DNA), within CG
dinucleotides, is universally throughout higher eukaryotes,
particularly in heterochromatin and large intergenic regions
(Beyersmann, 2000). However, specific CG-rich (>60%) regions
of <1000 base pairs (“CpG islands”), associated with over 70% of
gene promoters are protected from transcriptionally repressive
DNA methylation in normal cells (Deaton and Bird, 2011).
A hallmark of cancer is a redistribution of DNA methylation
patterns, i.e., hypermethylation of CpG islands, often resulting
in repression of tumor suppressor genes, and loss of methylation
in heterochromatin, resulting in genomic instability (Rodriguez-
Paredes and Esteller, 2011). Moreover, early deoxycytosine
methylation may occur in DNA repair genes (e.g., MLH1, MSH2,
etc.), further favoring MSI and genetic mutations (Feinberg et al.,
2006).

Epigenetics in Colorectal Cancer
Development
In CRC specifically, it has been asserted that epigenetic changes
occur very early in tumorigenesis. Specifically, MSI, and DNA
methylation/silencing of DNA mismatch repair (MMR) genes,
lead to a poorly understood phenomenon known as “CIMP”
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(CpG island methylator phenotype). The CIMP phenotype
involves widespread (but not random) promoter methylation
throughout the genome (Issa, 2004). Moreover, it has been
reported that typical metastatic CRCs possess ∼61 infrequently
mutated genes, with 15 of these designated as driver genes, and
the remainder representing mutated passenger genes (Markowitz
and Bertagnolli, 2009). By contrast, one recent genome-wide
analysis revealed that approximately 5% of the total CRC tumor
genome (>1000 genes) harbors abnormal DNA methylation
(Schuebel et al., 2007). Thus, it would appear prudent to consider
both genetic and epigenetic aberrations in the etiology of CRC
(You and Jones, 2012). For example, while 85% of sporadic CRCs
possess transcriptional loss of APC, in addition to inactivating
mutations, this gatekeeper can also be silenced by promoter DNA
methylation (Lee et al., 2009).

Another example of epigenetic/genetic “crosstalk” during
CRC tumorigenesis is the finding of genetic mutations in
genes encoding epigenetic modifiers. For example, in a study
of the genetic landscape of CRC, it was found that 50% of
mutation-driver genes were those encoding epigenetic modifiers
(e.g., DNMT3b, EZH2, etc.) (Vogelstein et al., 2013). Another
genome-wide association study revealed mutations in the gene
encoding the Tet methylcytosine dioxygenase 2, an enzyme
involved in DNA demethylation (Toth et al., 2017). These
(and many other studies) demonstrate the complex interplay
between genetics and epigenetics (Feinberg et al., 2006),
thus increasing the challenges of designing targeted CRC
therapies.

Epigenetics likely also contributes to the wide degree
of heterogeneity of CRC tumors. Recently, an international
consortium recognized four CRC consensus molecular subtypes,
including: (1) CMS1 (microsatellite instable, hypermutated); (2)
CMS2 (activated canonical WNT and MYC signaling; (3) CMS3,
with metabolic dysregulation; and (4) CMS4, having activated
TGF-β signaling, with stromal invasion and angiogenesis. Each
of these subtypes was found to have their own distinctive
epigenomes (Guinney et al., 2015). Moreover, CRC tumors with
relative epigenomic homogeneity associated with short relapse-
free and overall survival (Martinez-Cardus et al., 2016).

Epithelial-to-Mesenchymal Transition
The importance of epigenomics to cancer is further supported
by studies in melanoma, in which plating of melanoma cells
onto an extracellular matrix derived from embryonic stem cells,
could reverse the malignant phenotype (Costa et al., 2009). Such
malignant reversion was later found to associate with epigenetic
remodeling by microenvironmental paracrine release of the
cytokine Lefty, which is silenced by DNA methylation, and also
by the microRNA miRNA-302, in melanoma cells. Analogously,
Lefty is inhibited by the oncoprotein Nodal, and the embryonic
transcription factor Notch4 (Costa et al., 2009; Barroso-delJesus
et al., 2011). Other studies showed that the epithelial-to-
mesenchymal transition (EMT)-opposing microRNAs miR-34
and the miR-200 family are silenced by DNA methylation in
CRC metastatic cells and tissues. Re-expression of these miRNA
genes, by DNA methylation inhibitors, inhibited the synthesis of
the EMT modulators TWIST, SNAIL, and ZEB1 (Siemens et al.,

2011; Roy et al., 2012; Hur et al., 2013). Moreover, a p53/miR-34
axis has been reported to stabilize the β-catenin antagonist GSK-
3β within the nucleus, resulting in repression of Wnt and Snail
pathway transcriptional targets (Kim et al., 2013).

Consequently, we posit that an additional aspect of CRC
neoplastic epigenomic alterations is their intimate role in
regulating EMT (Tam and Weinberg, 2013), which has further
been linked to the cancer “stemness” phenotype (Polyak and
Weinberg, 2009). The EMT transition involves massive, genome-
wide epigenomic changes that underlie phenotypic plasticity,
such as the loss of tight junctions, loss of cell-to-cell adherence,
loss of cell polarity, changes in cell morphology to an elongated
shape (allowing traverse between endothelial cells), and the
formation of lamellapodia and cytoskeletal remodeling, thus
facilitating motility and invasion (Figure 1) (Hugo et al.,
2007).

Epigenomic Reactivation of Embryonic
Developmental Pathways
In addition to EMT, most cancers are now known to reactivate
embryonic self-renewal pathways, including Hedgehog, Notch,
and TGFβ/Stat3. As described above, most CRCs are reliant
on the Wnt (Wingless) developmental pathway. It is possible
that direct targeting of embryonic pathways might be more
effective against both stem and dedifferentiating tumor cells
(Takebe et al., 2011; Medema, 2013; Pattabiraman and Weinberg,
2014), and cancers “addicted to” upregulated embryonic pathway
activity (e.g., Wnt in CRC and PIK3CA in metastatic breast
cancer), combined with high tumor heterogeneity, might be more
vulnerable to such therapies (Bienz and Clevers, 2000; Segditsas
and Tomlinson, 2006; Hernandez-Aya and Gonzalez-Angulo,
2011). Another “master regulator” of chromatin remodeling to an
undifferentiated phenotype is the Polycomb oncoprotein EZH2,
which represses transcription by trimethylation of histone H3,
lysine 27 (H3K27me3) (Chang and Hung, 2012).

CURRENT AND POTENTIAL CRC
THERAPEUTIC APPROACHES

In Figure 1, we present a model for the genesis and progression
of CRC, via canonical or non-canonical Wnt signaling. Here,
the simplest means of carcinogenesis would be genetic or
epigenetic anomalies in colonic crypt stem cells, particularly
those expressing the Wnt signaling component LGR5 (Zeki
et al., 2011; Carmon et al., 2012). However, epigenomic
alterations also allow for dedifferentiation of villi cells (transient-
amplifying or even fully differentiated, polarized colonocytes),
particularly in response to inflammation (and activity of the
oncogenic pathway NF-κB (Schwitalla et al., 2013), and various
environmental agents (Haggar and Boushey, 2009). As >95%
of CRCs are believed to involve overactive Wnt signaling,
this may occur via numerous mechanisms, including APC
mutation, DNA methylation silencing of SFRP (secreted frizzled
receptor protein), activating mutations in beta-catenin, loss
of AXIN2 degradation by silencing of the E3 ligase gene
tankyrase (TNKS2), and upregulated signaling of the hepatocyte
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FIGURE 1 | Illustration of autocrine and paracrine signaling pathways in colorectal cancer. Diagram shows how numerous oncogenic signaling pathways,
including Wnt, PDGF, c-MET, and KRAS, converge to effect epigenomes that facilitate pro-neoplastic (“dedifferentiation”) gene transcription. Possible points of
epigenetic interventions, potentially reversing dedifferentiating epigenomes, are shown. For example activation of epithelial-to-mesenchymal transcription factors
(e.g., Twist) leads to whole-genome chromatin remodeling and phenotypic plasticity, which can be inhibited or reversed.

growth factor (HGF) pathway (Suzuki et al., 2004; Fodde and
Brabletz, 2007; Schneikert and Behrens, 2007; Schwitalla et al.,
2013).

In this scenario, reactivation of embryonic signaling pathways
(possibly via aberrant paracrine interactions with a pericryptal
myofibroblast “stem cell niche”) (Vermeulen et al., 2010) and
CRC upregulation of Wnt signaling, in conjunction with the
loss of gatekeeper genes (SFRP, APC, DKK, etc.) upregulate
EMT and other promalignant processes (Aguilera et al.,
2006; Silva et al., 2014). Additional activating mutations in
CRC driver genes/pathways may also “crosstalk” (e.g., HGF,

PI3K/AKT, TNKS2) with Wnt signaling to facilitate rapid
proliferation into a fully malignant tumor (via β-catenin
stabilization, nuclear translocation, and cotransactivation of
TEF/LEF-occupied gene promoters). These events then initiate
a cascade that eventually results in EMT and a cancer
stem-like phenotype, involving highly plastic phenotypes, such
as cell shape distortion (extravasation between endothelial
cells), motility to reach the circulatory system, and suppression
of immunosurveillence by downregulating specific HLA, and
other antigenic cell surface immunophenotypes (Yaguchi et al.,
2011).
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POSSIBLE EPIGENOME-TARGETING
THERAPEUTIC APPROACHES FOR CRC

Wnt Inhibitors
As mentioned above, APC and/or CTNNB1 (β-catenin)
mutation(s) are present in >90% of CRC cases, thus singling
out the Wnt pathway as predominant in this cancer type (Ayadi
et al., 2015). Moreover, Wnt ligands can stimulate various non-
canonical and non-frizzled related pathways, and Wnt signaling
has been found to “crosstalk” with several other signal cascades
(e.g., KRAS, BRAF, etc.) (Figure 1). In particular, tyrosine (not
serine/threonine) phosphorylation of β-catenin (and loss of its
degradation), leads to its nuclear translocation and oncogene
transactivation (Piedra et al., 2001). Consequently, a number
of Wnt inhibitors have now been developed, including those
targeting tankarases 1 and 2 (affecting AXIN2 degradation),
porcupine, and disheveled (Voronkov and Krauss, 2013).
Thus, while inhibitors of canonical Wnt signaling may well
be beneficial, even more ideal therapeutics might target the
downstream effectors that act as convergence points for several
pathways (e.g., TCF/LEF, TWIST, MYC, etc.) (Voronkov and
Krauss, 2013).

Epigenome-Modulating Agents
In addition to Wnt inhibitors, we posit that epigenetic
transcriptional derepressors might be a complimentary means of
enhancing the efficacy of embryonic pathway-targeting therapies.
For example, DNA methylation specifically silences a number
of tumor suppressor genes (e.g., miR-34, miR-200 family,
SFRP, etc.), while global epigenomic alterations underlie the
phenotypic plasticity of EMT/stemness. Such dedifferentiating
phenotypic alterations correlate with widespread trimethylation
of histone H3, lysine 27 (H3K27me3), a transcriptionally
repressive modification catalyzed by the Polycomb group
protein, and histone methyltransferase, EZH2 (Widschwendter
et al., 2007; Friedman et al., 2009; Yan and Guo, 2015)
(Figure 1). Most recently, the retinoblastoma-binding protein-
2, RBP2 (JARED1A, KDM5a), a histone H3 lysine 4 (H3K4, an
activating modification) demethylase, was discovered in various
other cancers as complexed with EZH2 (Pasini et al., 2008;
Schuettengruber and Cavalli, 2009), and is now the subject of
intense investigation for inhibitors (Zeng et al., 2010; Lin et al.,
2011).

Interestingly, one study in YB5 CRC cells comprised of a
screen of FDA-approved drugs that could synergize with the
DNA methylation inhibitor decitabine to derepress a silenced
reporter gene (Raynal et al., 2017). This screen revealed, in
particular, that the antiarrhythmic proscillaridin, paired with
decitabine, effected widespread epigenomic reprogramming,
including silencing of two CRC oncogenes, SYMD3 and KDM8
(Raynal et al., 2017).

Several other recent studies support our hypothesis. In one
study of chemoresistant CRC and other cell lines, histone
deacetylase inhibitors (HDACIs) reversed EMT and cancer
stem cell phenotypes (Wu et al., 2017), while one specific
HDACI, resminostat, has now completed a Phase I clinical trial
(Clinicaltrials.gov, NCT01277406) for patients with advanced
CRC (Ahmed et al., 2017). Another Phase II trial of the
HDACI entinostat, combined with the demethylating agent
azacitidine proved tolerable, but unfortunately, poorly efficacious
(Azad et al., 2017). Other HDACIs, however, in Phase I
or II trials, include CUDC-907 (Curis, Inc., Lexington, MA,
USA) and CXD101 (Celleron Therapeutics, Oxford, UK). Thus,
while HDACIs have yet only shown efficacy against specific
lymphomas, it is likely that well-designed clinical trials will
validate their promise against solid tumors (particularly as
adjuvant therapies).

SUMMARY

Much progress has been made in the treatment of CRC, including
a tripling of the 5-year survival for stage IV disease, from 11
to 30 months. Nonetheless, following most first-line therapies,
secondary approaches remain only minimally life-extending. Due
to the essential and complex involvement of epigenetics, in CRC
and most cancers, approaches to reverse the various DNA and
histone modifications related to self-renewal of cancer stem cells,
hold promise for more effective treatment of CRC and other
malignant diseases.
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