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Tacrolimus (Tac) is a profoundly effective immunosuppressant that reduces the risk of
rejection after solid organ transplantation. However, its use is hampered by its narrow
therapeutic window along with its highly variable pharmacological (pharmacokinetic
[PK] and pharmacodynamic [PD]) profile. Part of this variability is explained by genetic
polymorphisms affecting the metabolic pathway. The integration of CYP3A4 and CY3A5
genotype in tacrolimus population-based PK (PopPK) modeling approaches has been
proven to accurately predict the dose requirement to reach the therapeutic window.
The objective of the present study was to develop an accurate PopPK model in a
cohort of 59 kidney transplant patients to deliver this information to clinicians in a
clear and actionable manner. We conducted a non-parametric non-linear effects PopPK
modeling analysis in Pmetrics R©. Patients were genotyped for the CYP3A4∗22 and
CYP3A5∗3 alleles and were classified into 3 different categories [poor-metabolizers (PM),
Intermediate-metabolizers (IM) or extensive-metabolizers (EM)]. A one-compartment
model with double gamma absorption route described very accurately the tacrolimus
PK. In covariate analysis, only CYP3A genotype was retained in the final model
(1−2LL = −73). Our model estimated that tacrolimus concentrations were 33%
IC95%[20–26%], 41% IC95%[36–45%] lower in CYP3A IM and EM when compared to
PM, respectively. Virtually, we proved that defining different starting doses for PM, IM
and EM would be beneficial by ensuring better probability of target concentrations
attainment allowing us to define new dosage recommendations according to patient
CYP3A genetic profile.

Keywords: tacrolimus, kidney transplantation, CYP3A, single nucleotide polymorphisms, population
pharmacokinetics, dosage recommendations
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INTRODUCTION

Tacrolimus (Tac) reduces the risk of rejection after solid organ
transplantation. However, its toxicities are well known (Kershner
and Fitzsimmons, 1996). Consequently, many transplant
professionals and pharmacologists have to manage its narrow
therapeutic window. Given its highly variable pharmacologic
(pharmacokinetic [PK] and pharmacodynamic [PD]) profile
(Staatz and Tett, 2004), therapeutic drug monitoring (TDM) is
used to individualize Tac dosages and reduce the risks of toxicity
and rejection. However, traditional TDM remains a reactive
strategy that requires a PK steady state, i.e., approximately 3 days
after therapy initiation or dosage change. The delay caused by
repetitive dose changes is prohibitive in the early achievement
of safe and effective Tac levels (Staatz et al., 2001; Borobia et al.,
2009; Richards et al., 2014). Identification of invariable PK
biomarkers can help to proactively adjust the dose. However,
the identification of useful and relevant biomarkers is only the
first step toward therapy individualization. Once the marker is
identified, its effect on drug PK variability must be quantified.
A population-based PK (popPK) approach can help to model
quantitatively the effect of a patient covariate on the drug PK
profile in order to simulate the most probable response for a
given patient allowing the design of a personalized drug dosage.

Tacrolimus is metabolized in the intestine, in the liver and, to
a limited extent, in the kidney by the Cytochromes P450 (CYP)
3A4 and 3A5 enzymes (Staatz and Tett, 2004; Kamdem et al.,
2005). It is now universally recognized that a single nucleotide
polymorphism (SNP) in the CYP3A5 gene is associated with
approximately a 40 to 50% decrease in Tac clearance (Anglicheau
et al., 2003; Hesselink et al., 2003; Haufroid et al., 2004,
2006; Macphee et al., 2005; Elens et al., 2007). Inclusion of
CYP3A5∗3/∗3 loss-of-function (LOF) allelic status for Tac initial
dosage calculation achieves therapeutic levels more quickly
(Thervet et al., 2010). However, despite the PK improvement
it generates, the clinical benefit in terms of outcome of such a
pro-active dosage strategy has not been proven yet but some
limitations in study designs have been highlighted (van Gelder
and Hesselink, 2010). However, even the PK benefit of a proactive
dosage based on CYP3A5 genotype solely is controversial (Shuker
et al., 2016).

Recently, the CYP3A4∗22 decrease-of-function (DOF) allele
has been suggested as a good candidate to further refine the
Tac starting dose (after adjusting for CYP3A5 genotype) (Elens
et al., 2011, 2013a,b,c,f; Gijsen et al., 2013; Guy-Viterbo et al.,
2014; Hesselink et al., 2014; Kuypers et al., 2014; de Jonge et al.,
2015a; Tang et al., 2016). However, to our knowledge, only
two PopPK studies have examined the combined effects of the
CYP3A4∗22 and CYP3A5∗3 SNPs, showing that CYP3A4 DOF
can exacerbate the CYP3A5 LOF (Moes et al., 2016; Andreu et al.,
2017). The definition of a rationale categorization of the patient
into poor (PM), intermediate (IM), and extensive metabolizer
(EM) according to these two SNPs has been successfully
proposed previously and takes the advantage of being clearly
understandable for clinicians and medical staff. The classification
is based on the fact that the CYP3A4∗22 allele is associated with
a decrease of CYP3A4 function while CYP3A5∗3 is linked to

a loss of CYP3A5 expression and that both metabolic defects
have synergistic effects. Rationally, the PM cluster contains
CYP3A5∗3 homozygotes carrying the CYP3A4∗22 variant; the
IM group contains CYP3A5∗3 homozygotes but not carrying the
CYP3A4∗22 allele; and EM includes CYP3A5 expressers also not
carrying the CYP3A4∗22 allele.

Apart from these functional SNPs, there are a plethora of
satellite genes that could affect the function of CYP3A isoenzymes
(Werk and Cascorbi, 2014). We describe two of the most
promising SNPs among these genes.

Genetic variation in the Peroxisome proliferator-activated
receptor a (PPARA) gene, a nuclear receptor, was discovered as
a novel genetic determinant influencing CYP3A4 activity (Klein
et al., 2012). The minor allele of the PPARA rs4253728G > A
polymorphism has been associated with significantly decreased
CYP3A4 expression and activity (Klein et al., 2012; Elens
et al., 2013e). This polymorphism might therefore influence the
pharmacokinetics of drugs that are primarily metabolized by the
CYP3A4 enzyme, such as Tac.

P450 oxidoreductase (POR) is a membrane-bound protein,
which is responsible for the transfer of electrons from NADPH
to microsomal type II cytochrome P450 enzymes. Liver-specific
POR-knockout mice are phenotypically normal but accumulate
lipids in the liver and show considerably decreased hepatic drug
metabolism (Henderson et al., 2003). Numerous POR missense
mutations in humans have been discovered and linked to
anarchic steroidogenesis, ambiguous genitalia, and Antley–Bixler
syndrome (Huang et al., 2008). In the general population, the
1508C > T SNP (rs1057868; POR∗28) is the most common
variant with a reported minor allelic frequency (MAF) of 30%
in the white population. POR∗28 encodes the amino acid variant
A503V, which has been associated with differential CYP450
activity (de Keyser et al., 2013; Elens et al., 2013d, 2014). For
instance, CYP3A5 expressers carrying one or two POR∗28 alleles
have shown a 45 % lower midazolam metabolite conversion
and higher Tac dose compared with CYP3A5 expressers without
POR∗28 (Elens et al., 2013d).

The first objective of our study is to use a population-based PK
approach to simultaneously evaluate the relevance of genotypic
and non-genotypic covariates formerly identified as influencing
Tac PK. The second objective is to translate our findings into
rationale initial dosage recommendations for clinicians that
maximize the probability of achieving desired Tac concentrations
after the initial dose.

MATERIALS AND METHODS

Patients
The study protocol was approved by the local Ethical Committee
(Comité éthique Hospitalo-facultaire of the Saint-Luc Hospital)
and all patients provided their written informed consent before
taking part in the study.

The previously described study population consisted of 59
cadaveric renal transplant recipients (Elens et al., 2013a). They
were prospectively recruited between July 2007 and January 2009
at the Cliniques Universitaires St-Luc (Brussels, Belgium) and
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followed during their entire hospitalization period as previously
described (Elens et al., 2013a).

Briefly, for all patients, immunosuppression consisted of
a combination of Tac with mycophenolate mofetil (81%) or
mycophenolate sodium (19%) and steroids. A standard steroid
tapering schedule was followed (Elens et al., 2013a). The initial
Tac dose was calculated according to the bodyweight (bw) of
the patient (0.10 mg/kg bw, twice daily) and subsequent doses
were adjusted according to Tac concentrations measured just
prior to the next dose (C0). Tac C0 was measured daily during
hospitalization. During the 1st week after transplantation, the
target Tac C0 was 10–20 ng/ml. After this 1st week, this target
was reduced to 10–15 ng/ml. For every Tac C0 that fell outside
the targeted range, the Tac dose was rectified by the clinician. In
addition to the daily C0 measurement, for all 59 subjects blood
samples were collected before and 30 min, 1 h 30 min, 3, 4, 8,
and 12 h after administration of the Tac morning dose prior to
discharge from the hospital. As previously described, all patients
were under concomitant therapies but only 21% of them received
a P-glycoprotein inhibitor at a reduced dosage (i.e., atorvastatin
and proton pump inhibitors). Furthermore, no CYP3A inducers
and/or inhibitors were documented in the medical file, reducing
the risk of a clinically significant drug-drug interaction (Capron
et al., 2010).

Blood Sampling and Tacrolimus
Quantification
Tacrolimus was measured by a chemiluminescent microparticle
immunoassay on the Architect R© analyzer from Abbott
diagnostics Laboratories (IL, United States). The same assay was
used throughout the study. The laboratory participated in the
International Proficiency Testing Scheme organized by Dr. Holt
in the United Kingdom (Wallemacq et al., 2009).

Genotyping Analysis
Genomic DNA was extracted from whole blood using the
QIAamp DNA Mini Kit (Qiagen, CA, United States). Allelic
discrimination analysis was performed for the determination of
CYP3A4∗22 (rs35599367C > T, NG_008421.1:g.20493C > T),
CYP3A5∗3 (rs776746A > G, NG_007938.1:g.12083G > A),
POR∗28 rs1057868C > T (NG_008930.1:g.75587C > T)
and PPARα rs4253728G > A (NG_012204.1:g.68569G > A)
genotype using the TaqMan R© (Applied Biosystems, CA,
United States) genotyping assays (C__59013445_10,
C__26201809_30, C__31052401_10 or C___8890131_30)
according to manufacturer instructions.

Pharmacokinetic Population Modeling
A non-parametric model was developed in Pmetrics R©. Pmetrics R©

is a free access Software developed by the Laboratory of Applied
PharmacoKinetics and Bioinformatics (LAPK) in Los Angeles
CA in the United States. The PK profiles were best described
by a one-compartment model with first order elimination.
The absorption kinetics was fashioned with 2 distinct but
parallel routes of oral absorption, both following a gamma
pattern. This model has been previously described and validated

in 2 independent cohorts to model immediate and delayed-
release form of Tac in lung and renal transplant patients,
respectively (Saint-Marcoux et al., 2005, 2010). Details are given
in Supplemental Data 1.

For the error model, to weight the concentrations
by the reciprocal of their variances in the fitting
process, we used a polynomial error of the form
SD = 0.0001+ 0.0762× C(t)− 0.1433× C(t)2 where SD
is the standard deviation of the measured concentration, and
C(t) is the measured Tac concentration. The coefficients for the
equation were determined by fitting the standard deviations of
replicate measured known concentrations to polynomials of 0 to
third order, using the study assay. Additionally, a Gamma factor
(γ) was used as a multiplier of the assay associated error, so that
total noise equaled γ times the SD. We allowed Pmetrics to fit
this γ term in the error model with a factor value starting point
set at 1.

Model diagnostics included goodness-of-fit of the observed
versus predicted plots, minimization of bias and imprecision,
satisfactory normalized prediction distribution error (npde)
distribution and consideration and the log-likelihood ratio test
(−2LL). The log-likelihood ratio test was chosen for the selecting
between two hierarchical models. The difference in −2LL of
2 hierarchical models follows approximately a χ2 distribution
so that a decrease of 3.84 in the −2LL was considered as
statistically significant (p < 0.05). Briefly, diagnostics of npde
distribution is performed by checking whether the shape, location
and variance parameters of the distribution correspond to that
of theoretical normal distribution. More details about model
evaluation through npde can be found in the literature (Comets
et al., 2008).

Covariate Selection
To select potential influencing factors, univariate associations
between median Bayesian posterior estimates of PK parameters
and the potential covariates were tested. The different covariates
tested included the bodyweight, creatinine clearance (Cockroft-
Gault formula), the gender, the age, ABCB1 3435C > T and
1199G > A SNPs, the CYP3A4∗22 and CYP3A5∗3 alleles
solely but also their CYP3A combined clusters, the POR∗28
and PPARa SNP. When continuous variables were considered,
linear regression analyses were performed and scatterplots of
median Bayesian posterior estimates versus the covariate tested
were drawn. For categorical variables, normalization of the
PK parameter distribution was ascertained through logarithmic
transformation and ANOVA were performed under the null
hypothesis that the means in the tested groups were equal.
A p-value of less than 0.05 was considered as statistically
significant.

After selection of significant covariates in univariate analysis,
a covariate model was built using stepwise forward inclusion
followed by backward elimination. In the forward inclusion step,
all preselected covariate-PK parameter relationships were tested
separately. The model with the greatest reduction in −2LL was
retained for the next step and all the remaining covariate-PK
parameter couples were tested individually in this new model.
When no more covariate could be added on the basis of the
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statistical significance criterion (i.e., 12LL > −3.84), the model
obtained was regarded as final.

To test the influence of covariates, categorical factors were
introduced as follows:

θj= θjTPV× (θCOVi)
COVi

whereas continuous variable were allometrically scaled and tested
as follows:

θj= θjTPV

(
COVi

COVimediam

)θCOVi

For both equations, θjTPV is the typical (mean) value of the
jthPK parameter(θj), θCOV a parameter estimated by the model
representing the effect of the ithcovariate (COVi) on θjTPV. The
categorical covariates were coded as dummy variables.

Internal Validation
The stability and performance of the model were assessed though
Monte-Carlo simulations. A thousand simulated profiles for each
subject were created from the final population model parameters
using their own set of covariates, dose and sampling schedule.
Visual predictive check (VPC), consisting of graphical assessment
of simulation results and comparison the data observed, was
performed and npde distributions were checked in order to
evaluate the quality of the final model.

Simulation of Dose Regimens
In order to evaluate the suitability of different dosage regimens
as a function of the patient’s genetic profile, Monte-Carlo
simulations were performed with each tested profile (genotype
clusters with different doses) to generate 1000 time-concentration
profiles for each dose-genotype combination. The probability
of target attainment (PTA) analyses were then performed to
evaluate the chance of reaching a defined therapeutic goal for
each simulated set of profiles.

Statistical Analysis
Statistical analyses other than for PK model development were
performed using JMP R©12.2.0 Pro for Windows (SAS Institute
Inc., Cary, NC, United States). Baseline characteristics were
summarized as mean and the corresponding standard deviation
(SD). CYP3A genotype clustering was executed as previously
established (Elens et al., 2011). Groups were compared using
non-parametric tests. To compare two groups, we used the
Mann–Whitney U-test, and to compare several groups, the
Kruskal–Wallis test was applied. For association between
categorical data, we used Pearson’s Chi Square test or Fisher’s
exact test, as appropriate. In all cases, p-values of less than 0.05
were considered statistically significant.

RESULTS

Baseline characteristics of the patients and genotype frequencies
are reported in Table 1. The genotype distributions were in
accordance with the Hardy-Weinberg principle and with the

frequencies reported1. In total, considering the CYP3A clustering
strategy described earlier (Elens et al., 2011), there were 5
patients classified as poor metabolizers (PM = CYP3A5∗3
homozygotes carrying the CYP3A4∗22 variant), 36 as
Intermediate metabolizers (IM = CYP3A5∗3 homozygotes
not carrying the CYP3A4∗22) and 18 as extensive metabolizers
(EM= CYP3A5 expressers not carrying the CYP3A4∗22 allele).

Development of the Structural Model
A one-compartment model with double gamma absorption
route described Tac PK very accurately. Allometric scaling of
age and bodyweight did not significantly decrease −2LL. The
run converged after 6514 cycles and the final value of the
gamma multiplicative factor defining the proportional error
model was 0.46. The mean bias between observed and predicted
concentrations was not significant and < 1% (−0.11 ± 3.7%
and RMSE = 4.5%). The regression analysis of observed versus
predicted concentrations yielded a r2 value of 99.3%. The typical
mean PK parameters values (TPV) are reported in Table 2
(structural model). Inter-patient variability in PK parameters
was represented by coefficients of variation ranging from 40 to
80% whereas the correlation between parameters fluctuated from
r =−0.497 to 0.410.

1www.ensembl.org

TABLE 1 | Characteristics of the study population.

Characteristics

Gender (n) ♂ 21 (35.6%)

♀ 38 (64.4%)

Age (years) 51.9 ± 13.4

Weight (kg) 70.4 ± 13.9

Hematocrit (%) 31.9 ± 5.0

Creatinine clearance at PK course (ml/min) 60.1 ± 20.0

Tac dose before PK course 5.5 ± 2.7

Tac concentrations (ng/ml) 0 min 11.3 ± 4.2

30 min 19.9 ± 11.7

1 h30 26.0 ± 11.1

3 h 22.2 ± 5.5

4 h 17.4 ± 5.4

8 h 12.6 ± 4.6

12 h 10.6 ± 3.8

CYP3A4∗22 CYP3A4∗1/22 5 (8.5%)

CYP3A4∗1/∗1 54 (91.5%)

CYP3A5∗3 CYP3A5∗3/∗3 41 (69.5%)

CYP3A5∗1/∗3 14 (23.7%)

CYP3A5∗1/∗1 4 (6.8%)

PPARα rs4253728 G > A G/G 33 (55.9%)

G/A 22 (37.3%)

A/A 4 (6.8%)

POR∗28 POR∗1/∗1 36 (61.0%)

POR∗1/∗28 20 (33.9%)

POR∗28/∗28 3 (5.1%)

Data are presented either as mean ± standard deviation with Interquartile range in
squared brackets for continuous variables or n (% of total) for categorical variables.
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TABLE 2 | Pharmacokinetic parameters of the structural and the final models.

Parameters TPV Mean [CI95%]

Structural Model

C0 2.61 [2.13–3.08]

a1 15.70 [8.548–22.91]

b1 22.09 [10.30–33.89]

a2 16.62 [10.22–23.02]

b2 5.40 [0.95–9.85]

r 0.51 [0.46–0.57]

F∗AIV 21.09 [17.69–24.49]

alpha 1.51 [1.19–1.82]

Final model

C0 2.94 [2.42–3.47]

a1 12.33 [6.25–18.41]

b1 20.36 [7.37–33.35]

a2 15.19 [9.46–20.91]

b2 5.05 [1.02–9.08]

r 0.46 [0.40–0.51]

F∗AIV 24.52 [20.61–28.43]

alpha 1.52 [1.19–1.85]

θCYP3A 0.77 [0.74–0.80]

C0 = the model estimated Tac trough level for a theoretical dose of 1000 mg (the
real trough level can be calculated by dividing this value by 1000 and multiplying
by the patient dose) (ai,bi) = parameters of the gamma distributions, r = the
fraction of dose absorbed following the first gamma function, F = bioavailability
coefficient, AIV = initial blood concentration obtained after a bolus IV injection,
θCYP3A = parameter representing the effect of the CYP3A covariate on the typical
value of the Tac blood concentrations. For more details, see Supplemental Data 1.
alpha = elimination parameter.

Covariate Analysis
As specified in the material and method section, we first tested the
influence of bodyweight, creatinine clearance (Cockroft-Gault
formula), gender, age, ABCB1 3435C > T and 1199G > A
SNPs, the CYP3A4∗22 and CYP3A5∗3 alleles solely but also
their CYP3A combined clusters, the POR∗28 and PPARa SNP
in the univariate analysis. CYP3A clusters (Figure 1A), PPARα

(coded as recessive, i.e., A/A versus G/A+G/G) (Figure 1B) and
hematocrit (Figure 1C) were significantly associated with Tac C0
(p= 0.006, 0.007, and 0.0011, respectively). These covariates were
further retained for testing in the structural model. The other
tested covariates were not correlated with any of the Bayesian
posterior PK parameters. Consequently, they were not considered
for further covariate analysis.

After disjointed forward inclusion, CYP3A clusters and
PPARα improved the model significantly with 1−2LL
of −73 and −4, respectively, whereas hematocrit did not
(1−2LL = +31). For the next step of forward inclusion with
backward elimination, CYP3A clustering was chosen as the
starting point as it was the covariate with the greatest reduction
in −2LL. After inclusion of this covariate, neither PPARα,
nor hematocrit further improved the fit (1−2LL = +184
and +133, respectively). Consequently, only CYP3A clustering
was retained as a covariate in the final model. The final
model converged after 7561 cycles. The θCYP3A parameter was
ascribed to the final output of the model (i.e., the Tac blood
concentrations) in the form C(t) = C(t)TPV× (θCYP3A)CYP3A

where C(t) is the Tac blood concentration at time t, C(t)TPV is
the typical value of this PK parameter and θCYP3A is a parameter
estimated by the model representing the effect of the CYP3A
genotype encoded as a dummy variable. The model-estimated
parameters are shown in Table 2 (final model) and regression
plots of observed versus predicted concentrations based on
the median population parameters or the median of the
individual Bayesian posterior parameter values are represented
in Figures 2A,B, respectively. Observed concentrations were
symmetrically distributed around the predicted values indicating
the goodness-of-fit of the model. The gamma error factor
for the final model was 0.43. The npde plots resulting from
1,000 simulations for each patient are shown in Figure 3. With
the exception of a slight negative bias toward negative npde
for higher concentrations (Figure 3D), our results indicated
the absence of any large systematic bias in the model as the
prediction errors distribution was centered around 0 with a
σ = 1, fitting well with the Normal law (≈ (µ = 0, σ = 1),
Figure 3B). VPC analysis is shown in Figure 4. The median
of the observed concentrations was close to the median value
of the predicted concentrations and all the observations were
comprised between the 10th and 90th percentiles of the predicted
concentrations.

The different individual predicted PK profiles were generated
for each patient and compared with the observed values. In
Figure 5, we showed one profile randomly picked in each of
the CYP3A clusters, generated with the structural (Figures 5A–C
[turquoise lines]) or the final structural (Figures 5A–C [purple
lines]) models. Overall, the inclusion of the CYP3A clusters as
a covariate in the model resulted in improvement of prediction
whatever the cluster considered (PM [Figure 5A], IM [Figure 5B]
and EM [Figure 5C]).

Simulations
To define the dose tailored for each genotype group, we
performed PTA for each CYP3A clusters (PM, IM and EM)
with 5 different simulated Tac doses covering the usual doses
encountered in clinics (2.5, 5, 7.5, 10, and 15 mg) and 6
different C0 targets (2.5, 7.5, 10, 15, 17.5, and 20 ng/ml). Results
are presented in Figures 6A–C for CYP3A PM, IM and EM,
respectively, and in Table 3. As expected, the PTA increased with
higher doses and decreased with higher targets, whatever the
CYP3A cluster. Considering a ‘therapeutic’ concentration range
of 10–20 ng/ml, if we accept a proportion of patients reaching
the target of 80% as satisfactory, we can see that simulations
predicted adequate doses of 7.5 mg and 10 mg for PM and IM,
whereas only 76.1% of EM were expected to reach the threshold
of 10 ng/ml with a dose of 15 mg. By contrast, 38.6% of PM
treated with a dose of 7.5 mg would reach supra-therapeutic
levels of Tac while only 17.2% of EM are expected to attain
such high exposure with the same dose. Alternatively, to evaluate
the consistency of our PTA predictions with reality, the first
administered doses and the corresponding Tac C0 were retrieved
in the medical records of the 59 patients and used to further
simulate the predicted chance to attain a targeted blood level.
The overall average initial dose was 6.2 mg and did not differ
between the different clusters with 6, 6.2, and 6.5 mg for PM,
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FIGURE 1 | (A,B) Box-and-whisker plots of Tac C0 (ng/ml) according to (A) PPARa rs4253728G > A SNP or (B) CYP3A genotype clusters. The boxes depict the
interquartile ranges (IQR) with the bottom and the top of the boxes representing the first (Q1) and third quartiles (Q3), respectively, and the band inside the boxes
indicating the medians (Q2), the whiskers link the box with Q1+1.5xIQR and Q3+1.5xIQR and the diamonds represents the means (diagonal) with their
respectiveIC95%; (C) linear regression plot of Tac C0 (ng/ml) on the Y-axis versus Hematocrit (%) on the X-axis; each dot represents a couple of data for one
individual patient, the solid red line represents the fitted linear regression line. PM, poor metabolizer, IM, intermediate metabolizers, EM, extensive metabolizers.
∗p < 0.05.
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FIGURE 2 | Linear regression of individual observed versus predicted Tac concentrations using (A) mean model PK parameter values and (B) the means of the
individual Bayesian posterior parameter distributions. The dashed lines represent the unity lines.

FIGURE 3 | Normalized prediction distribution error (npde) diagnostic plots (A) Q-Q plot and (B) histogram with expected normal distributions indicated by the
dashed lines and light blue boxes (mean and CI95% ranges) and (C) npde with respect to post-intake time (D) and predicted Tac concentration with observed (solid
lines) and expected (dashed lines) npde means (red), 5th and 95th percentiles (blue) with their corresponding CI95% (filled ranges).

IM and EM, respectively (p > 0.05). With these initial dosages,
the actual proportions of patients reaching Tac concentrations
above 10 ng/ml on the first measurement (day 1) were 100.0,
52.8, and 25.3% for PM, IM and EM, respectively (p = 0.015).
The proportions of patients with Tac concentration values > 20
ng/ml on Day 1 were 40.0, 25.0, and 5.9% for PM, IM and EM,
respectively (p = 0.11). This is approximately comparable to the
PTA simulated with our model with respective doses of 6, 6.2,
and 6.5 mg for PM, IM and EM (Figures 6D–F). Indeed, using
these cluster specific doses, Pmetrics predicted that 73.5, 56.7,

and 49.6% of PM, IM and EM would have reached 10 ng/ml and
24.5, 14.1, and 11.4% of PM, IM and EM would have at least 20
ng/ml.

DISCUSSION

In classical candidate-gene association studies, the effect of
CYP3A4∗22 on Tac PK is well accepted (Elens et al., 2011,
2013a,b,c,f; Gijsen et al., 2013; Guy-Viterbo et al., 2014;
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FIGURE 4 | Visual predictive check (VPC) of simulated concentrations (dashed lines) represented by the 10th, 50th, and 90th percentiles versus time with the mean
observed Tac concentrations (solid line) and the individual values (dots).

Hesselink et al., 2014; de Jonge et al., 2015a; Tang et al., 2016;
Andreu et al., 2017). Contrasting with these observations, a
number of previous studies have failed to highlight the benefit
of introducing CYP3A4∗22 in modeling Tac inter-individual
variability through popPK-approaches, with a few exceptions
(Shi et al., 2011; Zuo et al., 2013; Zhang et al., 2015; Moes
et al., 2016; Andreu et al., 2017). This is not surprising as the
majority of studies were performed in Asian populations where
CYP3A4∗22 is absent, as it is for individuals of African origins.
We clearly showed here that PK prediction can be improved
by inclusion of patient CYP3A4∗22 allelic status, particularly via
a previously described CYP3A cluster classification that takes
into account both CYP3A4∗22 and CYP3A5∗3 alleles. Even
if it is well accepted that CYP3A5∗3 is the primary factor
explaining Tac PK metabolic defect, we showed here that the
CYP3A4∗22 PK influence is additive. However, even if the
amplitude of the CYP3A4∗22 effect might be comparable to that
of CYP3A5∗3, the CYP3A4∗22 influence is not as statistically
significant probably because of the wide PK variability observed
among the CYP3A4∗22 carriers. As a consequence, it may
also explain why it is not always identified as a significant
covariate when considering the few studies reported to date (Shi
et al., 2011; Zuo et al., 2013; Zhang et al., 2015; Moes et al.,
2016). Another possible explanation is the fact that CYP3A5∗3
completely blunts the CYP3A5 activity whereas for CYP3A4∗22,
some isoenzyme activity remains. An alternative hypothesis
is that this lack of statistical reproducibility is due to the

lower allelic frequency of CYP3A4∗22 compared to CYP3A5∗3
on the one hand (Bigdeli et al., 2014), and to the fact that
CYP3A4 activity is more variable than that of CYP3A5 on
the other. Furthermore, the parametric (or semi-parametric)
modeling strategy used in previous studies is probably less
efficient in detecting inter-individual variability. Indeed, our non-
parametric approach benefits from using multiple support points
for iterative processing of the data and, as such, each patient
is considered as having its own PK parameters distribution
and does not rely on the supposition that PK parameters are
normally distributed in the general population. This allows
better individual prediction and increases the ability to detect
differences between individuals. Finally, many confounders can
potentially impact on the CYP3A4∗22/CYP3A5∗3 effect. In the
present study, patients were still hospitalized and environmental
influencing factors were potentially better controlled than in
ambulatory studies. One can also consider the fact that patients
were in the very early period after transplantation where
steroids that are known to induce CYP3A activity are still
at a quite high dosage. Consequently, steroid induction can
have a different impact on CYP3A activity depending on the
genetic profile and can boost the difference between the different
CYP3A clusters making the effect of CYP3A4∗22 even more
significant (de Jonge et al., 2015b). Consequently, in previous
studies, the effect of CYP3A4∗22 might still be clinically true
but just hidden because of the study design and/or modeling
method.
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FIGURE 5 | Random selection of Individual predicted Tac concentrations versus time curves (lines) with observed Tac concentrations represented by cross symbols
(x) for (A) a CYP3A poor metabolizers (B) a CYP3A Intermediate metabolizers (C) a CYP3A extensive metabolizers with predicted line generated with the structural
(turquoise) and the covariate (purple) models, respectively.
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FIGURE 6 | Proportions of simulated patients achieving different Tac C0 targets with various dosage regimens in (A,B) CYP3A poor metabolizers (C,D) CYP3A
Intermediate metabolizers (E,F) CYP3A extensive metabolizers. Left panels correspond to the simulation performed for a set of virtual dosages, and right panels
simulations performed for the actual initial dosage that was really given to the patients.

Importantly, our study is in total agreement with the
conclusions of the study of Andreu et al. (2017) even if the
research strategies were dissimilar. Indeed, some important
differences in both the design, as well as in the population
modeling method render our study different and more robust
than the Spanish study. The first difference resides in the
study design. In the discovery cohort used to build their
model, Andreu et al. (2017), included only 7 patients that
were intensively sampled and, as such, providing a complete
PK course early after transplantation (day 7). The rest of the
samples (98% of the patients) were through levels collected
at five different time points with only one collected in the

very early post-transplant phase. In our study, a complete PK
profile was available for all the patients in the early post-
transplant phase. The second main difference resides in the
population modeling method. Indeed, in the study of Andreu
et al. (2017), Tac concentration-time data were analyzed using
a parametric population PK approach with NON-MEM, which
assumes that the estimated parameters are normally distributed
in the population. However, this assumption might not be true
especially if under-represented polymorphic alleles and minority
clusters are present in the sample. In non-parametric statistics,
no assumptions are made about the underlying distribution of
the PK parameters and each patient can serve as a support
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TABLE 3 | Simulated probability (%) of target attainments (C0) according to
CYP3A genotype and Tac dosage.

C0 targets CYP3A
Cluster

Tac simulated doses (mg)

2.5 5 7.5 10 15

2.5 ng/ml PM 91.7% 97.5% 98.4% 98.8% 98.9%

IM 82.5% 95.9% 97.9% 98.5% 98.7%

EM 64.1% 91.4% 96.0% 97.9% 98.2%

7.5 ng/ml PM 31.8% 79.1% 91.7% 95.1% 97.1%

IM 17.7% 61.0% 82.5% 91.2% 94.2%

EM 12.6% 50.5% 64.1% 79.3% 87.0%

10 ng/ml PM 11.3% 60.8% 84.9% 91.7% 94.7%

IM 8.1% 45.7% 68.0% 82.5% 89.3%

EM 7.2% 33.9% 55.6% 64.1% 76.1%

15 ng/ml PM 7.0% 31.8% 60.8% 79.1% 88.2%

IM 6.5% 17.7% 45.7% 61.0% 73.8%

EM 6.3% 12.6% 33.9% 50.5% 58.8%

17.5 ng/ml PM 6.5% 20.3% 48.2% 69.7% 82.5%

IM 6.3% 10.3% 35.8% 52.6% 64.9%

EM 6.3% 7.8% 23.9% 42.3% 53.9%

20 ng/ml PM 6.4% 11.3% 38.6% 60.8% 76.3%

IM 6.3% 8.1% 25.9% 45.7% 56.9%

EM 6.3% 7.2% 17.2% 33.9% 47.6%

point for the model-building iterative process and the estimation
of PK parameters. As such, instead of obtaining only single-
point parameter estimates for the population, one gets multiple
estimates, up to one for each subject studied. Consequently,
the model comes the closest to the collection of each subject’s
exactly known parameter values. Other strengths of the non-
parametric approaches include mathematical consistency, good
statistical efficiency, and good asymptotic convergence (Jelliffe
et al., 2000).

PPARα SNPs have been associated with differences in
exposure and/or metabolite formation of drugs metabolized
through CYP3A. More particularly, PPARα rs4253728G > A
SNP has been associated with the risk of developing Post-
Transplantation Diabetes Mellitus in patients treated with Tac
(Elens et al., 2013e). However, our previous investigation failed
to explain this increased risk through a PK difference. Here,
data suggest that PPARα might have an influence on Tac
PK, but in a recessive manner. However, in our cohort, only
4 patients were homozygous for the variant allele, among
whom 2 were CYP3A PM. This obviously renders the statistical
power very low and might explain the fact that it was not
retained in the final model. Moreover, the effect of PPARα is
thought to be exerted through an indirect effect on CYP3A4
activity. As a consequence, its effect in CYP3A4∗22 carriers
might be lowered and potentially confounded. This information
might also partly clarify the fact that PPARα SNP was
significant only when CYP3A cluster was not included in the
model.

By simulations of multiple dosing scenarios across the
different CYP3A clusters, we provide here clear dosage
recommendations with well-defined deliverables. With the
table presented in this paper, the clinician can use our predictions

directly for a given patient. Our model was proved to be efficient
to predict the Tac though blood concentration obtained after the
first dose administered directly after transplantation. Given our
PTA prediction table, the results suggest a starting dose around
0.1 mg/kg bodyweight b.i.d. for PM, 0.13 mg/kg bodyweight
b.i.d. for IM and 0.2 mg/kg bodyweight b.i.d. for EM. However,
by comparing PTA analysis with observed data, even if we can see
that predictions were quite accurate for IM and EM, they were
less precise for the PM cluster where our model seems to slightly
underestimate the defect caused by CYP3A4∗22. Consequently,
in line with what has been proposed earlier (Haufroid et al., 2006;
Thervet et al., 2010; Birdwell et al., 2015; De Meyer et al., 2016)
and because of the recent shifts toward lower Tac target ranges
(Ekberg et al., 2007), we suggest revising our above advices for
PM with a dose of 0.07 mg/kg bodyweight b.i.d. These new
guidelines are reasonable and in accordance to the original
suggestions of Haufroid et al. (2006), whose guidelines have
been successfully tested in a randomized clinical trial (Thervet
et al., 2010) and further translated in clear recommendations
by the CPIC (Birdwell et al., 2015). With the present analysis,
we add a slight nuance to their proposal by considering the
DOF caused by the CYP3A4∗22 allele. Besides, our innovative
classification implies different PM/IM/EM proportions in each
group explaining also the subtle modifications we propose here.
However, whereas some studies have identified a relationship
between Tac exposure and the risk of acute rejection, this has not
been a universal finding (Bouamar et al., 2013). This observation
clearly questions the clinical relevance of dosage guidelines
based on the probability of trough concentration achievement.
It has been speculated that currently applied targets saturate
the Tac response and that the concentration-effect relationship
is reaching its maximum at lower concentrations (Bouamar
et al., 2013; Storset et al., 2015). Nonetheless, with the recent
trend toward lower Tac target ranges (Ekberg et al., 2007), the
need for prediction tools to avoid underexposure will probably
increase. Moreover, Tac is known for its exposure-dependent
diabetogenic as well as nephrotoxic effects, which reinforces
the relevance of such a tool enabling to avoid too high drug
exposure.

Our study has, however, some limitations such as the
potential confounding effect of co-medications interfering with
ABCB1 function. However, as we did not find any influence of
ABCB1 SNPs on the Tacrolimus PK in univariate analysis, it is
most likely that these ABCB1 inhibitors will not substantially
affect our model, especially given the low dosage of these
potentially interacting co-medications. Furthermore, considering
these factors would have increased the number of covariates to
test and this comes against the general principle of parsimony.
Indeed, multiple statistical testing would have amplified the
chance of spurious associations leading to over-parametrization
of the model. Besides, we did test the potential impact of
these co-medications in univariate analysis and no significant
associations were found. One second surprising finding is the
fact that hematocrit was not retained as a significant covariate
in the final model whereas most of previous Tac popPK studies
reported a significant effect (Benkali et al., 2009; Woillard et al.,
2011; de Jonge et al., 2012; Asberg et al., 2013; Han et al., 2013;
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Storset et al., 2014, 2015; Andreu et al., 2017). This lack of
association can potentially arise from the design of our study.
Indeed, given that our patients were still hospitalized and
closely monitored, the variability in hematocrit values was not
substantial (CV = 15%) and even reduced in PM (CV = 13.7%)
and IM (13.6%) after CYP3A genotype stratification, providing
an explanation on why the effect of hematocrit is no longer
observed in a multivariate context when CYP3A genotype is
introduced the model. Also, concerning the lack of influence of
the age of the patient, as reported in Table 1, our population
was 51.9 years old on average and it has been described that
the age-related PK changes were essentially observed between
ages 40 and 50 but that bioavailability was constant at lower
and higher relative values in younger and older patients,
respectively (Storset et al., 2014). This might explain why we
did not find any association between age and Tac PK. Similarly,
it has been observed that gender differences in the PK of
CYP3A substrates seem to be more pronounced at younger ages
compared with in the elderly (Cotreau et al., 2005), providing an
explanation why gender was not associated with Tac PK in our
cohort.

Finally, it is obvious that our recommendations should be
validated through a randomized clinical trial and are open
to future amendments with the potential discovery of new
biomarkers. For instance, different studies highlighted the
importance of P450 oxidoreductase SNPs to explain differences
in CYP3A-driven metabolism and in particular the POR∗28 allele.
In the present study, we failed to replicate this observation
but this could be due to an insufficient statistical power
and/or imperfect study design. In particular, the analysis of
POR∗28 is complex as it not only depends on the CYP450
activity alteration but also on the inter-protein cooperation
which relies on the substrate size and the CYP450 isoform
implied.

CONCLUSION

We developed here a practical tool to predict Tac exposure after
renal transplantation taking into consideration the two patient’s
CYP3A4 and CYP3A5 genotypes and their linked predicted
metabolic phenotypes. We also showed that our model is accurate
in predicting the exposure subsequent to the very first Tac dose,
indicating that it can be used even when steady state is not
yet reached and thus, produces additional information to TDM
that can only be initiated profitably when PK steady state is
guaranteed, unless a Bayesian approach is used (Asberg et al.,
2013). In conclusion, based on our simulations, we predict
a different starting dose for each CYP3A genotype profile.
Therefore, we recommend new starting doses of 0.07 mg/kg
bid for PM, 0.13 mg/kg bid for IM and 0.2 mg/kg bid for EM.
Subsequently, after therapy initiation, this tool would probably
benefit the clinician if used in a Bayesian adaptive control system
(Storset et al., 2015).
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