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Nano-Lazar: Read across Predictions
for Nanoparticle Toxicities with
Calculated and Measured Properties
Christoph Helma*, Micha Rautenberg and Denis Gebele

In Silico Toxicology gmbh, Basel, Switzerland

The lazar framework for read across predictions was expanded for the prediction of

nanoparticle toxicities, and a new methodology for calculating nanoparticle descriptors

from core and coating structures was implemented. Nano-lazar provides a flexible

and reproducible framework for downloading data and ontologies from the open

eNanoMapper infrastructure, developing and validating nanoparticle read acrossmodels,

open-source code and a free graphical interface for nanoparticle read-across predictions.

In this study we compare different nanoparticle descriptor sets and local regression

algorithms. Sixty independent crossvalidation experiments were performed for the Net

Cell Association endpoint of the Protein Corona dataset. The best RMSE and r2 results

originated from models with protein corona descriptors and the weighted random forest

algorithm, but their 95% prediction interval is significantly less accurate than for models

with simpler descriptor sets (measured and calculated nanoparticle properties). The

most accurate prediction intervals were obtained with measured nanoparticle properties

(no statistical significant difference (p < 0.05) of RMSE and r2 values compared to

protein corona descriptors). Calculated descriptors are interesting for cheap and fast

high-throughput screening purposes. RMSE and prediction intervals of random forest

models are comparable to protein corona models, but r2 values are significantly lower.

Keywords: nanoparticle, toxicity, QSAR, read-across, predictive toxicology, machine learning, k-nearest-

neighbors

1. INTRODUCTION

Read across is a commonly used approach for the risk assessment of chemicals and has recently
gained popularity for nanoparticle risk assessment (Arts et al., 2014). Read across procedures
are based on the assumption that similar substances cause similar biological effects. In order to
estimate the activity of a novel substance a researcher will search for similar substances with known
biological activities and deduce the activity of the new substance from this data.

Most read across procedures for nanoparticles originate from a regulatory setting and aggregate
current nanotoxicity knowledge into rules for determining groups of similar substances and rules
for extrapolating the toxicity of the unknown nanoparticle (see Arts et al., 2014 for a review, Arts
et al., 2015; Schultz et al., 2015; Dekkers et al., 2016 for recent proposals).

Despite their popularity current read across approaches have a couple of disadvantages,
especially in respect to the reproducibility and validation of prediction results:
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• They require a lot of time from skilled toxicologists to search
for data, interpret it according to guidelines and to aggregate it
into a final assessment.

• Grouping and extrapolation criteria are rarely formally defined
and leaves the risk assessor room for interpretation.

• Implicit assumptions about grouping and extrapolation
criteria have been rarely validated and may be correct or not

• It is hardly possible to validate the proposed schemes
with independent test sets of statistically relevant
size.

In order to make the read across procedure reproducible,
traceable and objective the authors of this paper have developed a
programming framework (lazar, Maunz et al., 2013) for small
compounds with well defined structures. lazar follows the
generic read across process of identifying similar substances and
extrapolating from their measured activities, but automates the
process with well defined user selectable algorithms (see below).
This makes predictions less time consuming, reproducible
and allows independent validation studies. A graphical user
interface presents the rationales of predictions and supporting
information for a critical inspection and to reject dubious
predictions.

The objective of the current study was to extend lazar for
the risk assessment of nanomaterials and to integrate it with
databases and ontologies of the eNanoMapper EU FP7 project
(Jeliazkova et al., 2015), which contains currently all public
nanoparticle datasets and to validate a subset of the implemented
algorithms. The nano-lazar extension implements new
methods for representing and handling nanomaterials without
well defined chemical structures. This includes e.g., nanoparticle
characterizations by structural, size and shape, physico-chemical
and biological properties as well as ontology terms. It provides
also nanoparticle specific methods for descriptor calculation,
feature selection, similarity calculation and a graphical interface
optimized for nanoparticle predictions.

Similar to lazar, nano-lazar is completely modular.
Modelers can choose from a broad range of algorithms
for descriptors (measured and calculated), feature selection,
similarity calculation and local (Q)SARmodels, or easily add new
developments.

The concept of chemical similarity is the key idea behind all
read across procedures. But similarity is not an intrinsic property
of substances, it can be defined in different ways and the utility
and performance of similarity measures depends on each specific
use case.

Structural similarity is most frequently used in the risk
assessment of compounds with well defined chemical structures.
Structural similarity definitions are obviously not directly
applicable to nanomaterials, because they lack a well defined
structure. It is however relatively straightforward to adapt other
concepts, e.g., similarity in terms of chemical properties or in
terms of biological effects. Compared to structural similarity,
which can be calculated directly from chemical structures, these
similarity definitions depend on actual measurements, which
makes their estimation more expensive and time consuming. For
this reason we have developed a new structural similarity concept

for nanomaterials, which is based on chemical fingerprints of
core and coating materials.

In order to estimate the utility of various similarity concepts
for nanomaterials, we have performed model building and
validation experiments for models based on

• Structural similarity (using core and coating fingerprints)
• Property similarity (using measured nanoparticle physico-

chemical properties)
• Biological similarity (using serum protein interaction data)

and the local regression algorithms

• Weighted average
• Weighted partial least squares
• Weighted random forests.

In addition we intend to address the important topic of
reproducible research with this publication. In our experience it
is frequently impossible to reproduce computational experiments
for a variety of reasons, e.g.,

• Publications lack important details about algorithms.
• Publications do not provide access to the data that has been

used.
• Authors use proprietary software that does not disclose its

algorithms with all necessary details.
• Original software, libraries and operating systems are outdated

and not available anymore.

We try to address these problems by providing a public,
self contained docker image with all software and data
required for the experiments presented in this manuscript at
DockerHub (https://hub.docker.com/r/insilicotox/nano-lazar-
paper). It contains also a build system for the manuscript,
that pulls results and figures directly from validation
experiments (similar to the R knitr package, Xie, 2015).
Apart from repeating the experiments for this paper this
image can also be used for extending the system, testing other
descriptor and modeling algorithms and comparing validation
results with the current benchmark as well as for teaching
purposes.

Source code for the manuscript and validation experiments
has been published under a GPL3 license at GitHub (https://
github.com/opentox/nano-lazar-paper). The lazar framework
library has been published under the same license (https://github.
com/opentox/lazar).

A graphical webinterface for nano-lazar model
predictions and validation results is publicly accessible at
https://nano-lazar.in-silico.ch, source code for the GUI can be
obtained from https://github.com/enanomapper/nano-lazar.

GitHub and DockerHub repositories are tagged with

nano-lazar-paper to identify the software version
that corresponds to the published paper. As this project is

under continuous development, it is likely that some of the
algorithms will change in the future. In this case it is relatively

straightforward to identify differences with the versioning

system or to use the submitted version as benchmark for further
developments.
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2. METHODS

The following sections give a high level overview about
nano-lazar algorithms. Readers interested in unambiguous
algorithm definitions should refer to the source code links in the
text.

2.1. Datasets
Nanoparticle characterizations and toxicities were mirrored from
the eNanoMapper database (Jeliazkova et al., 2015) via its
REST API (https://github.com/opentox/lazar/blob/nano-lazar-
paper.revision/lib/import.rb#L9-L122). At present only the Net
cell association endpoint of the Protein corona dataset, has a
sufficient number of examples (121) to create and validate read-
across models, all other eNanoMapper toxicity endpoints have
less than 20 examples, which makes them unsuitable for local
QSAR modeling and crossvalidation experiments.

Net cell association indicates the fraction of nanoparticles
associated with A549 human lung epithelial carcinoma cells,
including internalization of the nanoparticles and adhesion to
the cell membrane (Walkey et al., 2014). Net cell association
was measured in by inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) in A549 cells, which are widely used as
a model to study fundamental nanoparticle-cell inter- actions.
Net cell association has a relevance to inflammatory responses,
biodistribution, and toxicity in vivo (Walkey et al., 2014). During
the rest of the text we will frequently use the general term toxicity
to indicate Net cell association, in order to increase readability
and to emphasize the general applicability of the nano-lazar
approach.

2.2. Algorithms
For this study we have adapted the modular lazar (lazy
structure activity relationships) read across framework (Maunz
et al., 2013) for nanoparticle model development and validation.

lazar was originally developed for small molecules with
a defined chemical structure and uses chemical fingerprints
for the identification of similar compounds (neighbors).
Most nanoparticles do not have clearly defined chemical
structures, but they can be characterized by their composition
(core and coatings), measured properties (e.g., size, shape,
physicochemical properties) or the interaction with biological
macromolecules. Within nano-lazar we use these properties
for the identification of similar nanoparticles (neighbors) and as
descriptors for local QSAR models.

nano-lazar makes read-across predictions with the
following basic workflow: For a given nanoparticle lazar

• Searches in the database for similar nanoparticles (neighbors)
with experimental toxicity data,

• builds a local QSAR model with these neighbors and
• uses this model to predict the activity of the query compound.

This procedure resembles an automated version of read across
predictions in toxicology, in machine learning terms it would
be classified as a k-nearest-neighbor algorithm (https://github.
com/opentox/lazar/blob/nano-lazar-paper.revision/lib/model.
rb#L191-L272).

Apart from this basic workflow nano-lazar is completely
modular and allows the researcher to use arbitrary algorithms for
similarity searches and local QSAR modeling. Within this study
we are using and comparing the following algorithms:

2.2.1. Nanoparticle Descriptors
In order to find similar nanoparticles and to create local
QSAR models it is necessary to characterize nanoparticles by
descriptors. In this study we are using three types of descriptors:

Structural descriptors: Union of MOLPRINT 2D fingerprints
(MP2D, Bender et al., 2004) for core and coating
compounds (https://github.com/opentox/lazar/blob/
nano-lazar-paper.revision/lib/nanoparticle.rb#L22-L29)
MP2D fingerprints use atom environments as molecular
representation, which resemble basically the chemical
concept of functional groups. For each atom in a molecule
it represents the chemical environment using the atom types
of connected atoms. MP2D fingerprints were calculated
with the OpenBabel (O’Boyle et al., 2011) library.

Physico-chemical nanoparticle properties: Measured
nanoparticle properties from the eNanoMapper database
(P-CHEM).

Biological nanoparticle properties: Protein interaction data
from the eNanoMapper database (Proteomics).

Nanoparticle MP2D fingerprints are a novel development for
the characterization of nanoparticles with well defined core
and coating compounds. In this case it is possible to create
molecular fingerprints for all of these compounds and to use
the union of these fingerprints as nanoparticle fingerprint. Based
on our experience with small molecules we have selected MP2D
fingerprints (Bender et al., 2004), which typically outperform
predefined fingerprints (e.g., MACCS, FP4) for QSAR purposes.
Despite its simplicity the concept works surprisingly well (see
validation results) and enables toxicity predictions without
measured properties. This can be useful e.g., for fast and cheap
nanoparticle toxicity screening programs.

2.2.2. Feature Selection
Calculated MP2D fingerprints are used without feature selection,
as preliminary experiments have shown, that feature selection
deteriorates the overall performance of fingerprint read-across
models (which is in agreement with our observations on small
molecules).

Nanoparticle properties in the eNanoMapper database have
not been measured for the purpose of read across and QSAR
modeling. For this reason the database contains a lot of features
that are irrelevant for toxicity. In preliminary experiments we
have observed that using all available features for similarity
calculations leads to neighbor sets that are unsuitable for local
QSAR models, because large numbers of irrelevant features
override the impact of features that are indeed relevant for
toxicity.

For this reason we use the lazar concept of activity specific
similarities (Maunz et al., 2013), by selecting only those features
that correlate with a particular toxicity endpoint (Pearson
correlation p-value < 0.05). This reduced set of relevant features
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is used for similarity calculations and local QSAR models
(https://github.com/opentox/lazar/blob/nano-lazar-paper.revisi
on/lib/feature_selection.rb#L7-L34). Apart from being
computationally cheaper, simple filter methods pose also a
lower risk of overfitting than more aggressive feature selection
methods (e.g., forward selection, backwards elimination). As
local models are built with the R caret package which uses
feature selection internally there is no requirement for extremely
small descriptor sets at this stage.

For crossvalidation experiments feature selection is repeated
separately for each crossvalidation fold, to avoid overfitted
models (Gütlein et al., 2013).

2.2.3. Neighbor Identification
For binary features (MP2D fingerprints) we are using the union
of core and coating fingerprints to calculate the Tanimoto/Jaccard
index and a similarity threshold of sim > 0.1 (https://
github.com/opentox/lazar/blob/nano-lazar-paper.revision/lib/
similarity.rb#L22-L27).

For quantitative features (P-CHEM, Proteomics) we use the
reduced set of relevant features to calculate the weighted cosine
similarity of their scaled and centered relevant feature vectors,
where the contribution of each feature is weighted by its Pearson
correlation coefficient with the toxicity endpoint. A similarity
threshold of sim> 0.5 was used for the identification of neighbors
for local QSAR models (https://github.com/opentox/lazar/blob/
nano-lazar-paper.revision/lib/similarity.rb#L50-L66).

In all cases nanoparticles that are identical to the query particle
are eliminated from neighbors to obtain unbiased predictions
in the presence of duplicates (https://github.com/opentox/lazar/
blob/nano-lazar-paper.revision/lib/model.rb#L234-L255).

2.2.4. Local QSAR Models and Predictions
For read-across predictions local QSAR models for a query
nanoparticle are build from the set of similar nanoparticles
(neighbors).

In this investigation we are comparing three local regression
algorithms:

• Weighted local average (WA, https://github.com/opentox/
lazar/blob/nano-lazar-paper.revision/lib/regression.rb#L7-
L21)

• Weighted partial least squares regression (PLS, https://github.
com/opentox/lazar/blob/nano-lazar-paper.revision/lib/caret.
rb#L8-L86)

• Weighted random forests (RF, https://github.com/opentox/
lazar/blob/nano-lazar-paper.revision/lib/caret.rb#L8-L86)

In all cases neighbor contributions are weighted by their
similarity to the query particle. The weighted local average
algorithm serves as a simple and fast benchmark algorithm,
whereas partial least squares and random forests are known to
work well for a variety of QSAR problems. Partial least squares
and random forest models use the R package caret (Kuhn,
2008). Models are trained with default settings, optimizing the
number of PLS components or number of variables available for
splitting at each RF tree node by bootstrap resampling.

Finally the local model is applied to predict the activity
of the query nanoparticle. The RMSE of bootstrapped model
predictions is used to construct 95% prediction intervals at
1.96∗RMSE (https://github.com/opentox/lazar/blob/nano-lazar-
paper.revision/lib/caret.rb#L59-L71).

If PLS/RF modeling or prediction fails, the program resorts to
using the weighted average method.

For the weighted average algorithm prediction intervals are
not available, because weighted average does not use internal
validation.

2.2.5. Applicability Domain
The applicability domain of lazar models is determined by
the diversity of the training data. If no similar compounds are
found in the training data (either because there are no similar
nanoparticles or because similarities cannot be determined due
to the lack of measured properties), no predictions will be
generated. Warnings are also issued, if local QSAR model
building or model predictions fail and the program has to resort
to the weighted average algorithm (https://github.com/opentox/
lazar/blob/nano-lazar-paper.revision/lib/model.rb#L191-L272).

Each prediction is accompanied with a list of neighbors and
their similarities, which are clearly displayed in the graphical
user interface for the inspection by a toxicological expert.
Apart from indicating the applicability domain, the neighbor list
clearly shows the rationale for the prediction, and allows the
expert to reject predictions e.g., when neighbors act via different
mechanisms.

The accuracy of local model predictions is indicated by the
95% prediction interval, which is derived from internal caret
validation (https://github.com/opentox/lazar/blob/nano-lazar-
paper.revision/lib/caret.rb#L59-L71). Query substances close to
the applicability domain (many neighbors with high similarity)
will have a narrower prediction interval than substances with a
larger distance (few neighbors with low similarity).

2.2.6. Validation
For validation purposes we use results from 5 repeated 10-fold
crossvalidations with independent training/test set splits for each
descriptor/algorithm combination (https://github.com/opentox/
lazar/blob/nano-lazar-paper.revision/lib/crossvalidation.rb#L100
-L113). Feature selection is performed for each validation fold
separately to avoid overfitting. For the same reason we do not
use a fixed random seed for training/test set splits. This leads to
slightly different results for each repeated crossvalidation run,
but it allows to estimate the variability of validation results due
to random training/test splits.

In order to identify significant differences between validation
results, outcomes (RMSE, r2, correct 95% prediction interval)
are compared by ANOVA analysis, followed by Tukey multiple
comparisons of means (https://github.com/enanomapper/nano-
lazar-paper/blob/nano-lazar-paper.revision/scripts/cv-statistics.
rb).

Please note that recreating validations (e.g., in the Docker
image) will not lead to exactly the same results, because
crossvalidation folds are created randomly to avoid overfitting for
fixed training/test set splits.
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These five 10-fold crossvalidations are assigned to the final
model, which is build from the complete training data. This
validated model is used for further predictions, e.g. from the
graphical webinterface.

2.3. Availability
Public webinterface: https://nano-lazar.in-silico.ch
lazar framework https://github.com/opentox/lazar (source

code)
nano-lazarGUI: https://github.com/enanomapper/nano-

lazar (source code)
Manuscript: https://github.com/opentox/nano-lazar-paper

(source code for the manuscript and validation
experiments)

Docker image: https://hub.docker.com/r/insilicotox/nano-lazar
paper/ (container with manuscript, validation experiments,
lazar libraries and third party dependencies).

3. RESULTS

The Protein corona dataset contains 121 Gold and Silver particles
that are characterized by physchem properties (P-CHEM) and
their interaction with proteins in human serum (Proteomics). In
additionMP2D fingerprints were calculated for core and coating
compounds with defined chemical structures.

Five repeated crossvalidations with independent training/test
set splits were performed for the descriptor classes

• MP2D fingerprints (calculated, binary)
• P-CHEM properties (measured, quantitative)
• Proteomics data (measured, quantitative)
• P-CHEM and Proteomics data combined (measured,

quantitative)

and the local regression algorithms

• Local weighted average (WA)
• Local weighted partial least squares regression (PLS)
• Local weighted random forests (RF).

Results of these experiments are summarized in Table 1.
Figures 1–3 show the correlation of predictions with
measurements for MP2D, P-CHEM, and Proteomics random
forests models. Correlation plots for all descriptors and
algorithms are available as Supplementary Material (https://
github.com/enanomapper/nano-lazar-paper/tree/nano-lazar-pap
er.revision/figures). Table 2 lists P-CHEM properties of the
Protein Corona dataset and their correlation with the Net Cell
Association endpoint.

Table 1 summarizes the results from five independent
crossvalidations for all descriptor/algorithm combinations. The
best results in terms of RMSE and R2 were obtained with
Proteomics descriptors and local weighted random forest models.
Six models have no statistically significant difference in terms of
RMSE and five models in terms of r2. The most accurate 95%
prediction intervals were obtained with P-CHEM descriptors
and partial least squares models, these models does not differ
significantly from the best RMSE and r2 results.

3.1. Descriptors
In terms of descriptors the best overall results were obtained
with Proteomics descriptors. This is in agreement with previous
findings from other groups (Walkey et al., 2014; Liu et al.,
2015; Papa et al., 2016). It is however interesting to note that
prediction intervals are significantly more inaccurate than those
from other descriptors and the percentage of measurements
within the prediction interval is usually lower than 90% instead
of expected 95%.

Using P-CHEM descriptors in addition to Proteomics does
not lead to improved models, instead we observe an increased
sensitivity toward training/test set splits (crossvalidation
variability) and random forest results perform even significantly
poorer than Proteomics descriptors alone.

P-CHEM descriptors alone perform surprisingly well,
especially in combination with local random forest models,
which does not show statistically significant differences to
the best Proteomics model. On average more than 95% of the
measurements fall within the 95% prediction interval, with
significantly better results than for Proteomics descriptors. A
summary of P-CHEM descriptors can be found in Table 2.

AllMP2Dmodels have poorer performance in terms of r2, but
the random forest model does not differ significantly in terms of
RMSE and measurements within the prediction interval.

3.2. Algorithms
With the exception of P-CHEM/Proteomics descriptors random
forests models perform better than partial least squares and
weighted average models with significant differences for MP2D
and P-CHEM descriptors (detailed pairwise comparisons
are available in the Supplementary Material https://github.
com/enanomapper/nano-lazar-paper/blob/nano-lazar-paper.revi
sion/results/). Interestingly the simple weighted average
algorithm shows no significant difference to the best performing
model for the Proteomics and P-CHEM/Proteomics descriptors.

4. DISCUSSION

4.1. Performance
Although random forestmodels with Proteomics descriptors have
the best performance in terms of RMSE and r2, the accuracy
of the 95% prediction interval is significantly lower than for
MP2D and P-CHEM models (detailed pairwise comparisons in
the Supplementary Material).

These problems seem to originate from internal caret
optimisation and validation algorithms which underestimate
RMSE values, that are used to calculate the prediction interval
(see Algorithm section). The observation that the weighted
average algorithm, which does not use caret, performs
comparatively well for Proteomics descriptors, supports this
interpretation.

Our initial suspicion was that an unfavorable ratio between
descriptors (785 before feature selection, 129 after feature
selection) and training examples (121) causes this problem.
Randomforest and partialleastsquares algorithms are on the other
hand robust against a large number of descriptors and caret
returns very realistic RMSE values for MP2D fingerprints with a
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TABLE 1 | Results from five independent crossvalidations for various descriptor/algorithm combinations.

Descriptors Algorithm RMSE r2 % Measurements within prediction interval

MP2D WA 2.03 2.1 2.07 2.07 2.03 0.24 0.19 0.21 0.22 0.24 NA

MP2D PLS 2.05 2.03 2.02 2.09 2.16 0.28 0.28 0.29 0.27 0.28 96 94 94 93 94

MP2D RF 1.73 1.77 1.67 1.67 1.73 0.46 0.45 0.49 0.5 0.47 96 93 94 94 96

P-CHEM WA 1.98 1.94 1.91 1.93 2.0 0.44 0.47 0.48 0.47 0.43 NA

P-CHEM PLS 2.09 2.09 2.14 2.03 2.01 0.38 0.39 0.36 0.42 0.43 97 96 97 96 97

P-CHEM RF 1.76 1.73 1.81 1.86 1.83 0.56 0.58 0.54 0.51 0.53 97 95 94 93 94

Proteomics WA 1.88 1.72 1.73 1.91 1.76 0.52 0.6 0.59 0.52 0.58 NA

Proteomics PLS 1.74 1.85 1.78 1.61 1.68 0.59 0.56 0.56 0.64 0.62 87 87 86 85 88

Proteomics RF 1.51 1.61 1.8 1.73 1.56 0.68 0.65 0.55 0.6 0.65 87 89 89 92 92

P-CHEM Proteomics WA 1.72 1.77 1.85 1.44 1.67 0.6 0.58 0.55 0.7 0.62 NA

P-CHEM Proteomics PLS 1.55 1.91 1.79 1.94 1.64 0.67 0.54 0.58 0.51 0.64 84 86 88 86 90

P-CHEM Proteomics RF 1.85 1.74 2.1 1.68 1.51 0.55 0.59 0.45 0.61 0.69 90 88 90 91 92

Best results (mean of 5 crossvalidations) are indicated by bold letters, statistically significant (p < 0.05) different results by italics. Results in normal fonts do not differ significantly from

best results.

FIGURE 1 | Correlation of predicted vs. measured values for five independent crossvalidations with MP2D fingerprint descriptors and local random forest models.

similar number of independent variables (100). For this reason it
is presently still unclear, why prediction intervals for Proteomics
descriptors are more inaccurate than for other descriptor types.

P-CHEM random forest models have the most accurate
prediction interval and the RMSE and r2 performance is
comparable to the Proteomics model, although they utilize a

much lower number of descriptors (20 before feature selection,
10 after feature selection). The main advantage from a practical
point of view is that predictions of novel nanoparticles require a
much lower amount of measurements than with Proteomics data
(although this argument may become obsolete with new high
throughput techniques).
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FIGURE 2 | Correlation of predicted vs. measured values for five independent crossvalidations with P-CHEM descriptors and local random forest models.

MP2D fingerprint descriptors are interesting from a practical
point of view, because they do not require any measurements
of nanoparticle properties. They need however defined chemical
structures for core and coating compounds, which makes
this approach infeasible for nanoparticle classes like carbon
nanotubes. The resulting models do not differ significantly
from the best results in terms of prediction accuracy (RMSE,
measurements within prediction interval), but are significantly
lower in terms of explained model variance (r2). For practical
purposes one may argue that the primary objective of read across
models is to make accurate predictions (low RMSE, accurate
prediction interval) and not to explain the model variance
(r2). For this reason we consider r2 performance as secondary
compared to RMSE and prediction interval accuracies.

4.2. Problematic Predictions
In order to investigate possible systematic errors with
nano-lazar models we have investigated all random
forest crossvalidation predictions with measurements outside of
the 95% prediction interval.

Table 3 shows, that the number of problematic predictions
increase from fingerprints to P-CHEM and Proteomics
descriptors. Few substances have consistent incorrect predictions
across all five crossvalidation runs, and it seems that models with

Proteomics descriptors are more sensitive toward training/test
set splits than e.g., fingerprint models. This observation is also
supported by the poorer accuracy of their prediction intervals
(Table 1).

Fingerprint models seem to provide the most stable
predictions, but three nanoparticles have consistent problematic
predictions across all crossvalidations. For illustrative purposes
we will investigate G15.DDT@SDS, the substance with the
largest prediction error.

In all five crossvalidations the closest neighbors
(S40.DDT@DOTAP, G30.DDT@DOTAP, G15.DDT@DOTAP,
G60.DDT@DOTAP) have a similarity of 0.5 and measured values
between −2.0 and −0.3. This explains, why local models cannot
extrapolate to the measured value of −7.7 of the query particle.
Based on our experience with small molecules, we do not expect
reliable predictions, unless local models can be built with a
similarity threshold of 0.51. Predictions obtained from neighbors
with lower similarities can still be useful, but require manual
inspection (and possible rejection) of a toxicological expert.
For this purpose we provide the free graphical user interface
at https://nano-lazar.in-silico.ch, which presents prediction

1The latest lazar development version already issues a warning in this case, this

feature will be included into the next release.
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FIGURE 3 | Correlation of predicted vs. measured values for five independent crossvalidations with Proteomics descriptors and local random forest models.

results, neighbors and supporting information (e.g., links to
additional eNanoMapper data, nanoparticle characterizations
and ontologies).

4.3. Comparison with Other Models
According to our knowledge up to now no validated read across
models have been published for the Protein corona datasets. Most
other nanoparticle read across models have not been formally
validated, with the exception of Gajewicz et al. (2015) and
Gajewicz et al. (2017), who validated read across models for 17
metal oxides. Results from these studies are not comparable with
our findings, because they use a different, smaller dataset and
other validation methods. It seems that in both studies feature
selection was performed on the complete dataset prior to model
validation, which transfers information from the test set into the
validation model. Single training (n = 10) and test (n = 7)
sets were used, which makes it hard to ensure that models are
not overfitted for the particular training/test set split. Due to the
small test set size it is also hard to draw general conclusions about
the model performance. We are not aware of any nanoparticle
read across validation that exceeds 100 substances as in our
investigation.

For the Protein corona dataset a couple of QSAR studies with
global models have been published (Walkey et al., 2014; Liu et al.,

2015; Papa et al., 2016), but unfortunately their results are also not
directly comparable, because we report results for the complete
dataset with 121 Gold and Silver particles, while other authors
report results only for a subset of Gold particles.

Walkey et al. (2014) report leave-one-out (LOO) and 4-
fold crossvalidation (4CV) results for 105 Gold particles. They
obtained the best results (LOO r2 0.86, 4CV r2 0.63) with partial
least squares models, protein corona data with four additional
physicochemical parameters and jackknife parameter selection.
Parameter selection was performed by crossvalidation, but it
is unclear if parameters were selected on the complete dataset
prior to LOO/4CV or separately for each LOO/4CV model.
Performance wise the findings are roughly in agreement with our
results. Assuming that feature selection was performed within
crossvalidation folds we would expect 10-fold crossvalidation
results between LOO and 4CV results. According to the authors
the model developed for Gold compounds have little predictivity
for Silver compounds, but a separate Silver model gave LOO r2

of 0.79. RMSE values are not available, although they are in our
opinion more relevant for the predictive toxicology use case than
r2 values (prediction error vs explained model variance).

Liu et al. (2015) report a 4CV r2 of 0.843 for 84 Gold
compounds using ǫ-support vector machines (ǫ-SVM) with 6
serum proteins and zeta potential as descriptors. Descriptors
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TABLE 2 | P-CHEM properties of the Protein corona dataset measured with and

without human serum.

Property Medium Unit

Localized Surface Plasmon Resonance

(LSPR) index

–

Localized Surface Plasmon Resonance

(LSPR) index

Human serum

LSPR peak position (nm) – nm

Polydispersity index – nm

Polydispersity index Human serum nm

Core size – nm

Autot (ICP-AES) Human serum nmol

Total surface area (SAtot) Human serum cm2

Protein density Human serum µg/cm2

Total protein (BCA assay) Human serum µg

ZETA POTENTIAL – mV

ZETA POTENTIAL Human serum mV

Z-Average Hydrodynamic Diameter – nm

Z-Average Hydrodynamic Diameter Human serum nm

Volume Mean Hydrodynamic Diameter – nm

Volume Mean Hydrodynamic Diameter Human serum nm

Number Mean Hydrodynamic Diameter – nm

Number Mean Hydrodynamic Diameter Human serum nm

Intensity Mean Hydrodynamic Diameter – nm

Intensity Mean Hydrodynamic Diameter Human serum nm

Features correlating with the Net cell association endpoint (relevant features) are indicated

by bold letters.

were selected with sequential forward floating selection (SFFS).
The methodological descriptions do not indicate explicitly, if
feature selection was performed on the complete dataset or
within 4CV folds. Judging from Figure 2 of this paper and the
Methods section we have the strong impression that feature
selection was performed prior to crossvalidation, which increases
the likelihood of overfitted models, especially for aggressive
feature selection schemes like SFFS. The 4CV r2 of 0.843 is
clearly higher than our results, but it remains unclear, if the
superior performance is due to better algorithms, a smaller
more “regression friendly” dataset or overfitted models. Again
we would have preferred RMSE values for comparison purposes,
which are unfortunately not available.

Papa et al. (2016) developed global models for 84 Gold
compounds with eleven algorithms and reported r2 and RMSE
values for training set retrofitting, leave-one-out crossvalidation
(LOO) and stratified external test set predictions (64 particles
training set, 20 particles test set). There was little difference
between good performing models (PPR, EARTH, SVM-linear,
SVM-radial, MLR, and PLS) and the authors conclude that
Projection Pursuit Regression (PPR) gives the most robust
models (LOO r2 0.81, RMSE 1.01, external r2 0.79, RMSE 1.01).
Feature selection (with genetic algorithms and support vector
machines) and parameter selection (with the caret R package)
were correctly performed on the training set only, which might
explain the lower r2 values compared to Liu et al. (2015). Both r2

and RMSE values are better than in our study, but we have used

TABLE 3 | Random forest predictions with measurements outside of the 95%

prediction interval (Median log2 transformed values).

Descriptors Nanoparticle CVs PI distance Error

MP2D fingerprints G15.DDT@SDS 5 2.2 6.2

MP2D fingerprints G15.NT@DCA 5 0.7 3.0

MP2D fingerprints G60.MBA 5 0.5 2.7

MP2D fingerprints G15.DDT@ODA 1 1.1 5.0

MP2D fingerprints S40.MHDA 1 0.0 3.4

MP2D fingerprints S40.CIT 1 0.0 2.3

MP2D fingerprints G30.DDT@HDA 1 0.0 4.2

P-CHEM G30.cPEG5K-SH 5 2.3 4.5

P-CHEM G15.nPEG5K-SH 5 1.0 5.4

P-CHEM G60.mPEG5K-SH 5 0.7 4.3

P-CHEM S40.AUT 4 0.7 3.0

P-CHEM G15.DDT@CTAB 3 0.9 6.1

P-CHEM G15.HDA 2 0.3 5.6

P-CHEM S40.PLL-SH 2 0.1 2.2

P-CHEM G15.PEI-SH 1 0.5 4.6

P-CHEM G15.DDT@SA 1 0.4 1.2

P-CHEM G60.DTNB 1 0.2 1.7

P-CHEM G15.MES 1 0.2 2.3

P-CHEM S40.MAA 1 0.1 2.6

P-CHEM G60.MBA 1 0.0 1.6

Proteomics G15.nPEG5K-SH 5 1.3 3.9

Proteomics G15.mPEG1K-SH 5 0.8 3.5

Proteomics G30.cPEG5K-SH 5 0.6 3.9

Proteomics G15.ODA 4 1.8 4.5

Proteomics G60.NT@PVA 4 0.3 2.8

Proteomics G60.MUTA 4 0.3 1.5

Proteomics G30.AUT 4 0.2 0.6

Proteomics G30.CALNN 3 0.3 2.1

Proteomics G15.PEI-SH 3 0.3 0.3

Proteomics S40.AUT 2 1.6 3.3

Proteomics G60.mPEG5K-SH 2 0.9 2.9

Proteomics S40.LA 2 0.1 1.3

Proteomics G60.HDA 1 2.4 3.7

Proteomics G15.MES 1 1.8 3.2

Proteomics G15.PEG3K(NH2)-SH 1 1.8 3.9

Proteomics G60.ODA 1 1.0 4.2

Proteomics G15.AUT 1 0.1 0.4

Proteomics G15.SA 1 0.1 0.8

Proteomics G60.CIT 1 0.1 0.7

P-CHEM and Proteomics G15.ODA 5 2.0 5.0

P-CHEM and Proteomics G15.mPEG1K-SH 5 0.8 3.1

P-CHEM and Proteomics G30.CALNN 5 0.7 2.2

P-CHEM and Proteomics G15.nPEG5K-SH 5 0.6 3.4

P-CHEM and Proteomics G60.MUTA 5 0.5 1.5

P-CHEM and Proteomics G60.DTNB 4 1.1 1.6

P-CHEM and Proteomics S40.AUT 3 1.6 3.3

P-CHEM and Proteomics G60.mPEG5K-SH 2 0.4 3.5

P-CHEM and Proteomics G30.AUT 2 0.3 0.8

P-CHEM and Proteomics G15.AUT 2 0.1 0.4

P-CHEM and Proteomics G15.MUA 2 0.1 1.1

(Continued)
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TABLE 3 | Continued

Descriptors Nanoparticle CVs PI distance Error

P-CHEM and Proteomics G30.cPEG5K-SH 1 2.4 3.5

P-CHEM and Proteomics G15.PEG3K(NH2)-SH 1 1.2 2.8

P-CHEM and Proteomics G15.PEI-SH 1 0.3 0.3

P-CHEM and Proteomics G15.HDA 1 0.2 3.9

P-CHEM and Proteomics G15.DDT@ODA 1 0.1 2.0

P-CHEM and Proteomics G15.SA 1 0.1 0.7

P-CHEM and Proteomics G15.PVA 1 0.0 1.7

the complete dataset with 121 Gold and Silver compounds and
not a subset of 84 Gold compounds.

All these studies use global models for a subset of the Protein
Corona dataset, which makes sense for a relatively homogeneous
dataset with a single mode of action. nano-lazar in contrast
creates local QSAR models for each query compound, which
makes the approach more generally applicable for nanoparticles
with different modes of action. For this reason we were able to
cover all 121 nanomaterials of the Protein Corona dataset, while
global models could utilize only 69% of the complete dataset.
According to our experience with small molecules, local read
across models are best applied to heterogeneous datasets with a
couple of hundred examples. Datasets with approximately 100
examples are the lower margin where local QSAR models can
be successfully built and validated. For this reason we expect
that nano-lazar performance will increase as soon as more
nanotoxicity data becomes available.

5. CONCLUSION

We have performed 60 independent crossvalidation experiments
for the Protein Corona dataset obtained from the eNanoMapper
database in order to identify the best combination of descriptors
for nanoparticle read across predictions. The best RMSE and

r2 results were obtained with protein corona descriptors and
the weighted random forest algorithm, but the 95% prediction
interval is significantly less accurate than that of models with

simpler descriptor sets (measured and calculated nanoparticle
properties). Themost accurate prediction intervals were obtained
with measured nanoparticle properties with RMSE and r2 values
that show no statistical significant difference (p < 0.05) to the
protein corona descriptors. Calculated descriptors are interesting
for cheap and fast high-throughput screening purposes, they have
significantly lower r2 values than the best results, but RMSE and
prediction intervals show no significant difference to the best
results of our investigation.

For practical purposes we suggest to use nanoparticle
properties when measurements are available and the newly
developed nanoparticle fingerprints for screening purposes
without physicochemical measurements. Both models have been
implemented with a graphical user interface which is publicly
available at https://nano-lazar.in-silico.ch.
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