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Polycationic vectors are used widely in the field of gene delivery, while currently their

immune activities in vivo are poorly understood. In this comprehensive review, we aim

to present an overview of existing mechanisms of adverse immune responses induced

by the polycation/gene complexes, which includes the polycations themselves, the gene

sequences and the ROS produced by them. These causes can induce pro-inflammatory

cytokines, hypersensitivity as well as the activation of toll-like receptors, and finally

the immunostimulation occur. In addition, we introduce some different opinions and

research results on the immunogenicity of classical polycations such as polylysine (PLL),

polyethyleneimine (PEI), polyamidoamine dendrimers (PAMAM), chitosan and gelatin,

most of which have immunogenicity and can induce immunoreactions in vivo. The

methods now used to adjust their immunogenicity are shown in the final part of this

review. Nowadays, there is still no accurate conclusion on immunogenicity of polycations,

which confuses researchers seriously in in vivo test. We conclude that further research

is needed in order to skillfully utilize or inhibit the immunogenicity of these polycationic

vectors.
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INTRODUCTION

The successful establishment of gene delivery system can hardly occur without the involvement
of vectors, in which viral vectors and non-viral vectors are included. In most cases, viral vectors
are modified from adenovirus, vaccinia virus, herpes virus, etc. (Culver et al., 1992; Yang et al.,
1994; Puhlmann and Brown, 2000). The high performance of viral vectors in gene delivery is due
to their natural ability to infect host cells and release hereditary materials. Meanwhile, a series of
safety problems of viral vectors have already been noticed by researchers (Thomas et al., 2003).
Non-viral vectors (Duan et al., 2012; Xiang et al., 2012; Chen et al., 2013, 2014, 2016a,b; Ma et al.,
2013; Ge et al., 2014a,b), including both natural and artificial polymers, can pack gene sequences
in vitro, then get into the cytoplasm, and finally release gene in vivo through the mechanism
of the proton sponge effect (Kesharwani et al., 2012). Currently representative synthetic non-
viral vectors include polylysine (PLL), polyethyleneimine (PEI), polypropyleneimine (PPI) and
polyamidoamine dendrimers (PAMAM) (Tang et al., 1996; Zauner et al., 1998; Zou et al., 2000;
Cloninger, 2002), while widely used natural non-viral vectors are chitosan and gelatin (Erbacher
et al., 1998; Truong-Le et al., 1998). Compared with viral vectors, non-viral polymers are often
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discovered to have higher safety as well as lower immunogenicity
and thus are broadly accepted in the use for efficient gene
delivery. In all kinds of non-viral vectors, polycations are
the carriers most commonly used. When polycations attempt
to interact with target cells in vivo, they may also interact
with immune cells and activate certain immune pathways.
For example, macrophages could phagocytose polycation/gene
polyplexes in vivo, and relevant adverse immune responses
were found by researchers (Zolnik et al., 2010). However, the
exact molecular mechanism of adverse effects of polycation/gene
polyplexes in vivo is still uncertain and more attention should be
paid to their immunogenicity and adverse immunoreactions.

POLYCATIONS’ IMMUNE ACTIVITIES
RELATED TO THE IMMUNE SYSTEM

Polycations’ effects on the immune system can be generally
divided into two categories, which are immunostimulation and
immunosuppression (Figure 1). Immunostimulation includes
the activation of signaling pathways as well as the induction
of antibodies targeting on polycationic complexes. This ability
makes the polycations act like immunologic adjuvant (Reddy
et al., 2008). It was showed that the immunostimulation had
a strong linkage with the particle size of the formed polyplex.
In a study by Mottram et al. polrvinyl benzene polyplexes
with different particle sizes were used to induce immunological
responses on dendritic cells. When particle sizes ranged from
40 to 49 nanometers (nm), immunoreactions generated by
poplyplexes were found to be type 1 immunity. When particle
sizes ranged from 93 to 101 nm, immunoreactions were type
2 immunity (Mottram et al., 2007). Although the particle sizes
tested in this experiment were close to the general sizes of
different polyplexes, different polycations may have different

FIGURE 1 | Mechanisms of polycations’ immunostimulation and immunosuppression: some polycations’ effects on weak antigens, the ROS caused by the positive

charge, and the endotoxin sneaked in polycations can stimulate the immune system. Other polycations’ effects on B cells and the production of TGF-β can suppress

the immune system.

immune properties. In addition, with such a narrow range in
particle size, it is actually difficult to draw the conclusion about
the relationship between immune responses and particle sizes.
In another comprehensive study, it was reported that when
polycation complexes formed by PAMAM or PPI interacted
with serum proteins in vivo, those polyplexes could induce the
expression of certain antibodies. However, such antibodies could
not be found if only polycationic nanoparticles were applied
alone, suggesting polycationic polymers alone and polyplexes
may have different immune properties (Agashe et al., 2006).

Currently, there is less understanding on immunosuppression
compared with immunostimulation. Findings and studies
on the relevant molecular mechanisms are also far from
enough. The most accepted opinion on the mechanism of
immunosuppression is that properties of polyplexes should be the
main cause, since the polycations or gene sequences alone could
not bring about immunosuppression. As is shown in a study, the
formed polyplex could affect the B cells and the production of
TGF-β, leading to the immunosuppression (Mitchell et al., 2009).
However, another study reported that chitosan was the inhibitor
of Type 1 and 2 anaphylaxes (Roy et al., 1999). Therefore, more
details and relevant mechanisms of immunosuppression should
be further explored in the future.

MAIN CAUSES OF POLYCATIONS’
IMMUNOGENICITY

There are many amino groups on polycationic vectors such
as PLL and PEI, which results in their positive charge density
in vivo. Polyplexes are formed when these positively-charged
polymers complex with negatively-charged gene sequences
through electrostatic interaction. These polyplexes could bind to
proteoglycan or proteins on the surface of the cell membrane,
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and finally get into the cytoplasm through endocytosis (Ballarín-
González and Howard, 2012). Polycations themselves are
believed to be able to activate toll-like receptors (TLRs) and then
induce the release of cytokines and chemokines such as TNF-
α, IL-1β, and IL-6, which would finally lead to the activation
of immunoreactions (Zolnik et al., 2010). It was once thought
that the main cause of this phenomenon was the positive charge
density of polycations (Lv et al., 2006), while a further report
stated that even those non-viral vectors without cationic charge
could induce immunoreactions as well (Tsukahara and Haniu,
2011).

Furthermore, the gene sequences carried by polycations may
also be responsible for the immune responses. If the carried
gene sequences code for mRNA, they would be recognized by
pattern recognition receptors (PRRs) like TLR-3, TLR-7, and
TLR-8, which could result in remarkable immunoreaction; if the
gene sequences are plasmid DNA (pDNA), the CpG sequences in
pDNA could be recognized by TLR-9. Based on this mechanism,
pDNA and mRNA could be seen as immunologic stimulants
(Sato et al., 1996; Weide et al., 2008; Tavernier et al., 2011).
On account of the inevitable interaction between polyplexes
and immunocytes in blood, adverse immune responses will
be induced. For instance, macrophages could change into
granulomas as a result of hypersensitivity (Poland et al., 2008).
This kind of adverse immunoreactions has been reported in
previous studies on nano drugs (Dobrovolskaia and McNeil,
2007).

Figure 2 shows the potential causes of polycations’
immunogenicity. One study pointed out that when the

polycation compounds were in contact with the cell membrane,
reactive oxygen species (ROS) such as hydrogen peroxide,
super-oxygen ions and hydroxyl radicals could be discovered in
those cells. Unfortunately, ROS can activate a series of cellular
signaling pathways including AP-1, NF-κB andMAPK (Liu et al.,
2012). AP-1 is a type of D-dimer protein, which regulates gene
expression when cells are facing certain cytokines, growth factors,
bacteria or virus (Hess et al., 2004). NF-κB plays a pivotal role in
fighting infections and MAPK is the protein kinase which adjusts
cell proliferation, apoptosis as well as differentiation (Pearson
et al., 2001; Gilmore, 2006). When those cellular signaling
pathways are activated, pro-inflammatory cytokines will be
released and immunoreactions such as inflammation will be
induced.

There are also other arguments about the potential causes of
polycations’ immune responses. Some researchers pointed out
that it was other factors such as sneaked bacterial endotoxin
rather than polyplexes that should be responsible for the adverse
immune responses (Vallhov et al., 2006).

IMMUNE ACTIVITIES OF THE MAIN
POLYCATIONS

Chemistry-Synthetic Polycation Vectors
Polylysine (PLL)
It was reported in 1975 that PLL could bind to DNA sequences
with the help of its electropositivity (Laemmli, 1975), and
since then PLL has been utilized extensively as a gene

FIGURE 2 | Causes of polycations’ immunogenicity: the recognition of carried gene sequences and polycations, ROS produced by polycations, and the impact on

immune cells are the main causes of polycations’ immunogenicity.
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delivery vector. PLL has two kinds of conformation: L and
D. Since PLL with L conformation is often found in natural
lives, it was more deeply researched and widely applied.
Experiments on its immunoreactions were started earlier than
the research on other gene delivery vectors. In 1966, PLL (from
biopolymer to octamer) was combined with phosphorylated
bovine serum albumin to observe its immunoreactions
in rabbits. This research found that the pentamer had
the most remarkable ability in immunosuppression (Van
Vunakis et al., 1966). Further immunological investigations
demonstrated that PLL could slightly delay the hypersensitivity
(Levine et al., 1968). On the other hand, research on the
PLL with D conformation showed that when the terminal
of L conformation dendrimer PLL was modified with D
conformation, immune responses would be observed and
specific IgG could be founded in mice, which actually
implied the potential immunogenicity of D conformation
PLL (Hudecz et al., 1992). Consistent with this observation,
it was also found that pure D conformation PLL can result
in obvious immunostimulation. When it was injected into
rabbits for the first time, IgG and IgM would be induced.
Nonetheless, when it was injected for several times, only IgG
could be identified. These antibodies have spatial specificity
to D conformation PLL, and immune responses to the L
conformation did not occur (Vermeersch and Remon, 1994).
Current research show that L conformation PLL is a form
of non-viral vectors with none or low immunostimulation
and immunosuppression. However, with regard to the D
conformation PLL, the problem of strong immunogenicity is still
severe.

Polyethyleneimine (PEI)
PEI has gradually been regarded as the golden standard among
polycations that are used as non-viral vectors for gene delivery
after it was first applied in 1995 (Boussif et al., 1995). Due
to the existence of plenty of electropositive amino groups,
PEI often has excellent ability to deliver gene sequences into
cells with the help of the proton sponge mechanism (Behr,
1997). Despite the fact that gene drugs using linear PEI have
been researched widely in vitro, there are few studies about
its immunogenicity in vivo. In this case, an immunological
research aimed at investigating the immunogenicity of linear
PEI (N/P =8) was performed. Researchers detected some
pro-inflammatory cytokines such as IFN-γ, IL-6, IL-12, IL-
23 and a series of biological enzymes in the liver, which
includes alanine aminotransferase, aspartate transaminase, lactic
dehydrogenase as well as alkaline phosphatase. It was found
that only IFN-γ was gradually produced by responses to
CpG sequences and the judgment was made that linear PEI
did not result in significant immunoreactions (Bonnet et al.,
2008). In addition, there are other studies pointing out that
when DNA sequences with immunogenicity in vivo were
delivered by PEI, the polyplex could lead to specific immune
responses to CD8+ T cells (Grant et al., 2012). As a result,
much emphasis should be given to the selection of safe gene
sequences, even if linear PEI was found to be with no significant
immunogenicity.

Polyamidoamine Dendrimers (PAMAM)
Compared with other polycations, PAMAM have a narrow range
of distribution in molecular weight, which implied the easiness in
controlling their properties as non-viral vectors (Tomalia et al.,
1990). Existing research discovers that PAMAM of G3-G7 have
low or none immunogenicity (Roberts et al., 1996). Another
study points out that with PEGylation, the immunogenicity
of PAMAM can be decreased and the half-time in vivo can
be elongated (Kobayashi et al., 2001). In a study involving
animal experiments, it has been demonstrated that gene drugs
utilizing PAMAM did not have severe immunogenicity (Malik
et al., 2000). In addition, it was proved that transfection using
PAMAM vectors on rabbits’ corneas did not result in dangerous
immunostimulation (Hudde et al., 1999). However, one study
asserted that PAMAM with high molecular weight might be a
kind of strong complement activator, while the immunogenicity
of low molecular weight PAMAM is relatively inconspicuous
(Plank et al., 1996). Owing to this interesting property dependent
on molecular weight, PAMAM may have other special use in the
field of immunology.

Natural Polycation Vectors
Chitosan
Chitosan is a type of non-viral vector different from PLL, PEI,
PPI, and PAMAM. At most times, chitosan comes from natural
plants or animals like crustacea, fungus, or germs. There is a
long history of the study on the allergic reactions with crustacea.
People now have a general idea about the immunogenicity of
chitosan. Chitosan can interact with lytic enzymes and N-acetyl-
β-glucosaminidase receptors on the surface of macrophages.
Then those macrophages can be activated to release certain
non-specific cytokines or other compounds that may play
a potentially active role in withstanding bacteria, virus, and
tumor (Suzuki, 1982; Nishimura et al., 1986). Chitosan can
also induce type Th1 and lower type Th2 immunoreaction in
vivo. In asthma anaphylaxis mouse models, inhaling chitosan
nanoparticles from the nasal area into lung could dramatically
lower the immunoreaction, and the asthma symptoms could
be alleviated (Shibata et al., 1997). The inhibition of type
Th2 immunoreaction was proved in another study (Shibata
et al., 2000). One research studying chitosan with different
molecular weight found that adverse effects of chitosan were
independent of themolecular weight, while themodified chitosan
derivatives had increased adverse effects (Kean et al., 2005).
Generally speaking, most existing studies on immunoreactions
of chitosan are still restricted in the traditional fields like food
allergy, and more explorations on the potential mechanisms
on molecular and cellular levels should be made in the
future.

Gelatin
Gelatin has been extensively used in food and drug industry
for several decades before it was applied as a gene delivery
vector (Bawn, 1987). When the pH value is below 5.0, it
can complex with gene sequences and form the polyplex.
Much attention is paid to the immunogenicity of gelatin by
researchers, since it is a kind of exogenous protein. It has been
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confirmed that gelatin has low immunogenicity (Schwick and
Heide, 1969). Some researchers utilized 60-bloom gelatin as a
gene delivery vector and compared its immunoreactions with
the liposome. They found that experimental animals had acute
immunoreactions when animals were injected with liposome
drugs, but similar immunoreactions could not be observed
in the gelatin group (Leong et al., 1998). However, there are
other researchers holding the position that gelatin nanoparticles
can be phagocytosed by macrophages and finally result in
the immune response of T cells (Truong-Le et al., 1997).
Although people are familiar with gelatin, detailed mechanisms
of its immunogenicity are still not fully understood now. The
immunoreaction of main polycations have been summarized
briefly in Table 1.

METHODS OF MODIFYING AND
CONTROLLING THE IMMUNOGENICITY
OF POLYCATIONS

Modification of Polycaions’ Structure
The conventional method used to solve the problem of inherent
immunogenicity of polycations is the modification of their
structure, in which chemical modification is the most common
approach. For example, modifying the two ends or the side chains
(Thomas and Klibanov, 2002; Arote et al., 2007; Yang et al., 2015),
changing the degree or synthetic methods of polymerization
(Kukowska-Latallo et al., 1996; Yu et al., 2016) andmodifying the
backbone of polycations by adding cross-linking agents (Wang
et al., 2002; He et al., 2015; Che et al., 2016; Song et al., 2016, 2017)
have been tried to modify the chemical structure of polycations.
Modification of chemical structures has been widely used to
lower the toxicity of polycations, and actually it did make some
excellent achievements. However, we still need to admit the fact
that its contributions to the adjustment of immunogenicity are
limited.

TABLE 1 | Summary of the immunoreaction of main polycations.

Immunoreaction of the Main Polycations

Polycation Immunogenicity and inflammatory reaction

PLL L conformation: none or low immunostimulation and even

immunosuppression;

D conformation: strong immunostimulation;

(conformation-dependent, IgG, IgM own spatial specificity to D

conformation)

PEI None or low immunogenicity

PAMAM Low Mw: none or low immunogenicity; High Mw: strong

complement activator; (Mw-dependent)

Chitosan Both immunostimulation and immunosuppression; Activation of

macrophages to resist bacteria, virus, and tumor;

Inducing type Th1 and lowering type Th2 immunoreaction

Gelatin Low immunogenicity;

Phagocytosed by macrophages;

Resulting in immune response of T cells

PLL, polylysine; PAMAM, polyamidoamine dendrimers; PEI, polyethyleneimine; Mw,

molecular weight.

Modification of Polyplexes’ Sizes and
Surface Properties
As mentioned in previous sections of this article, the
immunogenicity of polyplexes is dependent on their particle
sizes. Thus, better understanding of the specific relationship
between sizes and immunoreactions might contribute to the
control of immunogenicity. An optimal particle size can be
obtained by changing the mass ratio of polycations and gene
sequences. However, the number of existing studies on this issue
is too small, and the range of ascertainable relationship between
sizes and immunoreactions is too narrow to be widely used
in future research (Weide et al., 2008). In addition, the great
difficulty in establishing well-controlled condition might be a
problem as this relationship should be established without the
interruption of other potential factors such as charge density and
gene difference. Modification of polycations’ surface property
seems to be a more direct way than changing their particle sizes.
Currently existing techniques include PEGylation (Choi et al.,
1998; Merdan et al., 2005), preparing diblock or multiblock
copolymer (Kim et al., 2007), and linking ligands or antigens
with polyplexes, etc. (He et al., 2015).

Modification of Gene Sequences
With the growing knowledge in the immunogenicity of gene
sequences, some researchers have tried to modify the RNA or
DNA sequences delivered by polycations. Some nucleosides in
the original mRNA were replaced by modified nucleosides such
as 5-methyl-cytidine, 2-thio-uridine, and pseudo-uridine. It was
discovered that the immunogenicity of modified mRNA was
reduced, while the transfection efficiency, protein expression
ability and stability of mRNA changed erratically (Uchida et al.,
2015). As a result, this kind of modification method needs
further exploration to find a balance between safety, efficiency
and stability.

DISCUSSION

The Immunogenicity of Classical
Polycation Vectors Remains Unclear
Although those classical polycationic vectors have been
used for several decades, studies on their immunogenicity
are unfortunately at a standstill. Previously, it was even
universally believed that non-viral vectors have low or none
immunogenicity. However, nowadays, there are different ideas
and unconfirmed hypotheses about their immunogenicity as we
demonstrated in this article. Another issue is that those basic
studies on classical polycationic vectors were done around 20
years ago and there are not enough studies that try to verify the
previous hypotheses by using modern technologies.

New Polycationic Vectors Lack Research
on Immunogenicity
Compared with those classical polycationic vectors, newly
developed polycations are often with better gene delivery capacity
and fewer adverse reactions. In most cases, we are usually
attracted by the outstanding performance of polycations in cell
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cytotoxicity or transfection efficiency, and tend to ignore the
adverse immunoreactions in vivo. We believe that more emphasis
should be laid on the immunogenicity of newly developed
polycations. The progress in this field may guide us to sensibly
apply non-viral gene therapy in the future.

The Immunogenicity Caused by
Polycationic Vectors Can Be Utilized
Sensibly
Currently, gene vaccine is an emerging research area in
gene therapy. We consider it as an applicable example to
prove the use of immunogenicity in gene drugs, though
the principle behind gene vaccine is different from that of
polycations’ immunogenicity. Inspired by the use of gene vaccine,
polycationic vectors may also have huge potential as delivery
agents of gene vaccines or even antigens stimulating the immune
system. Thus, we believe that immunoreactions of polycations
should be averted as much as possible when they are used as
gene delivery vectors; however, with regard to the potential use
in gene vaccine, their immunostimulation ability can be utilized
to enhance the immune response.

CONCLUSION

The immunogenicity of polycationic vectors mainly
includes immunostimulation and immunosuppression.
The immunostimulation might be caused by polycations
themselves, gene sequences as well as those polyplexes, and the
immunosuppression is believed to be caused by the responses
of human immune system to polyplexes. The mechanism of
immunostimulation has been elucidated in more detail than
that of immunosuppression. In order to change and control the
immunogenicity of polycationic vectors, different methods have

been employed including the modification of the polycation
structure and surface characteristics, the adjustment of particle
sizes, and the modification of the nucleosides of gene sequences.
Great efforts are still needed for future studies on immune
activities of polycationic vectors in gene delivery.
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