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Dark chemical matter compounds are small molecules that have been recently identified
as highly potent and selective hits. For this reason, they constitute a promising class
of possible candidates in the process of drug discovery and raise the interest of the
scientific community. To this purpose, Wassermann et al. (2015) have described the
application of 2D descriptors to characterize dark chemical matter. However, their
definition was based on the number of reported positive assays rather than the number
of known targets. As there might be multiple assays for one single target, the number
of assays does not fully describe target selectivity. Here, we propose an alternative
classification of active molecules that is based on the number of known targets. We
cluster molecules in four classes: black, gray, and white compounds are active on one,
two to four, and more than four targets respectively, whilst inactive compounds are found
to be inactive in the considered assays. In this study, black and inactive compounds are
found to have not only higher solubility, but also a higher number of chiral centers,
sp3 carbon atoms and aliphatic rings. On the contrary, white compounds contain a
higher number of double bonds and fused aromatic rings. Therefore, the design of
a screening compound library should consider these molecular properties in order to
achieve target selectivity or polypharmacology. Furthermore, analysis of four main target
classes (GPCRs, kinases, proteases, and ion channels) shows that GPCR ligands are
more selective than the other classes, as the number of black compounds is higher
in this target superfamily. On the other side, ligands that hit kinases, proteases, and
ion channels bind to GPCRs more likely than to other target classes. Consequently,
depending on the target protein family, appropriate screening libraries can be designed
in order to minimize the likelihood of unwanted side effects early in the drug discovery
process. Additionally, synergistic effects may be obtained by library design toward
polypharmacology.

Keywords: dark chemical matter, drug discovery, molecular descriptors, stereochemistry, chemical properties,
screening library design, off-targets, drug repurposing

INTRODUCTION

Drug discovery for a specific target is a long process that starts from hit finding: in the past
high throughput screening (HTS) of huge compound libraries was the most common process in
pharmaceutical companies. However, the chemical space that the HTS can reach is restricted to
the molecules that were previously synthesized and included in the screened library. This certainly
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precludes the discovery of new compounds, as the chemical space
is much wider and the use of limited knowledge makes the hit
discovery challenging (Dobson, 2004; Reymond, 2015).

To overcome these disadvantages, computational techniques
can be applied in order to speed up the process of drug
design and to perform de novo drug design. One of the most
popular methods is virtual screening, that is the identification
of possible candidates for assays by considering their molecular
properties (ligand-based) and/or their interactions with the
macromolecular binding partner (typically a protein) when
its structure is available (structure-based) (Kirchmair et al.,
2009; von Grafenstein et al., 2014; Kaserer et al., 2015;
Vuorinen and Schuster, 2015). Different virtual compound
libraries can be designed, depending on the target properties
and on the desired pharmacokinetics (Lionta et al., 2014).
Therefore, fragment-based and relatively small focused libraries
have found great success: a wider chemical space is covered
by virtually assembling many different building blocks as in
combinatorial synthesis (Chevillard and Kolb, 2015; Reymond,
2015) or by building compounds directly starting from the
structure complex with the first fragment (Srinivas Reddy et al.,
2013).

Furthermore, virtual libraries can be properly designed in
order to identify active compounds, which also exhibit suitable
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties (Gleeson, 2008). The Lipinski’s rule of five
(Lipinski, 2004) helps in identifying orally active compounds,
but does not fully describe all facets of druggability. For
instance, today the in silico assessment of molecular toxicity
is still challenging (Roncaglioni et al., 2013; Raies and Bajic,
2016), but at the same time necessary to establish early and in
silico if a molecule could cause toxic side effects, rather than
in the later preclinical phase by experimental assays, which
are expensive and time consuming (Peters et al., 2012). On
one side, it is undoubted that side effects take place when a
molecule is active on multiple targets and, hence, by definition
promiscuous (Wang and Greene, 2012). On the other side,
promiscuity can represent also an advantage, where the goal
of the drug development is to obtain a polypharmacological
effect, especially in the treatment of diseases that involve
multiple targets (Anighoro et al., 2014; Rastelli and Pinzi,
2015).

To this purpose, the computation of molecular properties
has been established not only to discriminate between inactive
and active, weak and potent compounds, but also between
promiscuous and selective ligands. For instance, Lovering et al.
(2009) showed that target selectivity increases with the number
of chiral centers and with higher molecular complexity, described
as fraction of carbon sp3 atoms. Moreover, the presence of
amines and high clogP values negatively affect target selectivity
(Lovering, 2013). Indeed, many promiscuous compounds are
positively charged at physiological pH, as emerged also from the
analysis of a Roche dataset (Peters et al., 2009).

With the recent identification of “dark chemical matter”
(DCM) as promising starting point for drug discovery
(Macarron, 2015; Wassermann et al., 2015), chemical properties
of this potentially highly selective compound species are in the

focus of interest. Wassermann et al. (2015) use descriptors based
on the two-dimensional (2D) compound structures and describe
subtle shifts in their distributions toward higher solubility (logS),
lower hydrophobicity (logP), smaller molecular weight (MW)
and lower amount of rings for DCM versus compounds that
are frequently active in HTS assays (Wassermann et al., 2015).
They define DCM as molecules that are inactive in at least 100
assays, presuming that these compounds would hit only few
possible targets. However, there are compounds, which are listed
as DCM, but they are active on many different targets. For
example, CID1048281 (Supplementary Figure 1) is considered
DCM because it is inactive in more than 650 assays, but it is also
active in other six assays in PubChem, which test the activity
on unrelated targets (RAR-related orphan receptor gamma,
aldehyde dehydrogenase, tyrosyl-DNA phosphodiesterase,
ATPase, bromodomain adjacent to zinc finger domain and shiga
toxin).

On the other side, many assays may be available for the
same target and the number of negative test outcomes does not
necessarily correctly depict target selectivity. For example, there
are 245 small-molecule bioassays reported on PubChem for the
adrenoreceptor beta 1 and more than 350 for the beta 2 subtype.
Moreover, most of these bioassays are not specific for a receptor
subtype or are simply confirmatory. In order to overcome this
pitfall, Wassermann et al. (2015) filtered the set of bioassays by
removing redundant readouts for the same target.

As shown, it is extremely hard to determine the target
selectivity of a molecule solely on the base of its assay positive
or negative outcomes. For this reason, we propose an alternative
classification of active molecules, on the base of the number of
targets they hit, in order to investigate target selectivity and/or
polypharmacology in the early phase of the drug discovery
process. In detail, we distinguish between molecules that are
selective toward one single protein and other compounds that are
active on multiple targets. In this way, it is possible to identify
which molecular properties enhance target selectivity and which
protein families are likely to constitute off-targets.

MATERIALS AND METHODS

Ligand Dataset Retrieval
We extracted the set of 139,352 DCM compounds from Novartis
and PubChem (Kim et al., 2015) as InChi (IUPAC International
Chemical Identifier) from the Supporting Information of
Wassermann et al. (2015) and downloaded the 3D coordinates of
139,328 molecules from the PubChem Compound database (Kim
et al., 2016).

The set of active compounds was extracted from PubChem
BioAssay (Wang et al., 2017) using the list of 459 bioassays
provided by Wassermann et al. (2015). Active compounds
(256,448) were extracted via their compound identifiers (CIDs),
downloaded as 3D coordinates (237,510) and pooled to a single
set of 376,838 compounds.

Furthermore, we performed a filtering step to remove
duplicates within the dataset. To this purpose we used the
RDKit (RDKit, 2015) chemoinformatics toolkit. Moreover, we
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removed the compounds that were active but without any
specified targets (14,464). Our final dataset included 341,599
molecules.

Computation of Molecular Descriptors
The PubChem coordinate files contained already precomputed
2D descriptors, including MW, number of heavy atoms,
defined and undefined stereocenters, H-bond donors
and acceptors, which were considered for our analysis as
provided.

Additionally, we calculated logS (Hou et al., 2004) and
logP(o/w) using the MOE (Molecular Operating Environment,
version 2015.1001) (MOE, 2016) molecular descriptor tools and
the atomic geometries with MOE’s Scientific Vector Language
(SVL) function “aGeometry” together with the SMARTS
matching function “sm_MatchAll.” In detail, aGeometry returns
the hybridization of an atom and sm_MatchAll searches for
specific SMARTS patterns, which we used to count non-ring and
non-terminal carbon atoms. For instance, sp3 carbon atoms are
counted by matching “CH2” SMARTS codes. In order to restrict
the count to non-ring and non-terminal atoms, we specified “!r”
and “!H3” respectively.

Furthermore, we used RDKit (RDKit, 2015) to count the
number of single and fused aromatic and aliphatic rings as well
as the number of carbon–carbon and carbon–nitrogen double
bonds based on SMILES codes.

Statistical analysis, including the two-sided Wilcoxon rank-
sum test and Kolmogorov–Smirnov test, was performed
using R (R Development Core Team, 2010) (Supplementary
Tables 2–4).

Target Retrieval and Analysis
Assay and target information for all compounds have been
retrieved from the PubChem database by querying the
compounds identifiers (CID) against the assay summary
webpage. Active targets with specified gene id were considered
for Uniprot (Bateman et al., 2015; The UniProt Consortium,
2017) retrieval, in order to convert the gene id to the associated
protein‘s Uniprot accession number.

We assigned the protein superfamily for every target, by
searching Uniprot accession numbers into lists of GPCRs,
kinases, proteases, and ion channels. We obtained the lists of
3,092 GPCRs, 1,365 kinases and 11,606 proteases from Uniprot,
and the list of 899 ion channels from ChEMBL (Bento et al., 2014)
and IUPHAR/BPS Guide to Pharmacology (Southan et al., 2016).

We counted the number of targets on which a molecule
is found to be active and clustered active ligands in three
classes: black compounds are active only on one single target,
gray compounds are active on two to four targets and white
compounds are active on more than four targets. We defined
these cut-off values in order to obtain a comparable number
of molecules in every subset: 73,383 black, 103,025 gray, 87,303
white, 77,888 inactive compounds (compound set provided
via SI).

Figures are generated by using MATLAB (MATLAB,
2012), R (R Development Core Team, 2010) and ChemDraw
(PerkinElmer Informatics, 1998–2015).

RESULTS

Molecular Descriptors
We analyzed the distributions of 2D molecular descriptors
within the compound sets (inactive, black, gray, and white).
We find that chirality enhances target selectivity. For instance,
molecules become more selective if they present at least one chiral
center: inactive and black compounds contain a higher number
of defined R/S stereocenters with respect to white molecules
(Figure 1A). On the contrary, the absence of a chiral center
enhances promiscuity, as described by the percentage of white
molecules (∼79% versus ∼62% in black ones) (Supplementary
Table 1).

On the opposite, if at least a carbon–carbon or carbon–
nitrogen double bond is present, molecules tend to be white and,
hence, more promiscuous (Figure 1B). Otherwise, if they do not
have any double bonds, they tend to be inactive or black (∼85%
versus ∼69% in white ones) (Supplementary Table 1).

These findings are also confirmed by the analysis of atomic
geometries: non-ring and non-terminal sp3 carbon atoms
enhance selectivity (Figure 1C); about 42% of white compounds
do not include any sp3 carbon atoms, with respect to ∼27% of
inactive and black ones (Supplementary Table 1).

We also computed the molecular descriptors that were
reported by Wassermann et al. (2015). However, our results show
that the MW is not able to properly describe target selectivity:
indeed, black compounds do not follow the expected trend,
as they show MWs which are comparable to those of white
molecules (Figure 1D). This finding disagrees with Wassermann
et al. (2015), because our dataset does not include all molecules
that were considered in the Novartis analysis, but only those
that were reported in the publication. As this descriptor appears
dataset dependent, we discarded it.

Additionally, the number of rings differs between these classes:
black compounds exhibit higher numbers of aliphatic rings
(∼36% of black molecules have one aliphatic ring, with respect to
30% of white ones) (Figure 1E). By constrast, white compounds
show higher numbers of fused aromatic rings (∼35% with
respect to 26% of inactive molecules) (Figure 1F). Indeed, more
than half of the selective molecules has at least one aliphatic
ring (∼53% of inactive and ∼51% of black compounds) and
no fused aromatic rings (∼71 of inactive and 62% of black
compounds).

Furthermore, inactive and black compounds exhibit higher
values of logS compared to gray and white compounds, especially
for logS in the range between −2 and −4 (Figure 2A). By
contrast, the opposite trend is observed for lower solubility: half
of white molecules shows a logS value lower than −5, whereas
only 20% of inactive and ∼30% of black compounds have similar
solubility (Supplementary Table 1).

Consequently, lipophilicity increases with the number of
targets: gray and white molecules show higher SlogP values than
inactive and black ones (Figure 2B). For instance, ∼36% of
white compounds show SlogP values that are higher than 4,
whereas selective molecules (∼33% of inactive and ∼29% of black
compounds) exhibit SlogP values which are in the range between
2 and 3.
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FIGURE 1 | Statistical analysis of molecular descriptors per ligand class (inactive, black, gray, and white). Data are represented as 3D bar plots, colored according to
the percentage values for each subset (see color bar). (A) The number of R/S stereocenters per molecule shows that most of white compounds have no chiral
centers, whereas inactive molecules show the highest percentage of compounds with one stereocenter. (B) The number of carbon–carbon or carbon–nitrogen
double bonds is higher for white ligands compared to the other classes, which normally have none. (C) Inactive and black sets exhibit higher content of non-ring and
non-terminal sp3 carbon atoms with respect to white compounds, which tend to be sp2 hybridized. (D) The molecular weight (MW) is similar for all subsets in the
range 300–500 Da, but shows different results for smaller and higher values. Indeed, inactive and white compounds exhibit higher percentages for values lower than
300 Da, with respect to black and gray sets. On the contrary, black compounds can be rather complex structures as their MW can be higher than 500 Da. The MW
axis is divided into different ranges and its labels represent the highest boundary. For instance, “350” indicates compounds with MW values between 300 and 350.
(E) Most of white molecules have no aliphatic rings, which characterize instead inactive and black datasets. (F) In contrast, a higher number of fused aromatic rings
is a chemical feature of white molecules.

Calculating these molecular descriptors, it is possible to
predict which building blocks characterize black compounds
and, therefore, can be used for synthesis of new selective drug
candidates.

Target Analysis
Our dataset includes ligands that bind to a variety of targets, 2,715
in total. For instance, 10.98% of the targets are represented by
G-protein coupled receptors (GPCRs), 13.41% by kinases, 10.68%

by ion channels and 5.78% by proteases (Figure 3). About 60%
of the targets comprise other enzymes, receptors or transcription
factors that do not fall into these four major target classes.

G-protein coupled receptor ligands are more selective than
other classes, as the number of black compounds is higher
(14.30%) with respect to other targets (5.80% ion channels,
6.25% ion channels, 9.21% kinases) (Figure 4). For example,
CID 2983576 is a ligand that binds to the human cholinergic
muscarinic receptor 4 and is inactive toward other muscarinic
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FIGURE 2 | Statistical analysis of molecular solubility (logS) and hydrophobicity (SlogP) per ligand class (inactive, black, gray, and white). Data are represented as 3D
bar plots, colored according to the percentage values for each subset (see color bar). The logS and SlogP axes are divided into different ranges and labels represent
the highest boundary of each range. (A) Molecular solubility, reported as logS, is higher for inactive and black compounds for values higher than –4. Whereas white
compounds have logS values lower than –4. (B) White compounds show SlogP values higher than 4. In contrast, inactive and black molecules have values lower
than 4.

FIGURE 3 | Statistical analysis of targets that are present in the entire dataset.
In total, we identified 2,715 different targets. GPCRs represent 10.98%,
kinases 13.41%, ion channels 10.68%, and proteases 5.78%. Other targets
include further enzymes, nuclear receptors, and transcription factors.

receptor subtypes (Figure 5). As many other black compounds,
it contains a chiral center, an aliphatic ring, several non-ring and
non-terminal sp3 carbon atoms (5) and has a low logP value (2.2).

Ligands that bind to ion channels and proteases tend to be
more promiscuous (Figure 4). This is particularly pronounced

FIGURE 4 | Distribution of black, gray, and white compounds in every target
class. The number of black compounds is higher for GPCR ligands (14.30%)
compared to other targets (5.80% ion channels, 6.25% ion channels, 9.21%
kinases). In contrast, ion channels and proteases have higher percentages of
white molecules.

for proteases, where 62% of ligands can bind to more than
four non-protease targets (Figure 6). For example, CID 646260
is active on caspase 3 and other non-protease targets, such as
GPCRs and other enzymes.
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In contrast, only 37% of GPCR ligands binds to other proteins
beyond GPCRs. For instance, only 13% of GPCR ligands bind to
kinases, 16% to proteases and 24% to ion channels.

Instead, kinase ligands are able to bind to many non-kinase
targets. For example, compound CID 1005278 binds not only
to kinases (such as RIPK), but also to potassium channels (such
as KCNQ1), dopamine receptors (D1 and D3), proteases and
other non-kinase targets. However, analysis of intra-class activity
shows that kinase ligands in general bind only to one kinase (for
example, CID 2283311 is a black molecule that is active only on
MAP3K3). This evidence is surprising, as kinases are known to be
promiscuous, especially toward other kinases (Davis et al., 2011).
However, the number of kinase ligands in our dataset is relatively
small (27,935) and we might miss information from unselective
ligands that were not included in the analysis.

Furthermore, ion channel, protease and kinase ligands exhibit
higher chances to bind to GPCRs: almost half of ion channel
(49%), 36.6% of protease and 35% of kinase ligands bind
to GPCRs as well. However, this trend cannot be observed
for proteases, kinases or ion channels, as they exhibit lower
probabilities to bind to these target classes (Supplementary
Figure 2).

DISCUSSION

The escape from flatland has already been described as a
valuable approach to improve clinical success (Lovering et al.,
2009) and the unique activity profiles of highly potent and
selective molecules might be the underlying principle. It
is chemically intuitive that more complex molecular shapes
restrict the diversity of binding partners and provide selectivity
gains (Mendez-Lucio and Medina-Franco, 2017). A criterion
favoring complex 3D shapes, with chiral centers and high
sp3 carbon contents, low number of double bonds and fused
aromatic rings, in candidate molecules might complement widely
accepted criteria for drug-likeness solely based on 2D molecular
properties, like solubility and MW (Lipinski, 2004; Leeson and
Springthorpe, 2007).

We also believe that these molecular properties highly affect
the target selectivity. Indeed, already Lovering et al. (2009) stated
that the degree of saturation is able to distinguish marketed drugs
from drug-like molecules. In detail, compounds that have success
through clinical trials are characterized by increased saturation
and the presence of chiral centers. For instance, our findings
confirm that the sp3 conformation is a key feature to obtain target
selectivity and in turn to improve clinical success in the process
of drug development.

These molecular descriptors, together with solubility and
lipophilicity, may be readily applied as an additional selection
criterion for promising starting points in early stage drug
discovery. Wassermann et al. (2015) have shown DCM is more
soluble than active molecules. Our results are in agreement with
their findings, as selective compounds are more soluble than
promiscuous ones.

In contrast, MW does not properly distinguish between
inactive and white molecules as shown in other datasets. For

FIGURE 5 | Ligands that represent the dataset. Compounds are labeled
according to the compound identifier (CID) from PubChem. CID 2983576 is a
selective GPCR ligand: its absolute stereochemistry is undefined in PubChem
and, hence, not shown here. CID 646260 is a protease ligand, which binds
also to other non-protease targets. CID 1005278 is a kinase ligand that binds
also to other non-kinase targets. CID 2283311 is a selective kinase ligand that
is active only on one target.

instance, promiscuity is enhanced by lower values of MW in a
dataset from Pfizer (Hopkins et al., 2006), but higher values in
datasets from Novartis (Azzaoui et al., 2007), Roche (Peters et al.,
2009) and Boehringer Ingelheim (Muegge and Mukherjee, 2016).

We also considered further molecular descriptors, such as
the number of hydrogen bond donors and acceptors, but they
do not allow to distinguish between selective and promiscuous
compounds (Supplementary Table 1), as also shown by Novartis
(Azzaoui et al., 2007) and Roche (Peters et al., 2009).

In our dataset many ligands are promiscuous and, hence,
can effectively hit off-targets, which are represented by all other
targets that a molecule can bind besides the intended target
(Rudmann, 2013).

However, in our dataset GPCR ligands are highly selective.
This evidence appears to be in contrast to previous knowledge,
as GPCRs are known to be promiscuous targets, especially if their
ligands are not peptidic or small molecules (Paolini et al., 2006).
For instance, our results may change by considering specialized
datasets, such as PDSP Ki database (Roth et al., 2000).

Additionally, our analysis shows that ligands from other
target protein families can easily bind GPCRs. Indeed, there are
great overlaps between all four target classes that we considered
(Supplementary Figure 2) and we do not know if these molecules
were developed firstly as GPCR ligands or not.
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FIGURE 6 | Number of targets hit by every ligand class (GPCRs, kinases, ion channels, and proteases). The first row shows if ligands can hit other targets that are
not included in their own target class: for instance, GPCR ligands might hit only GPCRs (indicated as “0 off-targets”) or also other non-GPCR targets (larger number
of off-targets). The following rows of pie charts show the number of ligands that hit a specific target class: for instance, GPCR ligands hit at least one GPCR,
whereas kinase or ion channel or protease ligands can hit GPCRs or not (indicated as “0 GPCRs”). The same is shown for all four target classes. Intra-class
selectivity is highlighted by colored boxes around the pie charts.

The identification of a GPCR as off-target is extremely
important, as the activity on specific GPCRs is also related to
severe side effects, e.g., cardiovascular diseases. Indeed, 5-HT2B
has been identified as cause of valvulopathy and led to the
withdrawal of drugs from the market (Huang et al., 2009).

Our results show that protease ligands can bind to many off-
targets: indeed, it can be difficult to achieve target selectivity
within related proteases (Drag and Salvesen, 2010) but strategies
to rationally improve the selectivity profiles of protease inhibitors
based on substrate peptide data and experimental 3D structures
have been described (Fuchs et al., 2013).

In our dataset, kinase ligands seem to be selective toward
only one kinase member rather than to more targets in the
same protein family. However, this unexpected outcome can be
explained by the relatively low amount of kinases ligands that is
present in the dataset. Kinase ligands are indeed generally known
to be promiscuous, but some of them exhibit higher selectivity,
especially if they bind to the pocket close to the ATP site and
prefer a specific conformation of the activation loop (Davis

et al., 2011). Moreover, in our dataset we identify even more
pronounced polypharmacology within and between other target
classes. For instance, ion channel ligands overlap with GPCR
ligands, as they frequently exhibit a common ligand scaffold,
which includes an amine linked to an aromatic ring by an alkylic
chain that is present in benzodiazepines or dihydropyridines. In
addition, ion channels constitute a common off-target, causing
cardiac adverse effects. Indeed, hERG potassium channels are
responsible of arrhythmias, in particular torsades de pointes, and
many antipsychotics and other drugs bind to these channels as
off-targets, increasing the risk of cardiovascular diseases (Silvestre
and Prous, 2007). As example, the antihistaminic terfenadine
was withdrawn from the market for its toxic adverse effect,
that was caused by this off-target activity (Monahan et al.,
1990).

This analysis bring us to ask if we can identify likely
off-targets in the early discovery process. Normally, in the
early steps, target selectivity is considered only among related
targets, which are proteins that belong to the same protein
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family, since high structure and ligand similarity is expected.
In this case, target selectivity can be rationalized, e.g., via X-ray
structures of targets and off-targets. However, several adverse
side effects are caused by distant or nearly unrelated targets. For
this reason, the prediction of ligand binding is still challenging
and the use of cheminformatics tools can guide the medicinal
chemists in identifying the chemical features that typically cause
promiscuity (Besnard et al., 2012). Nevertheless, the training of
virtual screening models is limited by the use of biased ligand
sets. Indeed, our analysis show that results highly depend on the
selected dataset, which affected the distribution of the physico-
chemical properties and target classes. Therefore we expect that
based on the desired target, specialized datasets can be used to
further improve the performance of in silico models.

In particular, screening libraries can be properly designed
by taking into account molecular properties, such as
stereochemistry, atomic geometries and rings, besides solubility
and lipophilicity. Many predesigned compound libraries are
already freely available online and could be easily filtered or
prioritized by using these 2D descriptors, without the need of
applying a time consuming and computationally demanding
generation of 3D conformers.

CONCLUSION

A good starting point for the design of a selective drug should
favor aliphatic over aromatic rings, alkylic chains containing sp3

carbon atoms over double bonds, and stereocenters over achiral
atoms. Even though the introduction of chiral centers can make
the synthesis more challenging, the gain in target selectivity may
be considerable.

On the other hand, polypharmacology could be achieved by
introducing flat chemical moieties, such as fused aromatic rings
and double bonds. However, this could bring not only additional
desired, but also undesired side effects.
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