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The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the
lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P).
The activation of such kinases and the subsequent S1P generation and secretion in
the blood serum of mammals represent a major checkpoint in many cellular signaling
cascades. In fact, activating the SphK/S1P system is critical for cell motility and
proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In
the cardiovascular system, the physiological effects of S1P intervene through the binding
and activation of a family of five highly selective G protein-coupled receptors, called
S1PR1−5. Importantly, SphK/S1P signal is present on both vascular and myocardial
cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not
surprising that the last two decades have seen a flourishing of interest and investigative
efforts directed to obtain additional mechanistic insights into the signaling, as well
as the biological activity of this phospholipid, and of its receptors, especially in the
cardiovascular system. Here, we will provide an up-to-date account on the structure
and function of sphingosine kinases, discussing the generation, release, and function of
S1P. Keeping the bull’s eye on the cardiovascular system, we will review the structure
and signaling cascades and biological actions emanating from the stimulation of different
S1P receptors. We will end this article with a summary of the most recent, experimental
and clinical observations targeting S1PRs and SphKs as possible new therapeutic
avenues for cardiovascular disorders, such as heart failure.

Keywords: sphingosine 1-phosphate, G protein-coupled receptors, sphingosine kinase, fingolimod,
cardiovascular, heart failure, gene-therapy

INTRODUCTION

Sphingolipids are ubiquitous components of the eukaryotic cell membrane that play important
roles in the regulation of many cellular processes (Ghosh et al., 1990; Zhang et al., 1991). Among
these molecules, sphingosine 1-phosphate (S1P) is a bioactive lipid with a variety of physiological
roles across a broad range of organisms (Strub et al., 2010). S1P is produced by the phosphorylation
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of sphingosine, a reaction catalyzed by an enzyme, sphingosine
kinase (SphK), present in two isoforms, SphK1 and 2. S1P
degradation involves a cleavage by S1P lyase (SPL) (Imamura
et al., 2001). In general, when phosphorylated, this lipid is
secreted in the plasma, mainly by red blood cells, platelets,
fibroblasts, and vascular endothelial cells (ECs, Tani et al., 2005;
Kacimi et al., 2007; Pappu et al., 2007; Venkataraman et al.,
2008; Gellings Lowe et al., 2009). In addition, extracellular SphK1
released from these cells may also contribute to S1P synthesis
(Venkataraman et al., 2006).

The activation of SphK1 and 2, and the consequent S1P
generation/secretion have a crucial role in many cellular
signaling cascades and pathological processes. In particular,
their role has been widely studied in angiogenesis, in cancer
development/progression and in immune and inflammatory
responses (Karliner, 2009). However, the SphK/S1P axis has
received a special attention from cardiovascular scientists
because implicated in the cardiovascular system development
and functioning. The latter encompasses the modulation of
heart rate, cardiac contractility, and vascular tone (Peters and
Alewijnse, 2007). All these effects are mediated by the binding
to specific G protein-coupled receptors (GPCRs), called S1PRs
(Hla et al., 2001; Chun et al., 2002; Spiegel and Milstien, 2003;
Usui et al., 2004). Since an increasing body of experimental
evidence supports the notion that activating the SphK/S1P-S1PR
system protects both the heart and the vasculature, several
synthetic S1P analogs have been previously designed (Pelletier
and Hafler, 2012). Of note, one of them, Fingolimod, or FTY720
(a Novartis proprietary compound) is currently approved and
used in clinical practice to treat neurological degenerative
disorders, such as multiple sclerosis (Pelletier and Hafler, 2012).

Given the current availability of compounds, such as
Fingolimod, it is now more feasible, and should be even more
attractive, to test the impact of agonists of the SphK/S1P-S1PR
axis in the context of clinically relevant cardiovascular disorders,
as in the recent case of a study that demonstrated an increase
in myocardial salvage and a decrease in adverse post-infarction
remodeling with Fingolimod in a porcine model of ischemia-
reperfusion injury (Santos-Gallego et al., 2016).

Here, we will review the mechanisms by which SphKs
modulate S1P generation and secretion in different
cardiovascular compartments. Then, we will focus on the
pathophysiological role exerted by SphK/S1P-S1PRs axis in the
circulatory system. Finally, we will describe how S1PRs agonism
and antagonism can improve outcome in cardiac disease states,
such as post-ischemic heart failure (HF).

STRUCTURE AND FUNCTION OF
SPHINGOSINE KINASES

Structure of SphKs
The SphKs are members of a family of enzymes that includes
the diacylglycerol (DAG) and the ceramide kinases, all of which
are able to generate bioactive lipids (Wattenberg et al., 2006).
Currently, two isoforms (SphK1 and 2) have been cloned and
characterized, and the genes encoding for these two enzymes

are localized on different chromosomes—sphk1 gene is on
chromosome 17, whereas sphk2 gene is on chromosome 19—and
encode for several splicing variants (Imamura et al., 2001;
Alemany et al., 2007). SphK1 was originally purified from rat and
show a high degree of homology with the mouse and human
enzyme (Kohama et al., 1998; Nava et al., 2000). The second
isoform, SphK2, was cloned and characterized from mouse and
human by Spiegel and colleagues (Liu H. et al., 2000). At the
structural level, SphK1, in homology with SphK2, is composed
of an N-terminal (NT) and a C-terminal (CT) domain, with the
catalytic one located in a cleft at the interdomain junction. Both
structures appear to have an homology because they contain
five conserved domains, including an adenosine triphosphate
(ATP)-binding motif that allows the transfer of a γ-phosphoryl
group from the ATP to the D-erythro-sphingosine, to generate
the S1P (Melendez et al., 2000; Nava et al., 2000). However,
while SphK2 presents a nuclear localization signal (NLS) in
the NT and a nuclear exportation signal (NES) in the CT,
SphK1 lacks these sequences. Importantly, their presence within
the SphK2 structure increases also the number of amino acids
required for the enzyme composition. In fact, SphK1 consists of
384 amino acids (42.5 kDa), whereas SphK2 presents with 618
amino acids (65.2 kDa) (Liu H. et al., 2000; Okada et al., 2005).
Moreover, based on kinetic studies performed in vitro and in vivo,
both SphKs cannot only phosphorylate sphingosine in a similar
manner, but they can also phosphorylate the immunomodulatory
drug FTY720 (Fingolimod). However, SphK2 appear to be more
efficient in doing so than SphK1 (Billich et al., 2003; Paugh et al.,
2003). Due to this property, it has been suggested that only SphK2
is required for metabolic activation of this drug. In fact, FTY720,
that is able to cause lymphopenia, loses its effect only in mice
lacking SphK2, but not in mice in which SphK1 is downregulated
(Allende et al., 2004; Kharel et al., 2005). For all these very
reasons, it appears crystal-clear that, based on their structure,
both the kinases can have different functions and localization
(please, see more below). However, as shown by previous studies,
these kinases have overlapping vital functions. In this regard,
although knockout mouse models for either SphK1 or SphK2
develop normally, the genetic deletion of both isoforms results
in fetal death due to alterations in vasculogenesis and severe
bleeding (Allende et al., 2004; Mizugishi et al., 2005; Michaud
et al., 2006).

Subcellular Localization of SphKs
Concerning the localization of the two enzymes, it has been
reported that SphK1 predominantly resides in the cytoplasm
(Wattenberg, 2010; Pitson, 2011), and it can translocate to the
plasma membrane upon cell stimulation (Pitson et al., 2003).
Therefore, S1P generated by SphK1 can be exported outside the
cells, and activate both proliferative and anti-apoptotic effects,
in an autocrine and/or paracrine manner (Spiegel and Milstien,
2000). This phenomenon is known as “inside-out” signaling, and
it has been described in cardiac myocytes too (Tao et al., 2007;
Wang et al., 2012). Moreover, Ancellin et al. (2002) demonstrated
that SphK1 can be released outside the cells, thus accounting for
the extracellular S1P generation. Conversely, SphK2 is primarily
localized at the level of the endoplasmic reticulum (ER, Maceyka
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et al., 2005), or it can also be associated with mitochondria
(Strub et al., 2011; Chipuk et al., 2012). S1P generated in these
compartments can affect cell survival (Maceyka et al., 2005; Strub
et al., 2011; Chipuk et al., 2012; Maceyka et al., 2012). Moreover,
since SphK2 presents an NLS and NES, it can shuttle in and out
of the nucleus. S1P generated in this subcellular compartment can
affect histone deacetylases activity, with a consequently enhanced
transcription of genes involved in the growth arrest (Hait et al.,
2009).

Functional Role of SphK1
As we learned before, it is generally well-consolidated that SphK1
is a cell survival promoter (Karliner, 2013). Elevated cellular
SphK1 levels appear to play a major role in enhanced proliferation
and metastasis/invasion of several types of cancer cells (Xia et al.,
2000; Johnson et al., 2005; Li et al., 2008; Shida et al., 2008;
Pyne et al., 2016). In this context, more than one study has
demonstrated that inhibition of SphK1 has considerable potential
as an anti-cancer strategy (Shida et al., 2008; Pyne et al., 2016).
Similarly, the downregulation of SphK1 has proven able to induce
apoptosis and confer sensitivity to chemo- or radiation therapy of
cancer cell lines (Baran et al., 2007; Shida et al., 2008; Guillermet-
Guibert et al., 2009; Pyne et al., 2016). In line with these reports,
ventricular cardiomyocytes and cardiac fibroblasts lacking SphK1
exhibit greater cell death when subjected to hypoxia, compared to
wild-type (WT) controls (Ancellin et al., 2002; Tao et al., 2007).
Interestingly, treatment of cardiomyocytes with exogenous S1P
or with monoganglioside (GM-1), an acidic glycosphingolipid
containing one sialic acid residue shown to elicit S1P generation
(Cavallini et al., 1999), enhances the survival of both WT and
SphK1 null cells (Ancellin et al., 2002; Tao et al., 2007). It is worth
stressing that one of the proposed mechanism by which SphK1
controls cell death is the regulation of ceramide (Maceyka et al.,
2005). In contrast to S1P, the ceramide-signaling molecule is able
to exert pro-apoptotic actions. Its synthesis and accumulation are
enhanced in cells lacking SphK1, while prevented in presence of
high SphK1 levels (Maceyka et al., 2005). In 1996, in order to tie
together the ability of S1P and ceramide to control cell fate, it
has been coined the term “sphingolipid rheostat” (Cuvillier et al.,
1996; Newton et al., 2015). However, although SphK1 appears to
play a major role in the regulation of this “rheostat,” previous
studies suggested that sphingolipid per se are able to influence
the whole mechanism, thus including the “inside-out” one. In
this context, Huang et al. (2014) have recently shown that S1P
can activate a positive feedback amplification loop via S1PRs
activation and consequent increase in SphK1 expression.

Functional Role of SphK2
Opposite to the protective role attributed to SphK1, several
early studies examining SphK2’s role have documented that
the overexpression of this kinase induces cell cycle arrest and
apoptosis (Karliner, 2013). More in detail, SphK2 can inhibit cell
growth and enhance apoptosis, in part by increasing ceramide
production (Maceyka et al., 2005). Similarly, mitochondrial
localization of SphK2, and specifically S1P generation at this
site seems to contribute to the activation of the pro-death Bcl-2
family protein, BID, with subsequent mitochondrial membrane

permeabilization and cytochrome c release (Strub et al., 2011;
Chipuk et al., 2012). In keeping with this view, several reports
have shown that downregulating SphK2 can effectively prevent
the increase in apoptotic rates induced by the administration of
either TNF-α or staurosporine (Weigert et al., 2007; Hofmann
et al., 2008). Interestingly, and contrary to the dogma that,
differently from Sphka1, SphK2 is a pro-death factor, recent
experimental evidence now supports a key role for this kinase in
promoting cell survival and proliferation, much like SphK1 does
in cancer cells, or even in cardiomyocytes (Weigert et al., 2009;
Gomez et al., 2011; Vessey et al., 2011). Consonant to this view,
Weigert et al. (2009) have reported that the genetic ablation of
SphK2 in MCF-7 breast tumor xenografts results in the inhibition
of tumor growth. Moreover, in isolated murine hearts, Karliner
and colleagues have shown that SphK2 is necessary for successful
ischemic pre- and post-conditioning (Vessey et al., 2011). Further
to this, Gomez et al. (2011) also demonstrated that SphK2-evoked
cardioprotection is dependent on the ability to prevent ischemia-
induced mitochondrial dysfunction. Interestingly, the apparently
divergent outcome reported with SphK2 studies could be
ascribed to the specific subcellular localization of the enzyme.
In agreement with this eventuality, studies have suggested that,
when SphK2 is localized in the nucleus, it can inhibit the synthesis
of DNA, thus exerting anti-proliferative effects (Hait et al., 2009).
Conversely, other contributions have shown that, in human colon
carcinoma cells, S1P generated by nuclear SphK2 can inhibit the
retinoic acid receptor β, attenuating the tumor suppressor effects
of this receptor (Shi et al., 2017).

S1P: GENERATION AND FUNCTION

S1P Biosynthesis
Given the variety of processes involving S1P, most cells—red
blood cells, platelets, and vascular ECs, in particular—have
all the enzymatic machinery necessary for S1P synthesis. Like
other sphingolipids, S1P is derived from ceramide which is
composed of a sphingosine base and an amide-linked acyl
chain of variable length (Yu and Law, 2009). Ceramide is in
turn produced from the de novo synthetic pathway initiated by
serine palmitoyltransferase in the ER, or from the degradation
of some sphingolipids (Dolgachev et al., 2004; Reynolds et al.,
2004). The intracellular deacylation by ceramidase gives way
to the formation of sphingosine and carboxylate (Park and
Schuchman, 2006). Then sphingosine can be phosphorylated
to produce S1P (Figure 1). However, it is worth recalling
that S1P levels in the cell are regulated not only by S1P
biosynthetic enzymes but also by S1P degradative pathways,
such as SPLs—two S1P-specific phosphatases—and by three lipid
phosphate phosphatases (Figure 1; Hannun et al., 2001).

S1P Functions
In general, S1P cell death-suppressing and cell survival
promoting effects are opposite to those typically attributed to
ceramide that, almost invariably, induces apoptosis, senescence,
autophagy, and growth arrest (Cuvillier et al., 1996; Zheng
et al., 2006; Pruett et al., 2008; Saddoughi and Ogretmen, 2013).
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FIGURE 1 | Schematic representation of S1PRs signaling activation in the cardiovascular system. Ceramide is catabolized by ceramidase to produce sphingosine
that, in turn, is phosphorylated by sphingosine kinases 1 and 2 (SphK1 and 2) to generate the sphingosine 1-phosphate (S1P). Cellular S1P concentrations are
regulated by the balance between its synthesis and de-phosphorylation mediated by S1P phosphatases (SPP). In the cytosol, S1P can also be irreversibly cleaved
into trans-2-hexadecenal and ethanolamine phosphate or can be exported out of cells through the “inside-out” mechanism where it can bind three different receptors
(S1PR1−3). Activation of S1PR1 induces negative inotropic effects via G protein (Gi) activation and decreased cAMP concentration. Moreover, S1PR1 is able to
positively affect endothelial function and to confer protection to the heart, via activation of the mitogen-activated protein kinase 1 and 2 (ERK) and the protein kinase
B (Akt). Both S1PR2 and S1PR3 activate Gi, Gq, and G12/13 appear to collaborate in providing cardioprotection and in regulating cardiac hypertrophy. However,
while S1PR2 is involved in endothelial dysfunction and promotion of fibroblasts function, S1PR3 appears to influence the vascular tone and induce bradycardia.

Therefore, the intracellular synthesis of S1P vs. ceramide should
be always under a tight control because any subtle change in this
finely tuned balance, in response to environmental changes and
stimuli, can direct cell in one direction or in the other (Cuvillier
et al., 1996; Zheng et al., 2006; Pruett et al., 2008; Saddoughi
and Ogretmen, 2013). Along with this, SPL is able to promote
apoptosis under stress conditions, reducing the circulating levels
of S1P (Kumar et al., 2011). Importantly, Karliner and colleagues
have demonstrated that SPL activation in the myocardium
following ischemia leads to reduced S1P levels and that knockout
mice for this enzyme exhibit higher S1P levels and smaller infarct
size (Bandhuvula et al., 2011). Moreover, mice null for SPL show
significantly increased left ventricular function recovery over
their WT infarcted counterparts (Bandhuvula et al., 2011). Thus,
inhibition of SPL could represent a new target that can be utilized
to prevent myocardium loss after ischemic injury.

S1P Levels as a Biomarker of
Cardiovascular Disease
In light of the evidence discussed above, it is important to
consider that blood plasma and serum typically contains, in

principle, high levels of S1P (Murata et al., 2000; Deutschman
et al., 2003). Importantly, changes in serum S1P may be a
predictive marker for the presence and severity of cardiovascular
disease, as in the case of obstructive coronary artery disease
(CAD), atherosclerosis, myocardial infarction (MI) and HF in
humans (Deutschman et al., 2003; Sattler et al., 2010; Argraves
et al., 2011; Cannavo et al., 2013b; Egom et al., 2013; Soltau et al.,
2016).

Accordingly, Knapp et al. (2013) reported a reduction in
circulating S1P levels in patients with acute MI as compared to
controls. Similarly, we have recently demonstrated, in mouse and
rat models of post-ischemic HF, that either cardiac or circulating
levels of S1P are reduced compared to non-ischemic controls
(Cannavo et al., 2013b, 2017).

However, it is important to consider that a large amount
(∼60–80%) of S1P in the human plasma is associated with
high-density lipoprotein (HDL). The importance of HDL is
mainly due to the actions exerted by this lipoprotein on S1P
function. In this context, Wilkerson et al. (2012) demonstrated
that HDL-S1P are able to induce a lower rate of internalization
and degradation of S1PR1 than albumin-S1P (another carrier
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of S1P). Of note, HDLs are usually reduced in several diseases
like atherosclerosis, CAD, MI, renal insufficiency, and diabetes
(Sattler et al., 2010), and this could influence the levels of
circulating S1P. In the same vein, Sattler et al. (2010) reported
that, in patients with CAD or MI, plasma S1P levels (normalized
to HDL levels) were higher than in controls. However, in the
same study, the authors analyzed the levels of HDL-S1P in
MI and stable CAD patients, showing that the levels of S1P
conjugated with this carrier were lower than in controls. In line
with the latter evidence, Argraves et al. (2011) demonstrated
that circulating S1P, dihydro-S1P and c24:1-ceramide levels in
HDL correlate inversely with the incidence of ischemic heart
disease.

S1P RECEPTORS AND DEPENDENT
SIGNALING IN CARDIOVASCULAR
SYSTEM

Many of S1P actions are mediated through specific GPCRs.
Goodemote et al. (1995) demonstrated, for the first time,
that S1P induced the activation of the extracellular signal-
regulated kinase (ERK) 1/2 via Gi protein activation. Later
on, Lee et al. (1998) identified a GPCR, originally termed
endothelial differentiation gene 1 (EDG1), as the receptor of
S1P. Currently, five closely related GPCRs (S1PR1−5), which
differ in tissue and cell expression, have been identified
for their high affinity for this bioactive lipid (Chun et al.,
2002). Importantly, while S1PR1−3 are mostly expressed in the
cardiovascular, central nervous system, and immune system,
S1PR4 is mainly present in the lymphoid tissue, whereas S1PR5
is predominantly expressed in the central nervous system,
immune system (natural killer cells), and spleen (Walzer et al.,
2007; Pyne and Pyne, 2010; Jeffery et al., 2011). Importantly,
the effects associated with S1PRs activation on different cell
types in the cardiovascular system, either on cardiomyocytes,
ECs, smooth muscle cells, or fibroblasts, are dictated by the
specific G protein coupling. S1PR1 couples exclusively with
the inhibitory G protein alpha subunit (Gαi), whereas S1PR2
and S1PR3 bind to Gαi, Gαq, and Gα13 and S1PR4 and
S1PR5 couple to both Gαi and Gα13 (Means and Brown,
2009). Following ligand binding and subsequent activation,
the α subunit of the heterotrimeric G protein is released and
interacts with its downstream effectors. The main effector for
Gαi is the adenylate cyclase, which is inhibited, thus leading
to a reduction of the second messenger cyclic adenosine
3′,5′-monophosphate (cAMP) (Cannavo and Koch, 2017b).
Moreover, Gαi is able to activate PKCα and ε, thus modulating
calcium uptake (Thompson et al., 2006; Marino et al., 2017).
In contrast, phospholipase C (PLC) mediates the response due
to Gαq activation. In turn, PLC hydrolyzes phosphatidylinositol
4,5-bisphosphate (PIP2) to DAG and inositol trisphosphate
(IP3) (Cannavo and Koch, 2017b), whereas that for Gα13 and
Gα12 is a Rho guanine nucleotide exchange factor (Rho-GEF),
activating downstream low molecular Rho GTPases (Sugimoto
et al., 2003).

S1PRs in Vasculature
S1P plays a key role in the development of the vasculature and
its stabilization (Schuchardt et al., 2011; Cannavo et al., 2013b).
Accordingly, S1P regulates the growth of ECs and vascular
smooth muscle cells (VSMCs) (Skoura and Hla, 2009; Schuchardt
et al., 2011; Kerage et al., 2014). ECs express S1PR1, S1PR2, and
S1PR3, with the isoform 1 being the most expressed subtype
(Skoura and Hla, 2009; Kerage et al., 2014). For these reasons,
it is not surprising that most of the S1P-mediated responses
in these cells occur via S1PR1. Importantly, S1P regulates and
stimulates the migration and proliferation of ECs and alteration
in S1P levels or activity are responsible for aberrant vascular
maturation (Kerage et al., 2014). It has been shown, for instance,
that the inability of S1P to activate the GTPase Rac, as observed in
global S1PR1 knockout mice, is one of the mechanisms associated
with the impaired vasculature development and embryonic
lethality (Liu Y. et al., 2000). At this regard, in this study, the
authors suggest that the alteration of S1PR1 activation on ECs
could negatively affect VSMCs recruitment (Liu Y. et al., 2000).
Importantly, in addition to S1PR1 binding in ECs, S1P also
activates the S1PR3 eliciting important vascular processes, such as
the formation of new vessels and stabilization of barrier integrity
(Waeber et al., 2004). For example, it has been shown that
S1P-mediated migration proliferation and vasculature formation
require both the S1PR1 mediated activation of Gi protein and
the S1PR3 coupling to Gq/G12,13 (Sugimoto et al., 2003; Kono
et al., 2004; Waeber et al., 2004). The S1PR3 requirement has
been further validated in studies demonstrating that a peptide
derived from the second intracellular loop of the S1PR3 can
induce pro-angiogenic responses (Licht et al., 2003). Conversely,
the activation and upregulation of S1PR2 has been associated
with impaired functions in ECs, i.e., chemotactic, wound healing,
and morphogenic responses (Lu et al., 2012; Zhao et al., 2015).
In particular, Lu et al. (2012) have recently demonstrated
in vivo that, in aging rats, S1PR2, like others GPCRs (Vasto
et al., 2010; Ferrara et al., 2014), takes part in senescence-
mediated endothelial dysfunction and aging processes (Zhao
et al., 2015).

Interestingly, in VSMCs the expression pattern for S1PRs
significantly differs from that of ECs (Waeber et al., 2004;
Kerage et al., 2014). VSMCs mainly express the S1PR2 and
S1PR3 (Waeber et al., 2004; Kerage et al., 2014). While S1PR3
stimulation increases the activity of Rac with an increased VSMCs
migratory capacity, the activation of S1PR2 inhibits Rac via
Rho/Rho kinase pathway, thus leading to a significant reduction
in VSMCs function (Waeber et al., 2004; Szczepaniak et al., 2010;
Kerage et al., 2014). Importantly, S1PR3 appears to be the major
mediator of S1P-induced vasoconstriction because this lipid fails
to increase the vascular tone in arteries isolated from S1PR3
knockout mice (Salomone et al., 2008).

S1PRs in the Heart
Myocytes and fibroblasts represent the vast majority of the
myocardial tissue. Importantly, due to the elevated activity
expression of SphKs, fibroblasts appear to be the major source
of cardiac S1P (Kacimi et al., 2007). Cardiac fibroblasts express
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predominantly S1PR3, with much lower levels of S1PR1 and
S1PR2 being expressed (Landeen et al., 2008). However, most of
the effects on fibroblasts function have been attributed to S1PR2
activation (Wang et al., 1997; Olivera et al., 1999; Urata et al.,
2005). In particular, S1P is a positive regulator of fibroblasts
function and proliferation, and these effects are associated with
the activation of ERK and Rho activity downstream of S1PR2
(Wang et al., 1997; Olivera et al., 1999; Urata et al., 2005).
Differently from fibroblasts, in cardiomyocytes, S1PR1 is the
predominant S1P receptor subtype expressed (Means et al., 2008;
Cannavo et al., 2013b). Initially, several studies evaluated the
effect on S1PR1 on ion channels and contractility (Means and
Brown, 2009), but decades of discoveries have later revealed that
this receptor has also a prominent role in hypertrophic response
and cardioprotection (Means and Brown, 2009).

S1P-dependent activation of S1PR1 in cardiomyocytes is
necessary for heart development in mice (Clay et al., 2016). In
fact, Clay et al. (2016) have recently shown that conditional
knockout mice for S1PR1 show ventricular septal defects and
perinatal lethality. Moreover, these authors reported that lacking
S1PR1 is associated with decreased myofibril organization (Clay
et al., 2016). Similarly, Keul et al. (2016) have shown that
cardiomyocyte-restricted deletion of S1PR1 in mice results
in progressive cardiomyopathy, compromised response to
β-adrenergic receptor (βAR) stimulation and premature death.

The S1PR1 in cardiomyocytes is also a major regulator
of contractile response (Means and Brown, 2009). Indeed, it
counters the mechanical effects (positive inotropy/lusitropy,
etc.) that follow cardiac β1-adrenergic receptor (β1AR)-agonism
(Means and Brown, 2009; Cannavo et al., 2013b). Accordingly,
S1P treatment of ventricular myocytes blocks the effects
produced by the β1/β2AR agonist, isoproterenol, preventing
the activation of adenylate cyclase, thus leading to a negative
inotropic response (Means et al., 2008). This functional
interaction between βAR and S1PR1 signaling in vivo was more
recently reported also by Errami et al. (2008). In their study,
these authors demonstrated that βAR-agonism in mice results
in cardiac hypertrophic response via engagement of the S1PR1
signaling pathway (Errami et al., 2008). We recently proposed
that this cross-talk is a major protective mechanism in response to
myocardial ischemia (Cannavo et al., 2013b). In fact, we showed
that isoproterenol stimulation of H9c2 cells induces the activation
of S1PR1 pro-hypertrophic signaling (Cannavo et al., 2013b).
In vivo, we observed that, following a cardiac ischemic attack,
increased circulating levels of catecholamines lead to β1AR
hyperactivation and subsequent desensitization/downregulation
(Cannavo et al., 2013b), an effect coupled to increased GPCR
kinase 2 (GRK2) levels that regulate both the β1AR and S1PR1
(Cannavo et al., 2013b). Importantly, the activation of such
signaling pathway leads to the reciprocal downregulation of β1AR
and S1PR1 in cardiac myocytes, leading to worse remodeling
and progression toward HF (Cannavo et al., 2013b). This study
further supported the idea that blockade of GRK2 is a valid
strategy to prevent HF development and progression, but also
demonstrated the cardioprotective role of S1PR1 (Cannavo et al.,
2013a, 2016a,b; Cannavo and Koch, 2017a). In line with these
data, we recently reported that activation of S1PR1 in the heart

is also modulated by the β3AR (Cannavo et al., 2017). This
receptor is the less βAR isoform expressed in the heart; however,
it has important regulatory activities in cardiac hypertrophic
response and in contractility (Cannavo and Koch, 2017b). In
line with a previous study in adipocytes (Zhang et al., 2014),
we demonstrated that selective β3AR stimulation leads to SphK1
upregulation and S1P release with a subsequent activation of
S1PR1 in cardiomyocytes (Cannavo et al., 2017). Again, this
mechanism appears to be relevant in a post-ischemic HF animal
model. In fact, re-activation of β3AR via β1-AR blockade
(Metoprolol), an indirect agonist of β3AR, is able to promote
the activation of S1PR1 thus protecting the heart from failure
(Cannavo et al., 2017).

Importantly, as discussed above, S1P is a cardioprotective
molecule which signals in the heart via S1PRs. However,
despite decades of studies from several groups, including ours,
suggesting that S1PR1 is the major player in S1P-dependent
cardioprotection (Cannavo et al., 2013a, 2017; Karliner, 2013;
Marino et al., 2017), some reports have indicated that S1PR2
and S1PR3 can also take part in these protective molecular
mechanisms activated in the myocardium in response to a
specific injury (Theilmeier et al., 2006; Means et al., 2007;
Means and Brown, 2009; Morel et al., 2016; Ruiz et al., 2017;
Yung et al., 2017). In particular, mice lacking either S1PR2 or
S1PR3, following an ischemic insult, develop infarcts equivalent
to those of WT mice, whereas in S1PR2 and 3 double-
knockout mice, the infarct size was increased by more than
50%, thus suggesting the potential role of these two receptors in
protecting cardiomyocytes (Means et al., 2007). Mechanistically,
all the beneficial effects associated with S1PR1−3, appear to
be dependent mainly on the protein kinase B (Akt), that, via
augmentation of eNOS expression/activity, has multiple effects,
such as induction of adaptive hypertrophy, modulation of
angiogenesis, and inhibition of apoptosis (Mandala et al., 2002;
Means and Brown, 2009; Chaanine and Hajjar, 2011; Cannavo
et al., 2013c; Keul et al., 2016). Moreover, it is also worth noting
that recent reports suggest a protective role for RhoA activation
in the heart (Xiang et al., 2013; Zhao et al., 2014; Yung et al., 2017)
which do not involve S1PR1 (Figure 1).

TARGETING S1PRs AND SphKs AS A
THERAPEUTIC STRATEGY IN
CARDIOVASCULAR DISORDERS

Currently, the majority of drugs targeting the S1P signaling
are directed to the S1PRs rather than the ligand. This is due
to the fact that, as anticipated above, almost all S1P actions
are mediated by its receptor. Moreover, targeting a specific
S1PR would render a given drug highly selective. For these
reasons, many agonists/antagonists of the S1PRs have been
developed and studied. For some of them, clinical data on are
also available (Amiselimod, Siponimod, Ozanimod, Ceralifimod,
GSK2018682, Ponesimod; O’Sullivan and Dev, 2017; Sugahara
et al., 2017). One of the most tested S1PR agonists is Fingolimod
or FTY720. This compound is a structural homolog of S1P, which
is phosphorylated by SphK2 to form Fingolimod-phosphate
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FIGURE 2 | Cardiac effects associated with Fingolimod-mediated activation of S1PR1 and S1PR3. Fingolimod is phosphorylated by sphingosine kinase 2 (SphK2) to
generate Fingolimod-phosphate (Fingolimod) that in turn binds to S1PR1. However, the sustained stimulation leads to S1PR1 internalization and degradation and to
sphingosine kinase 1 (SphK1) inhibition. These effects are probably related to an impairment of the function of the left ventricle (LV). Moreover, via binding and
activation of S1PR3, Fingolimod can induce bradycardia.

(Fingolimod). It serves as a potent agonist of S1PR1 (Mandala
et al., 2002; Hla and Brinkmann, 2011), or as a SphK1 inhibitor
(Tonelli et al., 2010). Of relevance, this compound is a US
Food and Drug Administration (FDA) approved the drug for
the treatment of multiple sclerosis (Jeffery et al., 2011; Pelletier
and Hafler, 2012). In fact, although the Fingolimod-phosphate
initially activates S1PR1, on lymphocytes, it subsequently can
induce the receptor downregulation thus preventing the egress
of these cells from lymphoid tissues (Mandala et al., 2002; Jeffery
et al., 2011; Pelletier and Hafler, 2012). This double mechanism of
action (agonism/antagonism) of Fingolimod on S1PR1 reduces
the infiltration of lymphocytes into the central nervous system
blocking their noxious effect (Mandala et al., 2002; Jeffery et al.,
2011; Pelletier and Hafler, 2012).

S1P AND PROTECTION AGAINST
MYOCARDIAL ISCHEMIA

S1P is formed in the ischemic myocardium, and it is thought
to be cardioprotective, mimicking the effects of ischemic
preconditioning via a PKCε-dependent pathway (Jin et al.,
2004; Vessey et al., 2009; Marino et al., 2017). Importantly, as
suggested by several studies in cardiac and non-cardiac cells,
these beneficial effects are induced mainly by the selective
binding to S1PR1. In line with this possibility, studies have
evaluated the potential protective effect of S1PR1 agonism in
cardiac cells. For instance, Wang et al. (2014) demonstrated that
Fingolimod increases survival in adult murine cardiac myocytes

subjected to hypoxia by inhibiting apoptosis. Following in vivo
studies have demonstrated cardioprotective effects exerted by
S1PR1 via Fingolimod stimulation. In particular, reports have
shown that this drug is able to reduce ischemia/reperfusion
(I/R) injury and to improve myocardial function in isolated
mouse and rat heart preparations (Hofmann et al., 2009;
Egom et al., 2010; Vessey et al., 2013). Further to this, in
a mouse model of myocardial I/R, Goltz et al. (2015) have
shown that, when given at reperfusion, Fingolimod provides
a better hemodynamic outcome as compared to placebo-
treated animals. Importantly, this effect was associated with
a reduction in the number of phagocytic monocytes invading
the myocardium (Goltz et al., 2015). Furthermore, in a recent
report, Santos-Gallego et al. (2016) have demonstrated that
Fingolimod improves myocardial function after MI in pigs. In
this study, the authors showed that Fingolimod administration
was associated with a reduction in the cardiac hypertrophic
response and interstitial fibrosis in the remote, non-ischemic
myocardium (Santos-Gallego et al., 2016). However, it is worth
noting that in addition to S1PR1 activity modulation, studies
have demonstrated that, albeit with minor affinity, Fingolimod
can also bind and activate S1PR3 (Mandala et al., 2002; Hla
and Brinkmann, 2011; Karliner, 2013). For this reason, in
light of this evidence, one question would be whether or not
Fingolimod induces its effects and if these are really due to the
only S1PR1 modulation or if they are also related to S1PR3.
Answering this intriguing would require fully dedicated studies.
Anyway, other reports concerning the S1PR1 agonism protective
effects against ischemic injury have explored the role of these
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receptors also in other organs, such as the brain and the lung
(Stone et al., 2015; Brait et al., 2016). In particular, Stone et al.
(2015) have demonstrated that selective stimulation of S1PR1,
via Fingolimod or VPC01091, provided comparable protection
from a lung injury and dysfunction after I/R. Further, in a mouse
model of stroke, Brait et al. (2016) demonstrated the potential of
S1PR1 agonists, such as LASW1238 or Fingolimod, in reducing
the infarct size. Importantly, the authors concluded that these two
drugs protect the brain only when lymphopenia is sustained for at
least 24 h (Brait et al., 2016). In aggregate, these studies strongly
support the overall notion that pharmacological activation of
S1PR1 can reduce the detrimental effects of acute ischemia in
an experimental setting, as demonstrated both in small and in
large-animal models.

Use of S1PR1 Agonism in Humans: Any
Alternative to Fingolimod?
Although promising, the utilization of Fingolimod in humans
raises some concerns. For instance, Sanna et al. (2004)
demonstrated that stimulation with a non-selective S1PR agonist
reduced heart rate (bradycardia) in WT mice, but not in S1PR3
KO animals. Moreover, Fingolimod is a well-known activator of
both S1PR1 and S1PR3; hence, it has been suggested that behind
direct S1PR1 activation, Fingolimod can also induce bradycardia
via S1PR3 (Karliner, 2013). However, data obtained in rats by
Fryer et al. (2012) show that Fingolimod-induced bradycardia
requires only S1PR1. In line with this evidence, Gergely et al.
(2012) showed that an S1PR1 selective ligand causes transient
bradycardia in humans. Taking all this into account, the FDA
revised the recommendations for cardiovascular monitoring
in patients with multiple sclerosis receiving Fingolimod. Most
importantly, in a recent study, Racca et al. (2016) demonstrated
that in multiple sclerosis patients this pharmacological agent
reduces left ventricular systolic function. Therefore, based on
the beneficial effects exerted by S1PR1, it is plausible that this
adverse event could be related to the antagonistic effect of the
Fingolimod on S1PR1 (Figure 2). Therefore, other drugs or
therapeutic strategies directed to improve S1P signaling/function
are currently under evaluation. For instance, Sugahara et al.
(2017) have recently tested the effects and the efficacy of
Amiselimod, a second-generation S1P receptor modulator that
is highly selective for S1PR1 and S1PR5, with no distinct
agonist activity for S1PR2 or S1PR3. Importantly, compared to
Fingolimod, this compound appears to be safer because it failed
to induce bradycardia (Sugahara et al., 2017). In an alternative
to approaches directed to modulate S1P signaling, Duan et al.
(2007) have recently demonstrated that intracardiac injection

of adenoviral vectors encoding for SphK1 markedly reduces
myocardial infarct size, in a rat model of I/R injury. Of note, the
overexpression of SphK1 results in a significant improvement in
left ventricular systolic pressure and end-diastolic pressure, and
better contractility (Duan et al., 2007). Alternatively, we recently
demonstrated that restoration of cardiac plasma membrane levels
of S1PR1, via a recombinant adeno-associated virus serotype 6
(AAV6), produces beneficial effects, in a HF rat model (Cannavo
et al., 2013b). Importantly, the overexpression of S1PR1 improves
both cardiac function and enhances the re-vascularization of the
ischemic cardiac tissue (Cannavo et al., 2013b).

CONCLUSION

The GPCRs are cell surface receptors that mediate fundamental
processes in all cell types of the cardiovascular system. Therefore,
it is not surprising that these receptors are currently the
largest family of targets for drugs in clinical use. Accordingly,
approximately 20% of medicaments used to treat cardiovascular
disorders have GPCR-binding properties. Importantly, the
discovery that S1P signals via GPCRs, influencing the entire
mammal physiology—from the immune to the nervous system,
from the circulation to the skeletal muscle apparatus—have
significantly advanced the field of cardiovascular pharmacology.
Several drug candidates, targeting both S1PRs and downstream
molecules, are currently undergoing clinical trials, and novel
compounds of diverse pharmacodynamics have been identified
in the attempt to optimize the benefits afforded by S1PR1
stimulation during the course of acute and chronic cardiac
diseases.
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