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Rapid-acting, non-irritating nasal treatment options for smoking cessation

pharmacotherapy are lacking. The halt in development is due, in part, to difficulty

in delivering compounds across the blood brain barrier. Recently, in both human

and animal models, insulin was shown to be capable of being transported to the

cerebrospinal fluid and various brain regions via the “nose-to-brain” pathway, which

bypasses the blood brain barrier, but is not free of its own unique, though different from

blood brain barrier, challenges. This review will first evaluate and critique pharmacokinetic

and pharmacodynamic evidence of intranasal insulin (i.e., nose-to-brain) delivery. As

intranasal insulin has been shown in clinical trials to be effective in reducing nicotine

cravings, in the remainder of the review, hypothesis-generating literature for additional

mediators (i.e., other than the already shown nicotine craving) of smoking persistence

will be reviewed. In particular, weight gain, impulsive behavior, and anhedonia have been

shown to contribute to the inability to quit smoking. For each of these, after reviewing

how the mediator promotes smoking, intranasal insulin literature from animal and clinical

models will be critiqued in assessing whether a hypothesis may be generated that

intranasal insulin may alleviate it, thereby potentially contributing to a successful smoking

cessation outcome.
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INTRODUCTION

Smoking remains the single most preventable cause of morbidity and mortality (Wipfli and Samet,
2016), killing almost half a million people each year (U.S. Department of Health and Human
Services, 2014). Of the estimated 40 million smokers in the United States (Centers for Disease
Control and Prevention, 2011), only ∼6% are successful in quitting smoking (Centers for Disease
Control and Prevention, 2011). Therefore, development of novel and more efficacious smoking
cessation treatments is critical.

A significant barrier to tobacco use disorder drug development is the inability to deliver
therapeutic compounds through the blood brain barrier (BBB). Whereas, <2% of small
compounds effectively cross the BBB, larger molecules and peptides are nearly impenetrable
(Pardridge, 2005). The intranasal route of drug delivery may overcome these difficulties. Direct
“nose-to-brain” delivery is accomplished by a targeted deposition of compounds to the highly
innervated, odor-detecting sensory system (Figure 1, left side). Combining immunofluorescence
and immunoelectromicroscopy, Steinke et al. (2008) have demonstrated that the glia-like sustenular
cells form tight junctions in order to constitute a barrier from the environment. Hence, the system
is not free from drug delivery challenges. Nonetheless, the cellular properties of the barrier are
different from those of the BBB, and may be a platform for delivering compounds which are
BBB-impenetrable (reviewed in Warnken et al., 2016).
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FIGURE 1 | Graphic presentation of direct nose-to–brain entry. The left side of the figure shows the location of nasal olfactory region. The right side of the figure

depicts the location of olfactory sensory neurons in reference to additional cell types in the region.

Earlier studies have shown that insulin can be delivered
to the brain via the nose-to-brain pathway without significant
systemic insulin absorption. This review will first evaluate
the pharmacokinetic and pharmacodynamic evidence, following
which it will provide the rationale for hypothesizing whether
the neuropeptide may target significant mediators of smoking
continuation.

INTRANASAL
INSULIN–PHARMACOKINETIC AND
PHARMACODYNAMIC RELEVANCE

Compounds entering cerebrospinal fluid (CSF) through the
olfactory epithelium in nasal cavity do so via olfactory sensory
neurons (Ruigrok and de Lange, 2015) which innervate lamina
propria (Figure 1, right side). They move along the nerves
both intra- and extracellularly. The extracellular transport is fast
(minutes to half an hour; Dhuria et al., 2010) and occurs as a
result of combination of extracellular convection (i.e., bulk flow)
and propagation of action potentials (Lochhead and Thorne,
2012). Intracellular mechanisms (endocytosis and passive
diffusion transport) take hours to days. Numerous biologics,
including insulin and other peptides, as well as proteins and gene
vectors/stem cells have been delivered to the brain via direct nose-
to-brain mechanism (for reviews, see Lochhead and Thorne,
2012; Kozlovskaya et al., 2014; Ruigrok and de Lange, 2015).

Insulin is not an unfamiliar peptide in the CNS. Challenging
an earlier position that under normal physiological conditions
insulin does not pass into the brain or CSF, a monumental
radioimmunoassay study byMargolis and Altszuler (1967) found
insulin in the CSF to be ∼25% of plasma CFS. Insulin enters

the brain via saturable, insulin receptor-mediated transcytosis
(Havrankova et al., 1981; Duffy and Pardridge, 1987; Woods
et al., 2003; Smith and Gumbleton, 2006; Meijer et al., 2016), and
its elimination from the brain is either insulin-specific or non-
specific as part of the overall CSF outflow. That is, insulin can

be specifically degraded by insulin degrading enzyme in brain
parenchyma and CSF (Behl et al., 2009). An alternate route of

elimination is via general CSF outflow to lymphatic vasculature
and venous sinuses (Louveau, 2015).

Therapeutic intranasal delivery of insulin reaches CSF in

humans (Born et al., 2002) and specific brain regions in rodents

(Salameh et al., 2015). In an attempt to deliver insulin to the

CSF, but bypass the bloodstream and avoid insulin’s potent

hypoglycemic systemic effects, Born et al. (2002) administered 40

IU of insulin intranasally to 36 subjects. Serum and CSF samples

were taken at −10, 0, 10, 20, 30, 40, 60, and 80 min. Compared

to the placebo condition, insulin CSF levels were higher 30

and 40 min after intranasal administration. There were no

significant serum insulin differences. Brain penetration of insulin

in humans has not been studied; instead, indirect measurements

of brain “energetics” following intranasal insulin administration

have been conducted in two studies. In a randomized, placebo-

controlled study, (Jauch-Chara et al., 2012) utilized magnetic
resonance spectroscopy to measure changes in motor cortex

ATP, which reflects intracellular energy content. Intranasal
insulin (40 IU) resulted in increased ATP, without peripheral
insulin changes. The second study showing insulin’s effect on
brain energetics was a randomized, placebo-controlled study,

evaluating memory function of Alzheimer’s disease patients
after 4 months of treatment with intranasal insulin. Intranasal
insulin improved memory in mild/moderate disease patients
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(Craft et al., 2012). A subset of patients (n = 40) in that

study underwent positron emission tomography before and after
treatment. Placebo-assigned participants showed progressive
hypometabolism (i.e., reduced glucose metabolism)—a typical

feature of Alzheimer’s disease progression. The effect was
observed in several brain regions of placebo-treated patients
while intranasal insulin-treated patients showed a significant
dampening of the hypometabolic progression.

Results of human studies show that intranasal insulin,
independently of its peripheral effects, if any, produces a
measurable central PK/PD result. In two clinical trials, we have
recently shown that intranasal insulin, without circulating insulin
changes, rapidly decreases nicotine cravings (Hamidovic et al.,
2017). Though nicotine craving is central to tobacco use disorder
(Tiffany and Wray, 2012), additional mediators—i.e., cessation-
induced weight gain, anhedonia and increased impulsivity—also
contribute to relapse. The remainder of this review specifies the
role of these mediators in smoking continuation and evaluates
whether there is evidence to support the hypothesis that insulin
may target them.

WEIGHT GAIN

Weight gain of nine pounds on average (Tian et al., 2015) occurs
in ∼75% (Lycett et al., 2011) of abstinent smokers. Significant
differences between regions exist, with weight gain being the
highest in North America and lowest in Asia (Tian et al.,
2015). As not all gained weight can be attributed to smoking
cessation, adjustment for other variables, most notably age, shows
a weight gain of about 11 pounds in the United States (Veldheer
et al., 2015). Post-cessation weight gain considerably impacts
health, but does not surpass the adversity of continuing to
smoke (Siahpush et al., 2014). Nonetheless, smoking cessation
increases the risk of developing type II diabetes and this risk is
mediated by weight gain. In a prospective Atherosclerosis Risk
in Communities Study (Yeh et al., 2010), the investigators found
that the risk of diabetes for abstinent smokers in the first 3 years
increases in comparison to the risk of smokers. The risk is similar
to the risk of smokers years 4–10, and stabilizes to the same risk
as a never smoker after ∼12 years. The hazard ratio of diabetes
among former smokers (quit > 3 years), new quitters (quit
≤ 3years), and continuing smokers were 1.22 (CI, 0.99–1.50),
1.73 (CI, 1.19–2.53), and 1.31 (CI, 1.04–1.65), respectively. The
risks were substantially attenuated after an adjustment for weight
gain.

Whether intervention strategies targeting body weight
concerns or actual weight gain per se improve smoking cessation
outcomes is not well understood. An early paper (Perkins et al.,
2001) investigating this question found that participants in a
cognitive behavioral treatment designed to address concerns
about weight gain were more successful quitters than participants
in the behavioral intervention group designed to attenuate the
actual weight gain. However, since this publication, much
has rapidly changed in the United States with an “epidemic”
fraction of individuals being classified as obese. Future strong
prospective studies paralleling ongoing changes in obesity rates

can adequately address various components of this complex
question.

Laboratory studies provide information on physiological
and cellular mechanisms by which withdrawal from nicotine
mediates weight gain observed in population studies. Nicotine
withdrawal causes profound changes in the homeostatic and
hedonic regulatory mechanisms, and weight gain occurs due to
increase in caloric intake (Perkins et al., 1992; Filozof et al.,
2004). Caloric intake is an important, but seemingly not the only
contributor to weight gain (Munafò et al., 2009). However, the
impact of non-dietary influences on weight gain is not clear.
While some studies have shown a change in energy expenditure
after acute (12 h) abstinence (Perkins et al., 1989), whether
these changes are relevant to smoking cessation weight gain has
been brought into question due to mixed findings (reviewed in
Chiolero et al., 2008).

Although we are just starting to understand the mechanisms
through which nicotine suppresses weight gain, the arcuate
nucleus in the hypothalamus has emerged as a site of nicotine’s
effect. The nucleus contains two main neuronal networks—
the anorexigenic pro-opiomelanocortin (POMC) and cocaine-
amphetamine-regulated-transcript (CART) neurons as well as
the orexigenic acting neuropeptide Y (NPY) and agoutirelated
peptide (AgRP). The POMC neurons further synapse onto
the second order neurons which contain the hippocampal
melanocortin receptor 4 (MC4-R)—a seven-transmembrane G-
protein coupled receptor. The resulting increase in the second
order MC4-R signaling provides crucial inhibitory tone that
restrains food intake. In fact, both nicotine (Mineur et al.,
2011) and insulin (Seeley and Woods, 2003) activate pro-
opiomelanocortin (POMC) neurons in the arcuate nucleus of the
hypothalamus through α3 β4 and insulin receptors, respectively.
However, elimination of insulin signaling in POMC neurons is
not sufficient to produce any effect on weight. Whereas, global
neuronal insulin receptor deletion results in an obese phenotype
(Brüning et al., 2000), mice lacking insulin receptor only in
POMC have unchanged food intake or energy expenditure
(Chong et al., 2015). Instead, lack of insulin signaling in the
mouse and fly specifically in the NPY neurons leads to an obese
phenotype with dysregulated energy expenditure (Loh et al.,
2017).

In addition to the above-described insulin’s effect on
the homeostatic regulation, an additional, hedonic locus of
insulin’s effect on food valuation was recently evaluated
in a human pharmacologic fMRI study (Tiedemann et al.,
2017) comparing healthy vs. diabetic participants. Whereas,
mesolimbic connectivity between ventral tegmental area and
nucleus accumbens—as well as subjective rating of food
palatability—was reduced in the healthy control group receiving
intranasal insulin (vs. placebo), the effect was not observed in
the diabetic group. The interpretation of results, however, is
complicated because the single blood sample—taken 50 min
after spray administration—resulted in higher circulating insulin
concentration in the healthy control group upon receiving
insulin (vs. placebo) condition. As such, it is difficult to attribute
the study finding specifically to the central effects of insulin.
A related study (Jauch-Chara et al., 2012), though, measured
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insulin, glucose, and c-peptide blood levels every 10 min through
a 100-min time period after spray (intranasal insulin or placebo)
administration. Though there were no differences in the three
measures between the intranasal insulin and placebo conditions,
the intranasal insulin group had a markedly reduced total caloric
intake. This study, coupled with animal studies showing insulin’s
reducing effects on food intake arising from the hypothalamic
(Loh et al., 2017) and mesolimbic (Labouebe et al., 2013) loci,
provide the foundation for an evaluation of intranasal insulin
as a weight management agent during the course of smoking
cessation. If shown to be effective, this would not only reduce
the incidence of type II diabetes in abstinent smokers, but may
also increase smoking cessation rates by reducing weight gain
concerns, thereby having a substantial impact on public health.

IMPULSIVITY

Much progress has been made recently in defining related but
clearly independent constructs of impulsive behavior. Criticized
as being generally broad (Cyders, 2015), it is recommended the
DSM-V term “impulsivity” be divided into separate constructs—
one being lack of planning and regard for future consequences
(choice impulsivity) and a separate one being a diminished ability
to inhibit a natural, habitual or dominant “prepotent” response
(rapid-response impulsivity).

Choice impulsivity in nicotine withdrawal research is highly
dependent on trait impulsivity. Remarkably, both animal
(Kolokotroni et al., 2014) and human (Harrison et al., 2009;
Ashare and Hawk, 2012) studies show preference for smaller-
sooner rewards during nicotine withdrawal but only for the low
trait impulsivity groups. The mechanisms of this phenomenon
yet have to be examined in laboratory settings, but unlike
cocaine administration, which leaves a long-lasting negative
impact on prolonged impulsive choice, in animal models, the
effect of nicotine seems transient and normalizes in about 1 week
(Kolokotroni et al., 2014). Smoking abstinence robustly reduces
the ability to inhibit prepotent responding (Kozink et al., 2010)
and administration of nicotine replacement results in the reversal
poor rapid-response impulsivity (Larrison et al., 2004; Dawkins
et al., 2007). The extent to which nicotine reverses rapid-response
impulsivity predicts relapse during the first week of quitting
smoking (Powell et al., 2004).

The overlapping effect of nicotine and insulin is evident
in rapid-response impulsivity. Just as nicotine reverses the
detrimental response, so does insulin. Insulin robustly and
swiftly induces the cell surface expression and function of
dopamine transporter in dopamine terminals (Patterson et al.,
1998; Owens et al., 2005; Williams et al., 2007; Figlewicz and
Benoit, 2008; Lute et al., 2008). Whereas, administration of
insulin alone to nucleus accumbens decreases electrically evoked
dopamine release, it enhances the release of dopamine when co-
administered with cocaine due to insulin’s effect onDAT function
and enhancement of dopamine reuptake. Similar results were
shown behaviorally. Rats receiving insulin demonstrated reduced
rapid-response impulsivity, and co-administration of insulin
and cocaine increased cocaine’s induction of impulsive behavior
(Schoffelmeer et al., 2011). The parallel cellular and behavioral

findings of insulin’s mechanism on the type of impulsivity
particularly important in nicotine dependence identify insulin
manipulation as a novel strategy for smoking cessation. Clinical
studies need to be designed carefully, though, to evaluate whether
intranasal insulin can be administered at the time of relapse. It
is reasonable to hypothesize that co-administration of nicotine
and insulin would worsen rapid response impulsivity more than
either agent alone. If so, methods to address potential impeding
of smoking cessation efforts would require a detailed evaluation.

MOOD

Anhedonia spikes within the first day of smoking cessation. It
significantly predicts smoking cessation even after adjustment for
related withdrawal symptoms such as, nicotine craving (Cook
et al., 2015). Hence, any smoking cessation treatment addressing
symptoms associated with discontinuation from smoking should,
in theory, also act as an antidepressant. This is in line with the
evidence that antidepressant buproprion is an effective agent
for smoking cessation. The underlying cellular mechanisms and
anatomical regions of withdrawal-induced anhedonia, though,
are not well understood (Picciotto et al., 2008), though evidence
suggests involvement of the β2 nicotinic acetylcoline receptor
subunit (Stoker et al., 2015).

Insulin’s role in mood modulation is in the beginning stage
of investigation in both animal and clinical models. There is
clear evidence of the involvement of insulin in anhedonia—the
brain insulin receptor knockout NIRKO mice exhibit depressive
behavior due to overactive monoamine oxidase activity and a
subsequent increased dopamine turnover (Kleinridders et al.,
2015). The hallmark of the phenotype is a mitochondrial
dysfunction which is the cellular signature of insulin resistance.
In addition, when a “next generation antidepressant” L-
acetylcartinine (LAC) is administered to a genetic rat model
of depression (Flinders Sensitive Line), the treatment reduces
insulin and glucose levels, suggesting an insulin resistant state
that responds to LAC. As such, the anhedonia of a large subset
of smokers who are insulin resistant due to nicotine’s well know
insulin resistance-inducing actions in the periphery (Bajaj, 2012;
Bergman et al., 2012), may benefit from targeted normalization of
insulin signaling. In this case, treatments with insulin sensitizers
would be warranted. Whether insulin co-administration would
be of benefit, would need to be further evaluated.

Clinical administration of intranasal insulin for mood-
related outcomes has resulted in mixed findings. Whereas, a
study by Benedict et al. (2004) in healthy volunteers reported
enhanced mood, a more recent study by Cha et al. (2017) did
not find any changes in a cohort of major depressive disorder
patients. Intranasal insulin 40 IU was administered four times
per day in both studies. Compliance is a major limitation of
these studies due to a multiple time per day drug regimen.
Intranasal insulin studies with twice daily dosing have been
executed and replicated successfully (Craft et al., 2012, 2017).
Perhaps more importantly, intranasal insulin in all the published
intranasal insulin studies thus far is compounded using the
commercially available subcutaneous route form which causes
severe nasal irritation and burning (Hamidovic et al., 2017).
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Hence, clinical investigators of intranasal insulin trials may have
overlooked the issue of medication adherence assuming that,
based on collecting returned medication, the medication was
taken correctly. However, as discussed in Dresser (2013), the
tendency of the research community to focus on the design
and results while viewing adherence as “a nuisance and a
somewhat tangential concern” possibly contributed to the mixed
findings with intranasal insulin for its potential mood enhancing
properties. In order to further study intranasal insulin in large
scale clinical trials, insulin will have to be reformulated
to be appropriate for nasal administration. Medication
adherence may be monitored using newer methodologies
such as, Artificial Intelligence platforms. Otherwise, adherence
will be compromised with resulting inaccurate effect size
estimates.

CONCLUSION

Insulin receptors are widely distributed throughout the brain
(Kleinridders et al., 2014) where their activation mediates
synaptic plasticity and neurotransmitter signaling. As such,
intranasal insulin is currently being evaluated for numerous
psychiatric and neurologic conditions. At the time of this
review, after excluding clinical trials of unknown status,
clinicaltrials.gov registers 44 clinical studies with intranasal
insulin. Having already shown that intranasal insulin is effective
in decreasing nicotine cravings (Hamidovic et al., 2017), this

review also evaluated whether additional mediators may be
targeted by the treatment. Based on substantial evidence that
disruptions in insulin signaling contribute to increased food
intake, intranasal insulin administration may reduce weight
gain during smoking cessation, which, if proven to be effective
would have a substantial public health impact. Although animal
models demonstrate the role of insulin in anhedonia, how this
translates clinically is still unknown. Similar to the actions of
psychostimulants, insulin induces the expression of dopamine
transporter, thereby reducing rapid response impulsivity. This
effect has yet to be shown in human behavioral models. Being a
unique neuropeptide, which can be delivered centrally without
peripheral absorption, insulin may have important effects on
certain mediators of smoking persistence, thereby increasing
positive smoking cessation outcomes.
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