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Background: Several efforts have been made to develop effective antipsychotic
drugs. Currently, available antipsychotics are effective on positive symptoms, less on
negative symptoms, but not on cognitive impairment, a clinically relevant dimension of
schizophrenia. Drug repurposing offers great advantages over the long-lasting, risky
and expensive, de novo drug discovery strategy. To our knowledge, the possible
antipsychotic properties of buspirone, an azapirone anxiolytic drug marketed in 1986
as serotonin 5-HT1A receptor (5-HT1AR) partial agonist, have not been extensively
investigated despite its intriguing pharmacodynamic profile, which includes dopamine
D3 (D3R) and D4 receptor (D4R) antagonist activity. Multiple lines of evidence point to
D3R as a valid therapeutic target for the treatment of several neuropsychiatric disorders
including schizophrenia. In the present study, we tested the hypothesis that buspirone,
behaving as dopamine D3R antagonist, may have antipsychotic-like activity.

Materials and Methods: Effects of acute administration of buspirone was assessed on
a wide-range of schizophrenia-relevant abnormalities induced by a single administration
of the non-competitive NMDAR antagonist MK-801, in both wild-type mice (WT) and
D3R-null mutant mice (D3R−/−).

Results: Buspirone (3 mg·kg−1, i.p.) was devoid of cataleptogenic activity in
itself, but resulted effective in counteracting disruption of prepulse inhibition (PPI),
hyperlocomotion and deficit of temporal order recognition memory (TOR) induced by
MK-801 (0.1 mg·kg−1, i.p.) in WT mice. Conversely, in D3R−/− mice, buspirone was
ineffective in preventing MK-801-induced TOR deficit and it was only partially effective
in blocking MK-801-stimulated hyperlocomotion.

Conclusion: Taken together, these results indicate, for the first time, that buspirone,
might be a potential therapeutic medication for the treatment of schizophrenia. In
particular, buspirone, through its D3R antagonist activity, may be a useful tool for
improving the treatment of cognitive deficits in schizophrenia that still represents an
unmet need of this disease.

Keywords: buspirone, dopamine D3 receptor, MK-801, schizophrenia, antipsychotics, prepulse inhibition,
temporal order recognition
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INTRODUCTION

Schizophrenia is a chronic and devastating multifactorial mental
illness affecting approximately 0.7–1% of population worldwide
(Landek-Salgado et al., 2016). The development of second-
generation antipsychotics has yielded some advances in terms of
efficacy, but only modest improvement in addressing the negative
symptoms of schizophrenia. To date, no antipsychotics display
robust effects on cognitive deficits or impaired social processing
that are the most clinically relevant dimensions of the disease
(Owen et al., 2016). Drug repositioning refers to the process
of finding new uses for already approved and commercialized
medications and it is thought to offer great advantages over
the long-lasting, risky and expensive de novo drug discovery
strategy. This is because the pharmacological and toxicological
profiles of approved medications are well-characterized (Ashburn
and Thor, 2004). It has been suggested that repositioned
drugs may represent effective alternative compounds for the
treatment of neuropsychiatric disorders for which the classical
drug discovery process is hampered by the poor knowledge of
the pathophysiological mechanisms (Lee and Kim, 2016). In
this context, the azapirone anxiolytic drug buspirone (Buspar R©),
has been proposed for the treatment of substance use disorder
(SUD; Leggio et al., 2016). Regarding schizophrenia, earlier
clinical trials suggested that buspirone added to both typical and
atypical antipsychotics ameliorates negative symptoms (Ghaleiha
et al., 2010; Sheikhmoonesi et al., 2015), while other preclinical
and clinical data showed buspirone as scarcely effective in
improving cognitive dysfunction (Piskulić et al., 2009; Horiguchi
and Meltzer, 2012; Maeda et al., 2014).

At a pharmacological level, buspirone, besides its claimed
5-HT1AR partial agonist activity, is endowed with D3R/D4R
antagonist activity and binds to dopamine D2 receptor (D2R)
with an affinity 5-fold lower than for D3R (Bergman et al., 2013).
Available evidence indicates that D3R can be considered as a
new validated pharmacological target for the treatment of several
neuropsychiatric disorders, including SUD, Parkinson’s disease,
depression and schizophrenia (Leggio et al., 2016; Maramai et al.,
2016; Sokoloff and Le Foll, 2017). Published studies indicate that
D3R play a key role in the pathophysiology of schizophrenia
(Nunokawa et al., 2010; Gross et al., 2013). Moreover, D3R
expression is increased in schizophrenics (Gurevich et al., 1997;
Cui et al., 2015). The restricted localization of D3Rs in the
limbic system, particularly in the nucleus accumbens (NAc),
has attracted great interest especially for the development of
safe and effective medications devoid of the classical side effects
(extrapyramidal side effects and prolactin elevation) caused by
D2R blockade (Gross and Drescher, 2012). In fact, antipsychotics
targeting D3R, such as blonanserin and cariprazine, have
been demonstrated effective in treating positive and negative
symptoms with a good safety profile (Hori et al., 2014; Leggio
et al., 2016; Earley et al., 2017). Beside the high expression in NAc,
D3Rs are expressed specifically in the layer 5 pyramidal neurons
of medial prefrontal cortex (mPFC, Lidow et al., 1998), where
they control in a peculiar manner neuronal excitability (Clarkson
et al., 2017). D3Rs play a fundamental role in physiological
mechanisms underlying mPFC-dependent cognitive functions

as well as in crucial pathophysiological processes subserving
mPFC-dependent cognitive dysfunctions (Nakajima et al., 2013).
In particular, it seems that selective antagonism on D3R improves
cognitive functions while selective agonism exerts opposite,
detrimental effects (Watson et al., 2012). Recently, it has been
proposed that molecules joining 5HT1AR partial agonism and
5-HT2A antagonism to D3R antagonism may exhibit stronger
antipsychotic effects (Brindisi et al., 2014). As aforementioned,
the pharmacological profile of buspirone largely matches that
of these potential antipsychotics. However, as far as we know,
the antipsychotic properties of buspirone have not yet been
extensively elucidated.

In the present study, we tested the hypothesis that buspirone,
behaving as dopamine D3R antagonist, may exert antipsychotic-
like properties in a preclinical model of schizophrenia, based
on NMDAR hypofunction. This pharmacological model, as
compared with dopamine-based models, appears to more
efficiently recapitulate several symptoms of schizophrenia,
particularly those related to cognitive dysfunction (Kantrowitz
and Javitt, 2010). The effect of acute administration of buspirone
was evaluated on hyperlocomotion, prepulse inhibition (PPI)
disruption and temporal order recognition (TOR) memory
impairment, elicited by acute administration of the non-
competitive NMDAR antagonist MK-801 in WT mice. In order to
assess the involvement of D3R on the effect of buspirone, the same
behavioral paradigms, with or without buspirone, were applied to
D3R−/− mice.

MATERIALS AND METHODS

Animals and Housing
In these experiments, D3R−/− mice and their WT
littermates (males, 8–12 weeks old), bred by a heterozygous
(D3R+/−

× D3R+/−) mating strategy, were tested. Animals
were group-housed (2–5 mice per cage), with free access to chow
and water, in an air-conditioned room, with a 12-h light–dark
cycle. D3R mutant mice were 10th–12th generation of congenic
C57BL/6J mice, generated by a back-crossing strategy (Accili
et al., 1996). Genotypes were identified by PCR analysis of tail
DNA as previously described (Leggio et al., 2011, 2015). The
experimenters handled animals on alternate days during the
week preceding the behavioral tests. Animals were acclimatized
to the testing room at least 1 h before the beginning of the
tests. Experiments were performed during the dark phase. All
experimental procedures were carried out according to the
Directive 2010/63/EU and were approved by the Institutional
Animal Care and Use Committee of the Catania University.

Drugs
(+)MK-801 hydrogen maleate and buspirone hydrochloride
(Sigma–Aldrich, St. Louis, MO, United States) were dissolved
in saline. Clozapine and haloperidol (Sigma–Aldrich) were
dissolved in few drops of 1 N HCl and further diluted with saline;
the pH was adjusted to 7 with NaHCO3. All drug solutions were
prepared daily and intraperitoneally (i.p.) administered by using
an injection volume of 10 ml/kg.
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Behavioral Testing
Temporal Order Recognition (TOR) Test
The TOR test was carried out as previously described (Barker and
Warburton, 2011; Managò et al., 2016) with minor modifications.
Animals explored in an evenly illuminated (9 ± 1 lux) square
open field (40 × 40 × 40 cm, Ugo Basile, Gemonio, Italy)
in which the floor was covered with sawdust. The behavior of
animals was recorded using a video camera (Sony Videocam
PJ330E) and then scored by an independent observer. The objects
presented were made of plastic Duplo blocks (Lego R©), different
in shape, color, and size (9 × 8 × 7 cm to 12 × 11 × 10 cm)
and too heavy to be moved by the mice. After 1 week of
handling, a 4-day pretesting procedure was carried out. Mice
were habituated to the empty arena for 10 min on the day 1
and 2. Afterward, on the day 3 and 4, mice were i.p. injected
with saline 20 min before being placed in the arena containing
two objects (different from those ones eventually used during
the test) for 10 min. This pretesting procedure was performed in
order to minimize stress-related behavior induced by injections
as well as to prevent neophobia during the test. The objects
were located in two corners of the arena, 10 cm far from
the sidewalls. The test consisted of two sample phases and
one test trial (Figure 1A). During the sample phases, animals
were allowed to explore two copies of an identical object for
a total of 5 min. Different objects were used for each sample
phase, with a delay between the sample phases of 1 h. The test
trial was performed 3 h after the sample phase 2. During the
test trial (5 min duration), animals were exposed to a third
copy of the objects from sample phase 1 and a third copy of
the objects from sample phase 2. Objects were cleaned with a
10% ethanol solution in between each test in order to avoid
olfactory cues. Any feces were removed and the sawdust was
shaken in order to equally redistribute any odor cues. If the
temporal order memory is intact, animals should spend more
time exploring the object from sample 1, the less recently
experienced object, compared with the object from sample
2, the more recently experienced object. The objects utilized
in each sample phase as well as the positions of the objects
during the test were counterbalanced between the animals.
Exploratory behavior was defined as the animal directing its
nose toward the object at a distance of <2 cm. Looking around
while sitting, climbing or rearing against the objects were not
considered as exploration. Animals that failed to complete a
minimum of 2 seconds (sec) of exploration in each phase
of the task were excluded from the analysis. Discrimination
between the objects was calculated using a discrimination ratio
(DR) that takes into account individual differences in the
total amount of exploration. In particular, data are depicted as
DR, calculated as [(less recently experienced object exploration
time – more recently experienced object exploration time)/total
exploration time]. The higher is the DR, the better is TOR
memory.

Acoustic Startle Response and Prepulse Inhibition
(PPI) Test
Acoustic startle response and PPI were measured using four PPI
sets from SR-Lab Systems (San Diego Instruments, San Diego,

CA, United States). The experimental procedure was adapted
from Papaleo et al. (2012). Animals were exposed to a short
“matching” startle session before the PPI testing. They were
placed in the startle chambers for a 5-min acclimation period
with a 65 dB(A) background noise, and then exposed to a total
of 17 acoustic startle stimulus (pulse) trials [40 ms — 120 dB
(A) noise bursts] that were interspersed with 3 acoustic prepulse
plus acoustic pulse trials in which the pulse was preceded 100 ms
(onset-to-onset) by a 20 ms noise burst, 10 dB above background.
Animals were assigned to each drug dose group based on average
PPI% from the matching session to ensure similar baseline
PPI levels between experimental groups. The PPI test session,
with or without drug treatment, was carried out 5–7 days after
the matching session. The animals were placed in the startle
chambers for a 5-min acclimation period with a 65 dB(A)
background noise. Animals were then exposed to a series of
trial types, which were presented in pseudorandom order. The
inter trial interval (ITI) was 5–60 s. One trial type measured the
response to no stimulus (baseline movement), and another one
measured the startle stimulus alone (acoustic amplitude), which
was a 40 ms 120 dB sound burst. Other five trial types were
acoustic prepulse plus acoustic startle stimulus trials. Prepulse
tones were 20 ms at 70, 75, 80, 85, and 90 presented 100 ms
before the startle stimulus. PPI was calculated by using the
following formula: 100 × {[pulse-only units - (prepulse + pulse
units)]/(pulse-only units)}.

Open Field (OF) Test
Animals were tested in the same square open field mentioned
above (divided into 16 quadrants by lines on the floor) over
a 30 min-period. Locomotor activity was assessed during the
first exposure to the empty open field arena. The apparatus
was cleaned with a 10% ethanol solution in between each test
to prevent olfactory cues. Locomotor activity was quantified by
counting the numbers of lines crossed (crossings) with all four
paws (Accili et al., 1996). The behavior of animals was recorded
by using a video camera and eventually analyzed by one observer
blinded to genotype/treatment.

Catalepsy Test
The catalepsy test was carried out as previously reported with
minor changes (Fink-Jensen et al., 2011). The apparatus was
made of 2 wooden supports linked by a steel bar (length: 7.5 cm;
diameter 0.9 cm); The system was stabilized by another wooden
support opposite to the steel bar. The catalepsy was evaluated
by placing the animals with the forepaws on the horizontal
steel bar positioned 4.5 cm above the floor. Animals were tested
at different time points: 30, 60, 90, and 120 min after the
pharmacological treatment. The latency (cut off time) was 600 s.
The end point of the test was considered when both forepaws
were removed from the bar or when the animal moved its head in
exploratory manner. Each trial was repeated for three times and
the highest time value was taken.

Experimental Design
The behavioral effects of a single injection of buspirone were
evaluated on MK-801-induced schizophrenia-like phenotypes
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FIGURE 1 | Buspirone counteracted MK-801-induced TOR memory impairment in WT mice. (A) Cartoon illustrating the TOR test and the schedule of treatment.
Buspirone (Bus, 3 mg·kg−1, i.p.) or vehicle (Veh), clozapine (Clo, 1 mg·kg−1, i.p.) or Veh and MK-801 (0.1 mg·kg−1, i.p.) or Veh were injected 45, 30, and 20 min
respectively, before the sample phase 2. (B,C) Discrimination ratio (DR) displayed by Veh + Veh (n = 10), Veh + MK-801 (n = 10), Bus + MK-801 (n = 9),
Clo + MK-801 (n = 9), Bus + Veh (n = 8), Clo + Veh (n = 5) WT mice during the test phase. Data are shown as mean ± SEM. DR [(less recently experienced object
exploration time - more recently experienced object exploration time)/total exploration time]. ∗∗∗p < 0.001 vs. Veh + Veh WT mice; ††p < 0.01 and †p < 0.05 vs.
Veh + MK-801 WT mice (One-way ANOVA and Newman–Keuls post hoc test).

both in WT and in D3R−/− mice. These effects were compared
to those of clozapine, the most effective commercially available
antipsychotic (Owen et al., 2016), injected at a dose of
1 mg·kg−1. This dose has been revealed to be effective in
ameliorating cognitive dysfunction (Mutlu et al., 2011; Park
et al., 2014). The dose of buspirone (3 mg·kg−1) was selected
based on our previous experience (Leggio et al., 2014) as
well as according to a work by Di Ciano et al. (2017). To
avoid effects of test-related anxiety, animals were divided into
independent cohorts and subjected to the most stressful tests
as the last. Animals were tested as follows: WT, cohort 1,
open field test, catalepsy test; WT, cohort 2, TOR test, PPI
test; D3R−/−, cohort 2, open field, TOR test. A washout
period of at least 7 days was given between each experimental
procedure.

Experiment 1 - Effect of Buspirone on
MK-801-Induced TOR Memory Deficit in WT Mice
Administration of NMDAR antagonists before the sample
phase 2 impairs TOR memory affecting both reconsolidation
and consolidation mechanism (Warburton et al., 2013).
Therefore, buspirone, clozapine and MK-801 were administered
45, 30, and 20 min, respectively, before the sample
phase 2. The chosen dose of MK-801 (0.1 mg·kg−1) is
able to produce cognitive impairment without inducing

locomotor disturbance (stereotypies, ataxia; Blot et al.,
2015).

Experiment 2 - Effect of Buspirone on
MK-801-Stimulated Hyperlocomotion and
Assessment of Catalepsy in WT Mice
Mice received injections of buspirone, clozapine and MK-801
with the same timing of treatment used for the TOR test and
then placed into the empty open field. The dose of 0.1 mg·kg−1

MK-801 is effective in stimulating hyperlocomotion (Zhang
et al., 2007). For the catalepsy test, animals were injected with
buspirone, clozapine and haloperidol (1 mg·kg−1) and then
tested at different time points (30, 60, 90, and 120 min). The
haloperidol-induced catalepsy at the dose of 1 mg·kg−1 is a
widely used model for the evaluation of extrapyramidal side
effects induced by drugs (Pogorelov et al., 2017).

Experiment 3 - Effect of Buspirone on
MK-801-Induced PPI Disruption in WT Mice
Mice were given injections of buspirone, clozapine and MK-801,
45, 30, and 20 min (including the 5-min acclimation period),
respectively, before to be placed in the startle chambers for the
PPI test. We chose the dose of 0.1 mg·kg−1 MK-801 because this
dose is sufficient to disrupt PPI (Spooren et al., 2004; Zhang et al.,
2007).
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Experiment 4 - Effect of Buspirone on
MK-801-Induced TOR Memory Deficit and
Hyperlocomotion in D3R−/− Mice
To figure out whether or not the effects of buspirone were mainly
mediated via the blockade of D3R, we tested D3R−/− mice (open
field and TOR) treated with the same pharmacological treatment
carried out in WT mice, both in terms of doses and timing
of treatment. Unfortunately, we could not evaluate the effect
of buspirone on PPI test because the vast majority of D3R−/−

mice exhibited a very low acoustic startle reactivity during the
startle matching session (data not shown). This made difficult the
assembling of experimental groups with similar PPI%.

Statistics
Statistical analysis was performed by using graphpad prism 7
(graphpad software La Jolla, CA, United States). In the TOR
experiments, one-way ANOVA with treatment as between-
subject factor was used to determine the main effect. Acoustic
startle reactivity was analyzed by performing a two-way
ANOVA with acoustic startle stimulus as a within-subjects
factor and treatment as a between-subjects factor. To analyze
PPI%, a two-way repeated-measures ANOVA with prepulse
intensity as a within-subjects factor and treatment as a
between-subjects factor was carried out. Changes in locomotor
activity (number of crossings for each time-point) as well as
induction of catalepsy were assessed by performing a two-
way repeated-measures ANOVA with time-point as a within-
subjects factor and treatment as a between-subjects factor.
A one-way ANOVA with treatment as between-subject factor
was carried out for the assessment of the total number
of crossings. For all data analyses, upon confirmation of
significant main effects, differences among individual means
were assessed using the Newman–Keuls’ post hoc test. For
all analyses, significance was accepted with a p value less
than 0.05. Standard error of the mean (SEM) and variance
were found similar between groups. All data are presented as
mean± SEM.

RESULTS

Buspirone Counteracted
MK-801-Induced Memory Deficits in WT
Mice Tested in the TOR Paradigm
The discrimination performance of WT mice was significantly
affected by pharmacological treatments, during the test phase
of the TOR test (main effect of treatment, F(5,45) = 5.374,
P = 0.0006, n = 8/10 per group). MK-801 induced a
strong TOR memory impairment. Indeed, veh + MK-801-
treated WT mice exhibited a greater preference in exploring
the more recently experienced object in comparison with
veh + veh-treated WT mice, which, as expected, spent more
time exploring the less recently experienced object (post hoc
analysis: P < 0.001 vs. veh + veh group; Figure 1B).
Worthy of note, bus + MK-801-treated WT mice explored
significantly more the less recently experienced object than

the more recently one in a similar manner as veh + veh-
treated WT mice (post hoc analysis: P < 0.01 vs. veh + MK-
801 group; P > 0.05 vs. veh + veh group; Figure 1B).
Thus, buspirone efficiently prevented MK-801-induced TOR
memory impairment. Clo + MK-801-treated WT mice did
not show an optimal discrimination performance even though
they performed significantly better than veh + MK-801-treated
WT mice and not differently from the veh + veh-treated WT
mice (post hoc analysis: P < 0.05 vs. veh + MK-801 group;
P > 0.05 vs. veh + veh group; Figure 1B). Both buspirone and
clozapine, when injected alone, had no effect on discrimination
performance (post hoc analysis: P > 0.05 vs. veh + veh group;
Figure 1C).

Buspirone Blocked MK-801-Stimulated
Hyperactivity and Did Not Cause
Catalepsy in WT Mice
The pharmacological treatments significantly modified the
locomotor activity of WT mice during each 5-min time-
point [main effects of treatment, F(5,54) = 10.42, P < 0.0001;
time-point, F(5,270) = 4.274, P = 0.0009; treatment × time-
point interaction, F(25,270) = 6.18, P < 0.0001; n = 9/11 per
group]. In addition, ANOVA showed a significant main effect of
treatment [F(5,54) = 10.42, P < 0.0001] on the total crossings
over 30 min for WT mice. As expected, MK-801 produced a
strong hyperlocomotion in WT mice. Indeed, veh + MK-801-
treated WT mice performed a significant higher number of
crossings compared to veh + veh-treated WT mice (post hoc
analysis: 5-min: p < 0.01; from 10-min to 30-min p < 0.001
Figures 2A,C). Interestingly, buspirone did not alter per se the
locomotor activity (post hoc analysis: all time-points p > 0.05
vs. veh + veh group; Figures 2B,D), but it completely blocked
MK-801-induced hyperactivity. Bus+MK-801-treated WT mice
performed a significant lower number of crossings compared to
veh + MK-801-treated WT mice (post hoc analysis: all time-
points: p < 0.001 vs. veh + MK-801 group; Figures 2A,C),
displaying a locomotor activity similar to that of veh + veh-
treated WT mice (post hoc analysis: All time-points: p > 0.05
vs. veh + veh group; Figures 2A,C). Clozapine did not modify
per se the locomotor activity (post hoc analysis: all time-points:
p > 0.05 vs. veh + veh group; Figures 2B,D), but it significantly
prevented MK-801-induced hyperactivity only in the first 10 min,
loosing progressively its efficacy from the 15-min time point
to the end of the test (post hoc analysis: 5-min: p < 0.001;
10-min: p < 0.05 vs. veh + MK-801 group. 15-min: p < 0.01;
from 20-min to 30-min p < 0.001 vs. veh + veh group;
Figures 2A,C).

Regarding the catalepsy test, significant main effects of
treatment [F(3,20) = 48.11, P< 0.0001, n= 6 per group] and time-
point [F(3,60) = 21.70, P < 0.0001], together with a significant
treatment × time-point interaction [F(3,60) = 21.77, P < 0.0001]
were found on the duration of catalepsy. As expected, haloperidol
caused a severe catalepsy state (post-hoc analysis: all time-points:
P < 0.001 vs. veh group; Figure 2E), an effect not induced
by clozapine or buspirone (post hoc analysis: all time-points:
P > 0.05 vs. veh group; Figure 2E).
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FIGURE 2 | Buspirone blocked MK-801-stimulated hyperlocomotion, but did not cause catalepsy in WT mice. Buspirone (Bus, 3 mg·kg−1, i.p.) or vehicle (Veh),
clozapine (Clo, 1 mg·kg−1, i.p.) or Veh and MK-801 (0.1 mg·kg−1, i.p.) or Veh were injected 45 min, 30 min and 20 min respectively, before the open field. (A,B)
Locomotor activity (crossings) at each 5-min time point displayed by Veh + Veh (n = 11), Veh + MK-801 (n = 11), Bus + MK-801 (n = 10), Clo + MK-801 (n = 10),
Bus + Veh (n = 9), Clo + Veh (n = 9) WT mice. (C,D) Locomotor activity (crossings) over a 30-min test period displayed by the same mice. (E) Duration of catalepsy
state 30, 60, 90, and 120 min after drug injection (n = 6 animals/group). Haloperidol (Hal, 1 mg·kg−1) was used as positive control. Data are shown as mean ± SEM.
∗∗∗p < 0.001, ∗∗p < 0.01 vs. Veh + Veh WT mice; †††p < 0.001 and †p < 0.05 vs. Veh + MK-801 WT mice; ∗∗∗p < 0.001 vs. Veh (Two-way repeated-measures
ANOVA and Newman–Keuls post hoc test).

Buspirone Blocked MK-801-Induced PPI
Disruption in WT Mice
In the assessment of acoustic startle reactivity, ANOVA revealed
a main effect of acoustic startle stimulus [F(1,110) = 76.42,

P < 0.0001, n = 8/11 per group] but not a main effect
of treatment [F(5,110) = 1.36, P = 0.2450] or a significant
interaction between the factors [F(5,110) = 1.048, P = 0.3933].
Except for clozapine, which per se significantly decreased the
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FIGURE 3 | Buspirone blocked MK-801-induced PPI disruption in WT mice. Buspirone (Bus, 3 mg·kg−1, i.p.) or vehicle (Veh), clozapine (Clo, 1 mg·kg−1, i.p.) or Veh
and MK-801 (0.1 mg·kg−1, i.p.) or Veh were injected 45, 30, and 20 min before the PPI test, respectively. (A,B) Animal movements displayed by Veh + Veh (n = 10),
Veh + MK-801 (n = 10), Bus + MK-801 (n = 9), Clo + MK-801 (n = 8), Bus + Veh (n = 13), Clo + Veh (n = 8) WT mice. (C,D) PPI% displayed by the same WT mice.
Data are shown as mean ± SEM. ∗∗p < 0.01,∗p < 0.05 vs. Veh + Veh WT mice; †p < 0.05 vs. Veh + MK-801 WT mice; (Two-way ANOVA with or without
repeated-measures and Newman–Keuls post hoc test).

acoustic startle reactivity at 120-dB (post hoc analysis at120 dB
stimulus: P < 0.05 vs. veh + veh group; Figure 3B), all other
experimental groups displayed similar acoustic startle reactivity
(post hoc analysis: P > 0.05 vs. veh + veh group; Figures 3A,B).
With regard to the PPI test, there were significant main
effects of treatment [F(5,55) = 3.525, P = 0.0078] and prepulse
intensity [F(4,220) = 49.16, P < 0.0001] but not a significant
treatment × prepulse intensity interaction [F(20,220) = 1.4,
P = 0.1238]. As expected, MK-801 significantly disrupted PPI;
veh + MK-801-treated WT mice showed a progressively lower
PPI% that reached statistical significance at 80 dB prepulse
intensity, (post hoc analysis: P < 0.01 vs. veh + veh group;
Figure 3C). Interestingly, buspirone, which had no effect on
PPI when administered alone (post hoc analysis: P > 0.05
vs. veh + veh group; Figure 3D), completely blocked MK-
801-induced PPI disruption. Bus + MK-801-treated WT mice
exhibited PPI%, significantly greater than veh+MK-801-treated
WT mice at 80 dB prepulse intensity, and similar to veh + veh-
treated WT mice at all prepulse intensities (post hoc analysis:
P < 0.01 vs. veh+MK-801 group, p > 0.05 vs. veh+ veh group;
Figure 3C). Noteworthy, clozapine per se disrupted PPI (post hoc
analysis: 75 and 80 dB prepulse: p < 0.05 vs. veh + veh group;
Figure 3D), but did not block MK-801-induced PPI disruption
(post hoc analysis at 80 dB prepulse: p < 0.05 vs. veh+ veh group
and p > 0.05 vs. veh+MK-801 group; Figure 3C).

Buspirone Was Ineffective in Preventing
MK-801-Induced TOR Memory Deficit
and Scarcely Effective in Counteracting
MK-801-Stimulated Hyperlocomotion in
D3R−/− Mice
The memory of D3R−/− mice was significantly affected by
pharmacological treatments, during the test phase of the TOR test
[main effect of treatment F(3,18) = 7.478, P = 0.0019, n = 5/6
per group]. MK-801 produced a marked TOR memory deficit
in D3R−/− mice, comparable to that observed in WT mice. In
particularly, veh + MK-801-treated D3R−/− mice significantly
preferred exploring the more recently experienced object than
the less recently one in contrast with veh + veh-treated D3R−/−

mice that displayed an intact TOR memory and behaved in
the opposite way (post hoc analysis: P < 0.01 vs. veh + veh
D3R−/− group; Figure 4A). Consistent with the hypothesis
that buspirone acts on D3R receptors, bus + MK-801-treated
D3R−/− mice behaved in a manner similar to veh + MK-801-
treated D3R−/−, showing the same TOR memory impairment
(post hoc analysis: P < 0.001 vs. veh + veh D3R−/− group,
P > 0.05 vs. veh+MK-801 D3R−/−; Figure 4A), i.e., in D3R−/−

buspirone was unable to prevent MK-801-induced TOR memory
impairment as it did in WT mice. Notice that at variance with
what observed in WT mice, in D3R−/− buspirone on its own
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FIGURE 4 | Buspirone was ineffective in preventing MK-801-induced TOR memory deficit and hyperlocomotion. Buspirone (Bus, 3 mg·kg−1, i.p.) or vehicle (Veh)
and MK-801 (0.1 mg·kg−1, i.p.) or Veh were injected 45 min, and 20 min respectively, before the sample phase 2 or the open field test. (A,B) Discrimination ratio
(DR) displayed by Veh + Veh (n = 5), Veh + MK-801 (n = 6), Bus + MK-801 (n = 5), Bus + Veh (n = 6), D3R−/− mice during the test phase. DR [(less recently
experienced object exploration time - more recently experienced object exploration time)/total exploration time]. (C,D) Locomotor activity (crossings) at each 5-min
time point displayed by Veh + Veh (n = 11), Veh + MK-801 (n = 11), Bus + MK-801 (n = 11), Bus + Veh (n = 6), D3R−/− mice. (E,F) Locomotor activity (crossings)
over a 30-min test period displayed by the same mice. Data are shown as mean ± SEM. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05 vs. Veh + Veh D3R−/− mice;
†††p < 0.001, ††p < 0.01 and †p < 0.05 vs. Veh + MK-801 WT mice; (One-way or two-way repeated-measures ANOVA and Newman–Keuls post hoc test).

disrupted the discrimination of the experienced objects, though
not in a significant manner (post hoc analysis: P > 0.05 vs.
veh+ veh D3R−/− group; Figure 4B).

In the OF test, MK-801 produced also a robust and persistent
hyperlocomotion in D3R−/− mice; significant main effects of

treatment [F(3,35) = 11.74, P < 0.0001, n = 8/11 per group]
and time-point [F(5,175) = 15.92, P < 0.0001], and a significant
treatment x time-point interaction [F(15,175) = 5.123, P < 0.0001]
were found on locomotor activity of D3R−/− mice during
each 5-min time-point. Moreover, ANOVA revealed a significant
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main effect of treatment [F(3,35) = 11.34, P < 0.0001] on
the total crossings that D3R−/− mice performed throughout
the 30 min of the test. Veh + MK-801-treated D3R−/− mice,
compared to veh + veh-treated D3R−/− mice, carried out
a significant higher number of crossings (post hoc analysis
at 5-min: p < 0.05; from 10-min to 30-min: p < 0.001;
Figures 4C,E). Buspirone, which was devoid of effect when
injected alone (post-hoc analysis: all time-points p > 0.05 vs.
veh+ veh D3R−/− group; Figures 4D,F), significantly attenuated
MK-801-stimulated hyperlocomotion, but its effect diminished
from the 10-min time point on. Indeed, Bus + MK-801-treated
D3R−/− mice performed a number of crossings similar to that
of veh + veh-treated D3R−/− mice but significantly lower
compared to veh + MK-801-treated D3R−/− mice during the
first 10 min (post hoc analysis at 5-min: p< 0.001; from 10-min to
20-min: p < 0.01; at 25-min and 30-min: p < 0.05 vs. veh+MK-
801 D3R−/− group; Figures 4C,E).

DISCUSSION

These results provide the first evidence that buspirone
counteracts a wide-range of schizophrenia-relevant phenotypes
through its antagonism at D3R.

To investigate the antipsychotic properties of buspirone, we
chose a pharmacological model based on NMDAR hypofunction
triggered by acute administration of the NMDAR antagonist MK-
801. Although not devoid of limitations, this model is extensively
employed for the assessment of potential antipsychotic activity
of investigational compounds (Bubeníková-Valesová et al., 2008;
Adell et al., 2012). Indeed, NMDAR dysfunction may recapitulate
“core” symptoms of schizophrenia, particularly the multiplicity of
cognitive deficits, more faithfully than dopamine-based models
(Kantrowitz and Javitt, 2010).

Cognitive deficits observed in schizophrenic patients have
been strongly associated with an abnormal PFC activity
(Driesen et al., 2008). Earlier studies indicated that the
cognitive impairment induced by MK-801 arises from an
intensification of the discharge of mPFC pyramidal neurons,
triggered via NMDAR blockade in inhibitory interneurons
of mPFC and hippocampus (HP, Homayoun et al., 2005;
Jodo et al., 2005; Homayoun and Moghaddam, 2007). D3Rs
are expressed specifically in layer 5 pyramidal neurons of
mPFC of both primate and rodents (Lidow et al., 1998)
and uniquely modulate the neuronal excitability (Clarkson
et al., 2017). Consequently, D3Rs play a fundamental role
in prefrontal-dependent cognitive functions (Nakajima et al.,
2013). Studies on dopamine receptor-specific reporter gene
mice further revealed an abundant expression of D3Rs in
HP1; furthermore, hippocampal lesions leave single item object
recognition memory intact, while impair temporal order memory
(Warburton and Brown, 2015). Based on these premises, we
assessed the effect of buspirone in the TOR memory task. This
behavioral task depends on interconnections among mPFC,
perirhinal cortex (PRH) and HP (Barker and Warburton,

1www.gensat.org

2011; Managò et al., 2016) and is used to measure recency
discrimination, a cognitive function impaired in schizophrenic
patients (Schwartz et al., 1991; Rizzo et al., 1996). To
our knowledge, this is the first study demonstrating that
acute systemic administration of MK-801 at the dose of
0.1 mg·kg−1, markedly impairs TOR memory in mice. Therefore,
our results confirm the face validity of the pharmacological
model based on NMDAR hypofunction triggered by acute
administration of the NMDAR antagonist MK-801, being also
consistent with earlier findings showing a disruption of TOR
memory following intra-PRH or intra-mPFC infusion of the
selective NMDAR antagonist AP5 (Warburton et al., 2013).
We found that buspirone prevented MK-801-induced TOR
memory impairment in WT mice even better than clozapine.
Very interestingly, this effect was completely abolished in
D3R−/− mice. Thus, these data provide the first evidence
that buspirone may be effective in treating cognitive deficits
in schizophrenia, and that its efficacy against MK-801-induced
cognitive dysfunction relies exclusively on D3Rs blockade. These
findings are particularly relevant, considering that cognitive
dysfunction represents a major challenge in the pharmacological
treatment of schizophrenic patients. Furthermore, our results
are consistent with previous studies, reporting that some
antipsychotics that behave as selective D3R antagonists or
D3R preferring partial agonists enhance cognitive functions
in schizophrenia (Nakajima et al., 2013; Zimnisky et al.,
2013). None of the available antipsychotics is truly selective
for D3R (Schotte et al., 1996; McCormick et al., 2010); as
a result, current drug treatments generally improve positive
symptoms (delusions, hallucinations), but poorly change negative
symptoms (lack of motivation, social withdrawal, anhedonia) or
cognitive dysfunction. The present data obtained with buspirone
reinforce the view that blockade of D3R may improve cognition,
which represents a translational potential for schizophrenia
treatment.

Recently, Barker et al. (2017) discovered that the
pharmacogenetic deactivation of a specific neuronal circuit
originating in the dorsal CA1 region of HP and projecting
to mPFC, selectively disrupts TOR memory in mice. Thus,
we speculate that a glutamatergic/dopaminergic imbalance in
specific neuronal circuits connecting HP and mPFC might
disrupt the connection between these two brain areas, leading
to memory impairment in mice tested in the TOR paradigm. In
this context, D3R blockade, particularly in mPFC and HP, might
prevent the hyperactivity of the dopaminergic system subsequent
to NMDARs hypofunction (Snyder and Gao, 2013). However,
because D3R−/− mice appeared to be as sensitive as WT mice
to the cognitive effects of acute administration of MK-801, other
neurotransmitters and/or dopamine receptor subtypes are likely
to be involved, and may represent compensatory mechanisms
that prevails over D3R control in D3R−/− mice.

Hyperactivity is a valuable correlate, easily modeled in
rodents, widely associated with positive symptoms and
psychomotor agitation in most schizophrenic patients (Jones
et al., 2011). Here, we found that buspirone blocked MK-801-
stimulated hyperactivity, but did not cause catalepsy in WT
mice; moreover, because the preventing effect of buspirone on
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MK-801-stimulated hyperactivity was not very strong in D3R−/−

mice, it must be, at least in part, attributable to D3R antagonism.
This conclusion is consistent with earlier studies showing D3R
antagonists as effective on MK-801-stimulated hyperactivity
(Leriche et al., 2003; Brindisi et al., 2014; Sun et al., 2016).
Considering that positive symptoms are not well-managed in a
considerable number of patients suffering from schizophrenia
(Miyamoto et al., 2012), our observation, together with other
published reports, points to D3R as potential target to treat
hyperactivity.

We cannot exclude a contribution of other receptors targeted
by buspirone in mediating its antipsychotic-like effects in our
experimental paradigms. Buspirone in fact, binds to 5-HT1AR,
where it behaves as potent partial agonist (Bergman et al., 2013),
and several studies have reported that 5-HT1AR antagonists
or partial agonists attenuate psychotomimetic effects of MK-
801 (Wedzony et al., 2000; Park et al., 2005; Bubenikova-
Valesova et al., 2010). Furthermore, buspirone also binds to D4R
with high affinity and behaves as antagonist (Bergman et al.,
2013). A highly selective dopamine D4R antagonist was found
to decrease amphetamine-induced hyperlocomotion (Boeckler
et al., 2004). Consequently, we cannot exclude a contribute of
D4R in the effects we reported here.

PPI is a valuable model to study the sensorimotor gating
disruption classically observed in schizophrenia (Papaleo et al.,
2012). Because animals and humans are tested in a similar
way, this model has face, construct, and predictive validity
and is widely employed to identify potential antipsychotic
properties of recently developed drugs (Rigdon and Viik,
1991). Our findings demonstrated that buspirone, devoid
of effect by itself, completely counteracted PPI disruption
dependent on NMDAR hypofunction. These results are
partially in agreement with previous studies showing that
buspirone weakly counteracts apomorphine-induced PPI
disruption (Rigdon and Viik, 1991) while it was without
effect on its own (Van den Buuse and Gogos, 2007). The
antipsychotic-like effect of buspirone on MK-801-induced
PPI disruption might be mainly driven by its antagonist
activity at D3R. Several reports proved that selective D3R
antagonists improve PPI disruption in different preclinical
models of schizophrenia (Zhang et al., 2006; Maramai et al.,
2016; Sun et al., 2016). Unfortunately we could not directly
address the D3R involvement on the buspirone’s effect in
PPI by using D3R−/−, because these mice did not exhibit a
robust acoustic startle reactivity, suitable for making reliable
measurements. However, it is unlikely that the 5 HT1AR partial
agonist activity of buspirone could contribute to its efficacy
on MK-801-induced PPI disruption. Bubenikova-Valesova
et al. (2010) found the selective 5-HT1AR partial agonist
tandospirone exacerbates MK-801-induced PPI disruption
and other groups reported a PPI disruption after 5-HT1AR
stimulation (Rigdon and Weatherspoon, 1992; Gogos and
Van den Buuse, 2003; Gogos et al., 2006). Again, we cannot
exclude the possible involvement of the D4R blockade also
in the effect of buspirone in MK-801-induced PPI disruption.

However, contrasting results have shown positive/negative
effects of D4R antagonists in ameliorating apomorphine-
induced PPI disruption (Bristow et al., 1997; Mansbach et al.,
1998; Boeckler et al., 2004). Worthy of note, clozapine did
not prevent MK-801-induced PPI disruption or MK-801-
stimulated hyperlocomotion. Considering that clozapine is
one of the most effective antipsychotic drugs, the discrepancy
with its poor efficacy in preclinical models point once more
to the need for defining “gold pharmacological standards”
preclinical models of schizophrenia (Jones et al., 2011), taking
into account that doses, strains, behavioral paradigms, all affect
the variability, reproducibility and translationality to clinical
settings.

CONCLUSION

The present study demonstrates that buspirone, a drug
currently approved for the treatment of anxious disorders,
might be a potential antipsychotic medication and also that
D3R represents a valuable pharmacological target especially
for the treatment of cognitive deficits in schizophrenia.
Anxious symptoms and cognitive impairment frequently co-
occur especially in the prodromal phase of the disease, when
the positive symptoms are below the threshold for psychosis
(Corigliano et al., 2014). In this scenario, buspirone might
represent a new pharmacological tool to treat the early phase
of the disease. Indeed, the early intervention is the best way
to prevent development of chronic disabilities. Finally, these
findings are particularly relevant considering that a substantial
number of pharmaceutical industries are turning away from
developing antipsychotics for many reasons, including costs,
unclear disease mechanisms and long-lasting developmental
processes. Repositioning of buspirone and/or of other drugs
endowed with D3R antagonist activity, could therefore open
new avenues to foster schizophrenia drug treatments. However,
further studies are needed to evaluate the efficacy of this
drug after chronic treatment in an animal model provided
with the three criteria of face, construct and predictive
validity.
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