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Evasion of apoptosis is a hallmark of cancer especially relevant in the development
and the appearance of leukemia drug resistance mechanisms. The development of
new drugs that could trigger apoptosis in aggressive hematological malignancies, such
as AML and CML, may be considered a promising antileukemic strategy. AD0157, a
natural marine pyrrolidinedione, has already been described as a compound that inhibits
angiogenesis by induction of apoptosis in endothelial cells. The crucial role played by
defects in the apoptosis pathways in the pathogenesis, progression and response to
conventional therapies of several forms of leukemia, moved us to analyze the effect
of this compound on the growth and death of leukemia cells. In this work, human
myeloid leukemia cells (HL60, U937 and KU812F) were treated with ADO157 ranging
from 1 to 10 uM and an experimental battery was applied to evaluate its apoptogenic
potential. We report here that ADO157 was highly effective to inhibit cell growth by
promotion of apoptosis in human myeloid leukemia cells, and provide evidence of its
mechanisms of action. The apoptogenic activity of AD0157 on leukemia cells was
verified by an increased chromatin condensation and DNA fragmentation, and confirmed
by an augmentation in the apoptotic subG1 population, translocation of the membrane
phosphatidylserine from the inner face of the plasma membrane to the cell surface and
by cleavage of the apoptosis substrates PARP and lamin-A. In addition, ADO157 in
the low micromolar range significantly enhanced the activities of the initiator caspases-8
and -9, and the effector caspases-3/-7 in a dose-dependent manner. Results presented
here throw light on the apoptogenic mechanism of action of AD0157, mediated through
caspase-dependent cascades, with an especially relevant role played by mitochondria.
Altogether, these results suggest the therapeutic potential of this compound for the
treatment of human myeloid leukemia.
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INTRODUCTION

Leukemias are malignant neoplasms involving abnormally
proliferating neoplastic cells that are originally derived from
haematopoietic precursor cells and stem cells. These may in
turn escape into the blood where they may be present in large
numbers, resulting in the clinical presentations of the disease
(Itzykson et al., 2017). Although recent advances in stem cell
transplantation have brought new hope to sufferers of the
disease, the treatment of leukemias is still mainly carried out
with chemotherapy (Dombret and Gardin, 2016; Saygin and
Carraway, 2017). Among the different types of leukemia that
can be found in the patients, acute myeloid leukemia (AML) is
the one presenting a highest prevalence in adults, and the age
is the most prominent patient-specific risk factor (Liersch et al.,
2014; Siegel et al., 2017). The overall 5-year survival for leukemia
patients has more than quadrupled since 1960, reaching 70%.
Nevertheless, in the case of AML this is still reduced to 25%, with
more than 10000 estimated deaths for this type of leukemia in
2016, just in the USA (Siegel et al., 2017). In Europe, the estimated
deaths in 2016 in all leukemia types were 23000 men and 19100
women (Malvezzi et al., 2016). Taking this data into account, the
need for novel and more effective drugs to treat this disease is
unquestionable.

Leukemia cells share some hallmarks with other tumor
cells: they are self-sufficient in mitogenic/growth signals, they
have limitless replication performance, they undergo sustained
angiogenesis and they achieve tissue invasion and metastasis,
among others (Hanahan and Weinberg, 2011). In addition, the
evasion of apoptosis is another hallmark of cancer present in
leukemia and other tumor cells (Vaux and Korsmeyer, 1999).
Apoptosis, a physiological phenomenon that occurs throughout
life during development and is initiated after cells are exposed
to cytotoxic stresses including UV irradiation, hypoxia, serum
deprivation and drugs, is crucial for the development and
homeostasis of hematopoiesis (Pistritto et al., 2016). Deregulated
apoptosis plays a relevant role in the outcome of leukemia cells
and in the appearance of resistance mechanisms to antitumor
drugs, which compromise the success of the chemotherapy
currently used in clinics (Reed and Pellecchia, 2005; Testa and
Riccioni, 2007; Fulda, 2009; Liick et al., 2011; Vogler et al,
2017). In the last decade, the induction of apoptotic cell death
is attracting attention as a new strategy to kill cancer cells,
being considered a novel target for cancer chemoprevention
and a new strategy to increase the responsiveness of human
cancer toward the conventional therapies used in patients (Sun
et al., 2004; Kim et al., 2006; Fulda, 2009; Hassan et al., 2014).
Thus, the development of new drugs that are able to trigger
apoptosis in aggressive hematological malignancies, such as AML
and chronic myeloid leukemia (CML), may be considered a
promising antileukemic strategy.

Most apoptosis signaling pathways cause the activation
of a cascade of caspases (cysteine-aspartic proteases) and
endonucleases responsible for the cleavage of cellular proteins
and DNA, giving rise to plasma membrane blebbing, cell
shrinkage, apoptotic body formation, chromatin condensation
and DNA fragmentation (Vermeulen et al, 2005). Caspases

are classified into 2 groups, initiator and executioner caspases,
according to their level of action. They are implicated in
two main signaling pathways controlling apoptosis, termed
extrinsic and intrinsic pathways and started by different initiator
caspases (Man and Kanneganti, 2016). The extrinsic pathway,
a death receptor dependent cascade, involves the binding of
extracellular death ligands, such as TNF ligand or TRAIL,
to death receptors, provoking the recruitment of adaptor
protein (FADD), which also interacts with procaspase-8 and
-10 to form the death-inducing signaling complex (DISC)
(Kim et al., 2006). Once activated, caspase-8 triggers a caspase
cascade that bypasses mitochondria, leading directly to cell
death by activating downstream executioner caspases, such as
caspase-3 and -7 (Hui et al, 2011). The intrinsic pathway, a
receptor independent cascade, involves the loss of mitochondrial
membrane potential, the release of cytochrome c¢ and the
subsequent activation of caspase-9. Both caspases-8 and -9 are
considered initiator caspases and their activation leads to the
activation of downstream executioner caspases, responsible for
the culmination of cell death (Lee et al., 2012; Reubold and
Eschenburg, 2012; Man and Kanneganti, 2016). Finally, an
increasing number of non-caspase-mediated cell death pathways
are becoming known (Pradelli et al., 2010; Vanden Berghe et al.,
2014).

A large proportion of the currently used or still undergoing
clinical trials anticancer drugs, are derived from natural sources
(Amirkia and Heinrich, 2015). Most of them have been isolated
from plants and terrestrial microorganisms, mainly due to
their higher availability and as a result of their therapeutic
effects had been previously known in traditional medicines
(Kinghorn et al., 2010). Although still mostly unexplored,
marine organisms have a high potential as sources of new
interesting and singular pharmacological lead compounds,
derived from the large diversity of marine habitats and
environmental conditions. As an adaptation mechanism to
survive in extreme environments, marine organisms have
developed chemical means of defense that include the production
of toxic metabolites, yielding an increasing number of products
of the highest interest for drug discovery (Blunt et al., 2017).
Interestingly, the Food and Drug Administration (FDA) have
already approved several marine compounds as anticancer drugs
(Malve, 2016).

ADO157, a pyrrolidinedione (Figure 1A) isolated from the
fermentation broth of the marine fungus Paraconiothyrium sp.
HL-78-gCHSP3-B005, has been previously described by us as a
potent inhibitor of angiogenesis in vitro, ex vivo, and in vivo
(Garcia-Caballero et al., 2014). The antiangiogenic activity of
ADO0157 seems to be due, at least in part, to the induction
of apoptosis in activated endothelial cells. The crucial role
played by defects in the apoptosis pathways in the pathogenesis,
progression and response to conventional therapies of several
forms of leukemia, moved us to analyze the effect of this
compound on the growth and death of leukemia cells. Therefore,
the purpose of our study was to evaluate whether ADO0157
could inhibit the growth and induce caspase-dependent apoptosis
in three human myeloid leukemia cell lines, determining its
therapeutic potential for the treatment of myeloid leukemia.
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FIGURE 1 | AD0O157 inhibits the growth of human myeloid leukemia cells. (A) Chemical structure of ADO157. (B) Representative survival curves with the
dose-dependent effect of ADO157 on the in vitro growth of HLE0 (x), U937 (#) and KU812F (H). Cell survival is represented as a percentage of control-cell growth in
cultures containing no drug. Each point represents the mean of quadruplicates; SD values were typically lower than 10% of the mean values and are omitted for
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MATERIALS AND METHODS

Materials

Cell culture media, penicillin, streptomycin and amphotericin
B were purchased from Biowhittaker (Walkersville, MD,
United States). Fetal bovine serum (FBS) was a product of
Harlan-Seralab (Belton, United Kingdom). Plastics for cell
culture were supplied by NUNC (Roskilde, Denmark). AD0157
was isolated and purified from the fermentation broth of
a marine fungus by Instituto Biomar (Ledén, Spain). It was
dissolved in dimethyl sulfoxide (DMSO) at a concentration
of 20 mM and stored at —20°C until use. Antibodies
were obtained from Cell Signaling Technology (Danvers,
MA, United States), Santa Cruz Biotechnology (Dallas, TX,
United States) and BD Biosciences (Bedford, MA, United States).
Supplements and other chemicals not listed in this section

were obtained from Sigma Chemicals Co. (St. Louis, MO,
United States).

Cell Cultures

Human myeloid leukemia cell lines: HL60 (promyelocytic
leukemia), U937 (histiocytic lymphoma), both of them AML
cell lines, and the CML KU812F cell line (basophilic leukemia),
were purchased from American Type Culture Collection (ATCC,
Manassas, VA, United States). HL60, U937 and KUS8I12F
cell lines were cultured in RPMI-1640 medium containing
2 mM glutamine, 50 U/ml penicillin, 50 pg/mL streptomycin,
1.25 pg/mL amphotericin B and supplemented with 20% heat
inactivated FBS in the case of HL60 cell line, or with 10%
heat inactivated FBS in the case of U937 and KU812F cell
lines. Cells were maintained at 37°C in a humidified 5% CO,
atmosphere. Cells were treated with AD0157 (1, 5, and 10 uM)
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or with the vehicle control (0.05% DMSO) in the different
approaches.

Cell Growth Assay

For cell proliferation tests, HL60, U937 or KU812F cells (2 x 103
cells/well) were incubated in serial dilutions of AD0157, in a
final volume of 100 L of their respective complete medium.
After 3 days of incubation (37°C and 5% CO; in a humid
atmosphere), the cell growth was analyzed using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT
dye reduction assay (Garcia-Caballero et al., 2014), as follows:
10 pL of MTT (5 mg/mL in phosphate-buffered saline or PBS)
was added to each well and the plate was incubated for a
further 4 h at 37°C. This assay is dependent on the reduction
of MTT by mitochondrial dehydrogenases of viable cell to a
blue formazan product, which can be dissolved in 150 pL
of 0.04 N HCl/2-propanol and read spectrophotometrically at
550 nm. All determinations were carried out in quadruplicate
and three independent experiments were performed. ICs values
were calculated as those concentrations of AD0157 yielding 50%
of cell survival, taking the values obtained for untreated cells
as 100%.

Hoechst 33258 Staining and Study of

Nuclear Morphology

The study of nuclear morphologic changes induced by AD0157
was assessed by Hoechst 33258 stainings (Garcia-Caballero
et al,, 2011). Thus, 5 x 10° human myeloid leukemia cells/well
were seeded in complete medium on 8-well Falcon humidified
chamber slides and incubated at 37°C in a humidified 5% CO;
atmosphere, with or without the indicated concentrations of
ADO0157 for 14 h. After incubation, cells were washed with
PBS, fixed with formalin solution and stained with Hoechst
33258 (1 pwg/mL in PBS), using a cytospin. Cells were mounted
on slides using DAKO Cytomation Fluorescent Mounting
Medium (DAKO, Denmark) and observed under a fluorescence
microscope (Leica, TCS-NT, Heidelberg, Germany).

DNA Fragmentation Analysis

For DNA fragmentation study, human myeloid leukemia cells
(5 x 10° cells per well) were seeded in complete medium on 8-
well Falcon humidified chamber slides and incubated for 14 h in
presence or absence of different doses of the studied compound,
as previously described by Crowley et al. (2016). After incubation,
cells were washed with PBS, fixed with formalin solution,
washed with PBS and permeabilized with 0.1% Triton X-100 in
PBS, using a cytospin. The TUNEL (terminal deoxynucleotidyl
transferase mediated dUTP-biotin nick end-labeling) assay was
performed with the use of the In Situ Cell Death Detection
Kit (Roche Diagnostics, Barcelona, Spain), according to the
manufacturer’s instructions. Finally, after cell mounting on slides,
samples were visualized under a fluorescence microscope.

Cell Cycle Studies

Human myeloid leukemia cells were assessed by flow cytometric
analysis using propidium iodide-stained cells (Garcia-Caballero

et al., 2013). Firstly, 2 x 10° cells were incubated in 6-well
plates in presence or absence of the indicated concentrations
of AD0157. After 14 h treatment, cells were washed with PBS
and fixed with 70% ethanol for 1 h on ice. Pelleted cells were
incubated with RNase-A (0.1 mg/mL) and propidium iodide
(40 wg/mL) for 1 h with shaking and protected from light.
Percentages of subGl, G1, S/G2/M populations were determined
using a MoFlo Dakocytomation cytometer (Dako, Denmark)
and the software Summit 4.3. In some experiments, either
the caspase-8 selective inhibitor Z-IETD-FMK, the caspase-
9 selective inhibitor Z-LEHD-FMK or the pan inhibitor of
caspases Z-VAD-FMK at 50 uM were used (BD Biosciences,
Madrid, Spain). Cells were pre-treated with the caspase inhibitor
for 2 h prior to treatment with ADO0157 (14 h) and the
percentage of subGl population was determined by flow

cytometry.

PE-Annexin V and 7-Aminoactinomycin

D Stainings

Apoptosis was examined by flow cytometry using the PE-
Annexin V apoptosis kit (Pharmingen, BD Biosciences, San
Agustin de Guadalix, Spain) as previously described by Martinez-
Poveda et al. (2012). Human myeloid leukemia cells were
seeded in 6-well plates (2 x 10° cells/well) in complete growth
medium with or without the studied compound. After 14 h
incubation, cells were washed with PBS and stained with
phycoerythrin (PE)-labeled Annexin V and 7-aminoactinomycin
D (7AAD), following the manufacturer’s instructions. Samples
were analyzed by using the MoFlo Dakocytomation cytometer
(Dako, Denmark) and the different cell populations were
evaluated with the software Summit 4.3. The 7AAD-/PE-
Annexin V—, 7AAD-/PE-Annexin V+, 7AAD+/PE-Annexin
V+ and 7AAD +/PE-Annexin V— cell populations, correspond
to viable, early apoptotic, late apoptotic and necrotic cells,
respectively.

Measurement of the Mitochondrial
Membrane Potential (AW¥m)

The mitochondrial membrane potential (A¥m) was assessed
by the retention of Rhodamine 123, a membrane-permeable
fluorescent cationic dye that is selectively taken up by
mitochondria (Baracca et al., 2003). In brief, cells (1 x 10°)
were plated in 6-well plates, cultured with or without AD0157
for 14 h and incubated with 0.1 pg/mL Rhodamine 123 in
the dark for 30 min at room temperature, prior to termination
of the experiment. Subsequently, cells were collected, washed
with PBS and analyzed by flow cytometry, with excitation and
emission wavelengths of 495 and 535 nm, respectively. The levels
of Rhodamine 123 retention in mitochondria were proportional
to the A¥m.

Caspase Activity Assay

The determination of caspase-8, -9 and -3/-7 activities were
carried out after leukemia cell treatment with AD0157 or vehicle.
The times of incubation with the studied compound were 6 h,
30 min and 14 h for caspase-8, -9 and -3/-7, respectively.
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Then, Caspase-Glo® 8, Caspase-Glo® 9 and Caspase-Glo® 3/7
reagents (Promega Biotech Ibérica, Madrid, Spain), were added
to wells, according to the manufacturer’s instructions and the
luminescence was recorded after 30 min with a GLOMAX
96 microplate luminometer (Promega Biotech Ibérica) and the
software “Glomax 1.9.0.” This assay provides a proluminescent
caspase-8 Z-LETD-aminoluciferin substrate, a proluminescent
caspase 9 Z-LEHD-aminoluciferin or a proluminescent caspase-
3/-7 Z-DEVD-aminoluciferin substrate, and a proprietary
thermostable luciferase in a reagent optimized for caspase-8, -9
and -3/-7 activity, luciferase activity and cell lysis.

Detection of Cytochrome c Release in

Permeabilized Cells

Human myeloid leukemia cells were incubated with AD0157
for 14 h in 6-well plates and samples were further analyzed
as described in Martinez-Poveda et al. (2012). After washing
with PBS, 2 x 10° cells were suspended in 100 pl of assay
buffer (MSH buffer - 210 mM mannitol, 70 mM sucrose, 5 mM
HEPES, pH 7.5- supplemented with 50 mM KCIl, 1 mM EGTA,
5 mM succinate and 5 mM MgCl,), permeabilized with 10 pug of
cold digitonin for 5 min at room temperature, and centrifuged
at 13000 rpm for 5 min. The supernatants containing soluble
cytosolic fraction, as well as the pellets containing mitochondria,
were mixed with Laemmli’s buffer. Finally, the samples were
boiled for 5 min at 95°C and cytochrome c release was analyzed
by Western blot.

Western Blot Analyses

Cell cultures (2 x 10° cells/well) were incubated in RPMI
medium supplemented with 5% FBS and ADO157 for 14 h.
Then, cells were stimulated for 30 min with medium containing
20% FBS and harvested for analyses. The protein lysates were
obtained by scrapping the cells in a lysis buffer (50 mM
Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.25% sodium
deoxycholate, 1 mM EDTA, 1 mM sodium orthovanadate
and 5 mg/mL of a protease inhibitors mixture). Afterward,
extracts were centrifuged at 13000 rpm for 15 min at 4°C,
evaluated for protein concentration and stored at —80°C until the
moment of analysis. These samples were mixed with Laemmli’s
buffer, denatured for 5 min at 95°C and submitted to SDS-
PAGE. After electrophoresis, samples were electrotransferred
to nitrocellulose membranes, blocked with 5% dried skimmed
milk in 50 mM Tris pH 84, 0.9% NaCl, 0.05% Tween
20 (Tris buffered saline-Tween 20, TBS-T), and incubated
overnight in the presence of different antibodies: anti-human
cleaved lamin-A, anti-human total and cleaved PARP, anti-
human total and phosphorylated Bad (Ser112), anti-human
total and phosphorylated Akt (Ser473), anti-human total and
phosphorylated ERK1/2 (p44/42 MAPK) (all of them from Cell
Signaling Technology) at a dilution of 1:1000 in TBS-T with
5% BSA or non-fat dry milk. The anti-human cytochrome ¢
(BD Biosciences) was used at a dilution of 1:250 in TBS-T with
5% BSA. After three washing steps with TBS-T, the membranes
were incubated with horseradish peroxidase-conjugated anti-
rabbit or anti-mouse secondary antibodies (Cell Signaling

Technology) at a dilution of 1:2000 in blocking buffer for 2 h
at room temperature. After three washing steps with TBS-T, the
immunoreactive bands were detected using a chemiluminescence
system (SuperSignal West Pico Chemiluminescent Substrate,
Pierce, Rockford, IL, United States) with an imaging system
(Chemidoc XRS System, Bio-Rad, Hercules, CA, United States)
and were quantified by using ImageLab version 3.0 software.
The membranes were incubated with an anti-GAPDH primary
antibody at a dilution of 1:1000 to ensure equal loading.
Phosphorylation inhibition was calculated as the phosphorylated
protein/total protein ratio. All bands were compared with their
controls and expressed as means = SD of 3 independent
experiments.

Statistical Analysis

All data are expressed as means + standard deviation (SD) of
three independent experiments. Two-tailed Student’s ¢-test was
used for evaluations of pairs of means, to establish which groups
differed from the control group. p < 0.05 was considered to be
statistically significant.

RESULTS

ADO0157 Inhibits the Growth of Human

Myeloid Leukemia Cells

To elucidate the effect of AD0157 on the growth of human
leukemia cells, MTT assays were performed using two human
AML cell lines (HL60 and U937) and the Philadelphia-positive
CML KUS812F cell line (Koeffler and Golde, 1980; Larrick
et al., 1980; Fukuda et al., 1987). Logarithmically proliferating
cells were treated with different concentrations of AD0157
(from 100 to 0.4 wM) for 72 h. In Figure 1B, representative
dose-response curves are displayed and each point represents
the mean of quadruplicates. SD values were typically lower
than 10% of the mean values and were omitted for clarity.
The half-maximal inhibitory concentration (ICsp) value was
calculated from dose-response curves as the concentration
of compound yielding 50% of control cell survival. AD0157
inhibited cell growth in a dose-dependent manner and the
ICso values of this effect were 2.67 £+ 0.76 WM for HL60,
0.70 + 0.26 wM for U937 and 1.80 + 0.63 pM for KU8I2F
(means % SD of 3 independent experiments with quadruplicate
samples each).

ADO0157 Induces Chromatin
Condensation and DNA Fragmentation in
Human Myeloid Leukemia Cells

To further examine whether ADO0157 was able to induce
apoptosis in human leukemia cells, a first pilot study with
different doses of ADO0157 was carried out. Three of these
ADO0157 concentrations (1, 5, and 10 wM) were selected
to show a dose-dependent effect after 14 of treatment with
ADO0157. In the first approach, leukemia cells were exposed
to AD0157 for 14 h and their DNA stained with Hoechst
33258. As shown in Figure 2A, ADO0157 at a concentration
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FIGURE 2 | AD0157 induces chromatin condensation and DNA fragmentation in HL60, U937 and KU812F cells. (A) Effect of AD0157 on human myeloid cell
morphology and chromatin condensation evaluated by Hoechst staining (bar = 50 wm). Graphs represent the percentage of control and ADO157-treated cells
showing condensed chromatin. Values are expressed as means + SD of the counts evaluated in ten vision fields. **p < 0.001 versus untreated cells. (B) Effect of
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as low as 1 wM induced nuclear chromatin condensation
and cell shrinkage in the three studied cell lines. This effect
was dose-dependent, since at AD0157 5 wM the number of
apoptotic cells was higher and, after incubation with 10 uM
of compound, most of nuclei exhibited condensed chromatin.

Additionally, DNA fragmentation was detected with the terminal
deoxynucleotidyl transferase-mediated dUTP-biotin nick end-
labeling (TUNEL) assay, and AD0157-treated cells at doses of
1, 5, and 10 wM revealed fluorescent nuclei as a result of DNA

damage (Figure 2B).
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SubG1 Population Is Increased in
ADO0157-Treated Human Myeloid

Leukemia Cells

In order to determine whether alterations in the cell cycle
distribution were responsible for AD0157-mediated cell growth
inhibition and apoptosis induction, the human leukemia cell
subpopulations in the different phases of cell cycle were
quantified by flow cytometry upon AD0157 treatment (1, 5, and
10 wM). When cells were treated with the compound for 14 h
and then, stained with propidium iodide, the subG1 population
representing the apoptotic cells with subdiploid DNA content,

suffered an increase with a dose-dependent pattern as compared
to untreated cells in the evaluated cell lines (Figure 3A). The
percentage of cells in subG1 phase was significantly increased
upon treatment with 5 and 10 uM of compound. Indeed, the
subGl percentages in 5 wM ADO0157-treated versus untreated
control cells were 57.5% versus 14.9% (for HL-60), 60.2%
versus 11.5% (for U937) and 61.6% versus 8.4% (for KU812F),
(p < 0.005), respectively (Figure 3B). These data suggest that
induction of apoptosis, rather than inhibition of cell proliferation,
could be a major mechanism of the observed leukemia cell growth
inhibition by AD0157.
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ADO0157 Induced Early and Late
Apoptosis and Cleavage of Lamin-A and
PARP in Human Myeloid Leukemia Cells

After 14 h incubation with different doses of compound (1,
5, and 10 pM), the translocation of phosphatidylserine from
the inner face of the phospholipid bilayer to the cell surface
through PE-Annexin V and 7AAD stainings was analyzed by
flow cytometry. As depicted in Figure 4A, AD0157 induced a
significant augmentation in the percentage of both early (located
in Q4) and late apoptotic (located in Q2) cell subpopulations,
whereas no increases in the necrotic cell subpopulation (in
Q1) were observed. Upon treatment with AD0157 10 wM, the
cellular percentages in the Q4 and Q2 quadrants were 19.8
and 9.4%, 36.9 and 19.1%, and 11.4 and 13.8% for HL60,
U937 and KUSI2F (p < 0.05 and p < 0.005), respectively
(Figure 4B). Interestingly, the percentage of early apoptotic
cells was higher in the AML cell lines than in the CML cell
line.

In order to illustrate the molecular basis of the apoptosis
induction in human leukemia cells by AD0157, the cleavage of
lamin-A and poly (ADP-ribose) polymerase (PARP) was studied
upon treatment with AD0157 at 1, 5, and 10 wM. Lamin-A,
a nuclear membrane structural component belonging to the
intermediate filament family, contributes to the scaffolding of the
nuclear envelope and the maintenance of normal cell functions
such as cell cycle control, DNA replication and chromatin
organization (Gruenbaum et al., 2000). During apoptosis, lamin-
A is specifically cleaved to a large (40-45 kDa) and a small
(28 kDa) fragment, resulting in nuclear dysregulation and cell
death. Western blot images and analyses showed that cleaved
lamin-A bands were observed after treating leukemia cells with
ADO0157 at concentrations of 1 WM or higher (Figures 4C,D).
On the other hand, PARP is a 116 kDa nuclear polymerase
involved in DNA repair in response to environmental stress,
helping cells to maintain their viability (Satoh and Lindahl,
1992). PARP cleavage by activated caspase-3 facilitates cellular
disassembly and is used as an early marker for apoptosis
induction. In human PARP, the cleavage separates the PARP
amino-terminal DNA binding domain (24 kDa) from the
carboxy-terminal catalytic domain (89 kDa). As shown in
Figures 4C,D, PARP was cleaved to the 89 kDa proteolytic
product upon treatment with AD0157 in the micromolar range.
By contrast, no cleaved lamin-A and PARP proteins were detected
in untreated cells.

Human Myeloid Leukemia Cell Initiator
and Effector Caspases Are Activated by
ADO0157

To obtain greater insight into the biochemical mechanism used
by AD0157 to induce apoptosis in human leukemia cells, caspase
activities were investigated by using specific pro-luminescent
substrates of caspase-8, -9 and -3/-7. The incubation with
ADO0157 at concentrations of 1 WM or higher (5 and 10 pM),
significantly enhanced the activities of the initiator caspase-8
(Figure 5A) and caspase-9 (Figure 5B), and the effector caspases-
3/-7 in a dose-dependent manner (Figure 5C) in the different

leukemia cells. A positive control of caspase activation, 10 pM
2-methoxyestradiol, was used in these experiments. To confirm
that apoptosis induced by AD0157 was a caspase-dependent
mechanism we examined the effects of selective inhibitors of
caspase-8 (Z-IETD-FMK) and caspase-9 (Z-LEHD-FMK), as well
as those of a broad-spectrum caspase inhibitor (Z-VAD-FMK).
Thus, pre-treated leukemia cells with these caspase inhibitors
and treated with AD0157, were stained with propidium iodide
and analyzed by flow cytometry. Figure 5D shows that the
apoptogenic activity of AD0157, represented by the percentage
of cells in subGl phase, was fully blocked by addition of
the pan-caspase inhibitor Z-VAD-FMK, with significant partial
reversal of AD0157-induced apoptosis being obtained with the
caspase-8 and caspase-9 inhibitors (Z-IETD-FMK and Z-LEHD-
FMK, respectively). All the above suggest that both, intrinsic
and extrinsic pathways activation, could be involved in the
apoptogenic activity of AD0157.

Mitochondria Is Involved in the
Apoptogenic Activity of AD0157

The membrane permeability transition of mitochondria
is controlled by the mitochondrial membrane potential,
represented as AWYm and playing a central role in the
mitochondrial-mediated apoptosis and the caspase-9 activation.
As can be observed in Figure 6A, in absence of AD0157, human
leukemia cells analyzed by flow cytometry exhibited an intact
AW¥m, associated with the cellular uptake of the cationic dye
Rhodaminel23 and high fluorescence intensity. However, upon
ADO0157 treatment (1, 5, and 10 wM), cells revealed a reduction
of Rhodaminel23 incorporation, evidenced by a dose-dependent
decrease of the relative fluorescence intensity, due to loss of
A¥m (Figure 6B). This fact suggests that the drug provoked a
drop in the cell mitochondrial membrane potential, this effect
being more relevant in the AML cells.

The changes in the physiology of the mitochondria after
incubation with ADO0157 (1, 5, and 10 M) were also
studied through the analysis of mitochondrial-related apoptotic
markers such as cytochrome ¢, p-Bad and Bad proteins. In
the intrinsic or mitochondrial apoptotic pathway the release
of cytochrome c into the cytosol facilitates the apoptosome
assembly, crucial for the activation of procaspase-9. Indeed,
treatment of human leukemia cells with AD0157 caused the
release of cytochrome c¢ from mitochondria to cytosol in a
dose-response fashion (Figure 7A). Moreover, a significant
decrease of mitochondrial cytochrome c (cyt ¢ in pellet)
and a parallel increase of cytosolic cytochrome ¢ (cyt ¢ in
supernatant) were observed from 5 pM of the compound
(Figure 7B).

In order to further confirm the involvement of mitochondria
in the ADO0157-induced leukemia cell apoptosis, the levels of
Bad and p-Bad were examined. Bad is a pro-apoptotic member
of the BCL-2 family and it is regulated by phosphorylation-
dephosphorylation in response to extracellular stimuli. As
expected, Bad phosphorylation was prevented by AD0157 in the
three cell lines studied, with a more remarkable effect on both
AML cell lines (Figures 7C,D).
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Frontiers in Pharmacology | www.frontiersin.org

November 2017 | Volume 8 | Article 802


https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Garcia-Caballero et al.

ADO0157 Induces Leukemia Cell Apoptosis

*
*

) z g
S 1.00E+06 - S 8.00E+05 - S 8.00E+05 -
Esooaos 1 iy g E - &
3 %% 0 6.00E+05 | ‘S 6.00E+05 - #
a 2 2
s *x s )
-g. 6.00E+05 - * % é‘ 'E'
3 S 4.00E405 S 4.00E+05 A
2 2 Z
S 4.00E+05 - S S
© -] -]
@ @ 2.00E+05 -| @ 2.00E+05 -
@ 2.00E+05 - 2 2
& & &
S 0.00+00 - TSR S 0.00E+00 - rEETT: S 0.00E+00 - P TR T
ADO0157 (uM) AD0157 (uM) AD0157 (uM)
z z z
S 3.00E+06 1 S 3.00E+06 1 S 4.00E+06 - *k
2 2 2 J
£ 2.50E+06 -| & 2.50E+06 - § 3.50E+06 "
5 ] S 3.00E+06 -
2 ** *E gk 2 J 2 > * %
f 2.00E+06
< 2.00E+06 z E 2.50E+06 1
S 1.50E+06 *k £ 1.50E+06 - 3 2.00E+06
S 1.00+06 S S
g ¢ $ 1.00E+06 1
& 5.00E+05 @ 5.00E+05 - ]
5.00E+05
& & &
S 0.00+00 - v T 510 S 0.00E+00 - T S 0.00E+00 - e 1 5 10
- AD0157 (M) AD0157 (uM) ADO0157 (uM)
2 z )
5 T T
3 2.00E+06 - 3 8.00E+06 1 3 *
2~ o 2 o 2 1.40E+07 -
g © 7.00E+06 - = *¥* &
3 * 2 £ 1.20E+07 +*
5 1506406 | . £ 6.00E406 - g ok
z > 5.006406 | 3 L00E:07 Y
2 *k > # 4 = 8.00E+06 -
G 1.00E+06 - g 4.00E+06 | B
~ T 3.00£+06 1 & 6.00E406 |
3 £ 3 |
$ 5.00E+05 1 2 2.00E+06 2 4.00E+06
s @ 1.00E+06 - & 2.00E+06 -
@ & @
O 0.00E+00 == P 8 000E00 = j0 O Q00RO e 1 5 10
ADO0157 (uM) ADO0157 (uM) AD0157 (uM)
100 ~
2 30 -
3 M HL60
O 60 E u937
=
3 [ KU812F
o i
o 40
<%
©
2 20 1
0 Control AD0157 5 uM AD01 575 pM AD0157 5uM AD0157 5uM
K -9 +C
|nh|b|tor i. hibi inhibi
ZIETD-FMK  Z-LEHD-FMK  Z-VAD-FMK
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Akt and ERK Regulate AD0157-Induced
Apoptosis in Human Myeloid Leukemia

Cells

The phosphatidylinositol-3 Kinase/protein kinase B (PI3K/Akt)
and mitogen-activated protein kinase (MAPK/ERK) signaling
pathways, among others, are frequently activated in a wide variety
of human cancers, including leukemia, and other hematopoietic
disorders. PI3K/Akt cascade is involved in mediating survival
and apoptosis signals, and MAPK/ERK is essential for the
regulation of multiple key cellular functions including cell
growth, proliferation, differentiation and migration. Therefore,
we next conducted a mechanistic exploration to provide evidence
about the effect of this compound on the phosphorylation of
ERK1/2 and Akt proteins. For these studies, human leukemia
cells were incubated with different doses of AD0157 (1, 5, and
10 uM) and then, stimulated with serum. As represented in
Figures 8A,B, the impact of AD0157 in Akt phosphorylation
was significantly abrogated from 1 pM ADO0157 in AML and
CML cell lines. Indeed, the phosphorylation levels were reduced

more than 80% at only 1 wM of compound in AML cells, and at
5 M in CML cells. In contrast, analysis of ERK phosphorylation
status at the same doses, revealed no phosphorylation repression
at 1 and 5 puM ADO157 (Figures 8A,B). When increasing
ADO0157 concentration up to 10 M a significant inhibition in the
phosphorylated-ERK levels was observed in both AML cell lines,
but not in the CML cell line (Figures 8A,B). Together, these data
suggest that the Akt survival pathway may be a major target for
ADO0157 in leukemia cells, the effect of this compound being less
relevant on the MAPK/ERK1/2 signaling cascade.

DISCUSSION

The development of new drugs that are able to trigger apoptosis
in aggressive hematological malignancies such as AML and CML,
restoring their sensitivity to apoptosis stimuli, can be considered
a promising antileukemic strategy. In this work we demonstrate
that AD0157, in the low micromolar range, inhibits the growth
of two AML cell lines and a CML cell line characterized by
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FIGURE 7 | AD0O157 induces the release of cytochrome ¢ into the cytosol and suppresses Bad phosphorylation. (A) Detection of cytochrome ¢ in the cytosolic
(supernatant) and mitochondrial (pellet) fractions of AD0O157-treated and non-treated leukemia cells. HL60, U937 and KU812F cells incubated with ADO157 were
suspended in MSH buffer containing EGTA, succinate and MgCly . permeabilized with digitonin and the cytosolic and mitochondrial fractions were separated and
subjected to Western blots. (B) Percentage of cytochrome c¢ in the pellet (mitochondria) and supernatant (cytosol) after treatment with AD0157, expressed as
means + SD of three independent assays. **p < 0.001 versus control. (C) Bad phosphorylation status in treated and untreated HL60, U937 and KU812 cells.
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the BCR-ABL fused protein. Interestingly, this effect presents a
relative grade of selectivity, since it is exerted at concentrations
that do not affect the growth of other human tumor cell lines,
including fibrosarcoma, osteosarcoma, breast carcinoma and
colon adenocarcinoma (Garcia-Caballero et al., 2014). Moreover,
the inhibitory effect of this compound on the growth of non-
transformed cells was also exhibited at higher concentrations to
those required for leukemia cells, as evidenced by comparison

of the ICsy values obtained by MTT assay with that reported
for a primary culture of endothelial cells (Garcia-Caballero et al.,
2014).

The finding that the antiangiogenic activity of AD0157 could
be mediated, at least in part, by induction of endothelial
cell apoptosis brought us to postulate a putative apoptogenic
activity of this compound on myeloid leukemia cells as being
responsible for the strong growth inhibitory activity observed
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in the MTT reduction assay. Firstly, a pilot study with different
ADO157 concentrations ranging from 0.5 to 15 pM was carried
out to analyze apoptosis induction in human leukemia cells
upon 14 h of treatment. Then, three of these doses were
considered as the most adequate concentrations to show a
dose-response effect by AD0157, and replicates were performed.
Different approaches, with different sensitivity of detection,
were used in our experimental battery. Thus, induction of
apoptosis in the three cell lines was initially suggested by
the presence of nuclei with condensed chromatin and DNA
fragmentation, assessed by Hoechst staining and labeling of
DNA strand breaks with fluorochrome-tagged deoxynucleotides
by exogenous terminal deoxynucleotidyl transferase (TUNEL),
respectively. The proapoptotic activity of AD0157 on leukemia
cells was further confirmed by a significant increase in the
subG1 subpopulation, containing subdiploid or apoptotic cells,
as demonstrated by flow cytometry after propidium iodide
staining. Surprisingly, this effect was obtained at concentrations
that were at least five-fold lower than those required for
normal endothelial cells (Garcia-Caballero et al., 2014). Whereas
healthy cells are characterized by the asymmetric distribution
of plasma membrane phospholipids between inner and outer
sides, during apoptosis phosphatidylserine becomes exposed on
the outside face of the membrane, attracting macrophages, which
will phagocytize apoptotic cells and apoptotic bodies (Fadok
et al., 1992). The induction of early apoptosis by AD0157 was
confirmed by the observation that at concentrations of 1 pM
or higher of drug, the translocation of phosphatidylserine from
the inner face of the phospholipid bilayer to the cell surface was
provoked.

The crucial role of mitochondria in the regulation of
apoptosis is widely accepted, and this fact makes them
an attractive target for the development of new antitumor
drugs (Fulda and Kroemer, 2011). In the present study, we
provide evidence that AD0157 induces mitochondrial membrane
perturbation, by triggering a dissipation of the mitochondrial
transmembrane potential and causing the release of pro-
apoptotic proteins such as cytochrome c from the mitochondrial
intermembrane space into the cytosol. This suggests that
mitochondria stands at the nexus of sensing and integrating
the stress caused by this compound in myeloid leukemia
cells. Mitochondrial disturbances often occur long before any
marked morphological symptoms of apoptosis. Dissipation of
mitochondrial transmembrane electrochemical potential (AW m)
has been marked by some authors as the “point of no return”
along the apoptotic pathway. Although the correlation of
the dissipation of AWm and late apoptotic events remains
controversial (Li et al., 2000), the cytometric detection of A¥m
loss is acknowledged as a sensitive marker of early apoptotic
events (Wlodkowic et al., 2011).

To gain greater insight into the mechanisms involved in
the induction of apoptosis by AD0157, caspase activities were
studied. Our results show that AD0157 simultaneously increases
the activity of the initiator caspases-8 and -9, as well as the
downstream activation of the executioner caspases-3 and -7,
acting during the late steps of the apoptotic process. The caspase
inhibitor Z-VAD-FMK completely reversed the apoptogenic

activity of AD0157, suggesting this to be mediated by caspase-
dependent mechanisms.

Leukemia cells that escape from extrinsic apoptotic pathways,
may acquire chemotherapy resistance, so the development of new
antileukemic therapeutic strategies based on the induction of
apoptosis is of growing interest (Al-Hussaini and DiPersio, 2014;
Fan et al., 2015). Our results, indicating activation of caspase-8 by
ADO0157, as well as a decrease in the toxicity of this compound
in the presence of a caspase-8 inhibitor, although preliminary,
suggest that activation of the extrinsic pathway of apoptosis could
be related to the AD0157 death-inducing activity on leukemia
cells (Figure 9). On the other hand, mitochondrial (intrinsic)
pathway of apoptosis is controlled by proteins of Bcl2 family,
such as the pro-apoptotic Bad protein (Zha et al., 1996). The pro-
apoptotic protein Bad is an upstream sensor of cellular damage
that is regulated by a phosphorylation/dephosphorylation
mechanism in response to extracellular stimuli (Delbridge
and Strasser, 2015). While phosphorylation of Bad in serine
residues promotes its association with the scaffold protein 14-
3-3 (sequester Bad in cytosol) and protects cells from apoptosis,
Bad dephosphorylation induces its heterodymerization with Bcl-
XL in the outer mitochondrial membrane, which provokes
changes in the mitochondria permeability and triggers in favor
of apoptosis (Yang et al., 1995). Therefore, dephosphorylated Bad
promotes cytochrome c release to cytosol, where it interacts with
the apoptotic protease activating factor 1 (Apaf-1), procaspase-
9 and dATP to form the apoptosome (Reubold and Eschenburg,
2012). After being activated by apoptosome, caspase-9 activates
downstream effector caspases involved in the cleavage of
substrates, which are directly related to the apoptotic response
(Reubold and Eschenburg, 2012). Results shown here clearly
demonstrate that AD0157 induces apoptosis in myeloid leukemia
cells by activation of the intrinsic pathway (Figure 9). They
include Bad dephosphorylation, cytochrome c release from
mitochondria, initiator caspase-9 and executioner caspase-3 and
-7 activation. Furthermore, we observe the cleavage of death
substrates as lamin-A, a structural protein belonging to the
intermediate filament family essential for the scaffolding of the
nuclear envelope, and PARP, a nuclear enzyme involved in DNA
repair that is activated in response to DNA damage. It is also
worth mentioning that the addition of a caspase-9 inhibitor
clearly compromised the apoptogenic activity of AD0157 on the
myeloid leukemia cells.

The constitutive activation of some signaling pathways,
including PI3K/Akt and MAPK/ERK, controlling cell growth,
survival and apoptosis, has been implicated in both the
pathogenesis and the progression of myeloid leukemias (Testa
and Riccioni, 2007). PI3K/Akt signaling is frequently activated
in AML patient blasts and strongly contributes to proliferation,
survival and drug resistance of these cells (Martelli et al,
2006). MAPK/ERK signaling pathway is constitutively activated
in the majority of AML patients (Daver and Cortes, 2012).
Alternatively, BCR-ABL fused protein, characteristic of CML,
activates Akt and ERK pathways, which leads to deregulated
growth and resistance to apoptosis (Hazlehurst et al., 2009;
Quintas-Cardama and Cortes, 2009). According to data
presented here, AD0157 strongly inhibits the phosphorylation
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of Akt in the different human leukemia cells studied. Given
the crucial roles played by the activation of Akt-dependent
signaling cascades in the development of many tumor types and
resistance to chemotherapy, the ability of AD0157 to interfere
with Akt phosphorylation needs further additional evaluation
and analyses on other tumor cell types are essential. A significant
inhibition of ERK phosphorylation only detected in AML cells at
higher concentrations of this compound, reveals a less relevant
role of this pathway, if any, in the antileukemic mechanism
of action of this compound. This is in agreement with the
results arising from cell cycle studies showing that upon 14 h of
ADO0157 treatment, this compound induces cell death whereas no
inhibition of proliferation, reflected by a blockade in some of the
cell cycle checkpoints, was detected. Since Akt and ERK pathways
have been reported to regulate the phosphorylation state of Bad
(Scheid et al.,, 1999), inactivation of any (or both) pathways
could render the observed decrease in Bad phosphorylation after
incubation with AD0157 (Figure 9).

To summarize, in this investigation we present the induction
of apoptosis in human myeloid leukemia cells by the natural
marine compound ADO157. Despite being the first evidence
of the potential of AD0157 as a new drug candidate for the
treatment of myeloid leukemia, our results also give insight
into the molecular mechanisms of this compound ending up
in cell death, presented in Figure 9. The observation of pro-
apoptotic effects in both AML and CML cells broadens the

potential of AD0157 as an apoptosis-inducing compound in
myeloid leukemia cells. Although pathological angiogenesis was
initially recognized as a hallmark of solid tumors, recent studies
indicate that angiogenesis is also important in the pathogenesis
and progression of several forms of leukemia, including AML
and CML (Molica et al., 2004; Trujillo et al., 2012; AbdElAal
et al., 2015; Shirzad et al, 2016). The previously reported
antiangiogenic activity of AD0157 altogether with data presented
here, indicating a direct antileukemic effect of this compound
by induction of apoptosis pathways, suggest that this natural
compound could be a potential new agent for the treatment of
myeloid leukemia. Further preclinical and clinical studies should
verify this assessment.
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