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The screening of potential therapeutic compounds using phenotypic drug discovery
(PDD) is being embraced once again by researchers and pharmaceutical companies
as an approach to enhance the development of new effective therapeutics. Before the
genomics and molecular biology era and the consecutive emergence of targeted-drug
discovery approaches, PDD was the most common platform used for drug discovery.
PDD, also known as phenotypic screening, consists of screening potential compounds
in either in vitro cellular or in vivo animal models to identify compounds resulting
in a desirable phenotypic change. Using this approach, the biological targets of the
compounds are not taken into consideration. Suitable animal models are crucial for the
continued validation and discovery of new drugs, as compounds displaying promising
results in phenotypic in vitro cell-based and in vivo small animal model screenings often
fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology,
metabolism, immunology, and genetics between humans and currently used pre-clinical
small animal models. In contrast, pigs are more predictive of therapeutic treatment
outcomes in humans than rodents. In addition, pigs provide an ideal platform to study
cancer due to their similarities with humans at the anatomical, physiological, metabolic,
and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug
development, highlighting the potential of porcine cancer models for improving pre-
clinical drug discovery and testing. We also present precision medicine based genetically
defined swine cancer models developed to date and their potential as biomedical
models.

Keywords: PDD, animal model, swine, Oncopig cancer model, cancer

THE RETURN OF PHENOTYPIC DRUG DISCOVERY

The pharmaceutical industry has increasingly invested in the research and development (R&D) of
new potential drugs and has doubled these investments over the past 15 years, from $26.0 billion in
2000 to an estimated $58.8 billion in 2015 (PhRMA, 2016). Surprisingly, companies have produced
on average less than one new drug per year since 1950, indicating that no strategy employed by
pharmaceutical companies over this time period has increased their ability to discover and bring
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new drugs to market (Munos, 2009). Analysis of the drugs
approved by the FDA between 1999 and 2008 indicates more first-
in-class drugs have been approved using phenotypic screening
assays than target-based approaches (Swinney and Anthony,
2011).

Phenotypic drug discovery (PDD) consists of screening
potential compounds in either in vitro cellular (Mosmann,
1983) or in vivo animal models (Giacomotto and Segalat,
2010) to identify compounds resulting in a desirable phenotypic
change. On the other hand, target-based drug discovery (TDD)
relies on the identification of a target of interest believed to
be “disease-modifying” and therefore related to a particular
disease. The genomic era revolutionized the screening of new
compounds in vitro and in vivo through the rise of comparative
genomics, genome editing, and the consecutive emergence of
TDD approaches. Even though TDD has several advantages,
such as confirmation of the relevance of a target for a given
disease, this approach has not effectively translated into the
approval of new drugs as expected. Some researchers believe
that one of the reasons for the decrease in drug discovery and
innumerous failed clinical trials in the last 25 years may be
due to the extensive use of TDD in the past decades (Sams-
Dodd, 2005, 2013; Hellerstein, 2008). Therefore, researchers and
pharmaceutical companies are once again embracing PDD as
a way to improve development and screening of new effective
therapeutics (Lee and Berg, 2013; Zheng et al., 2013; Warchal
et al., 2015).

PDD IN CANCER DRUG DISCOVERY

Oncology is a huge market for pharmaceutical industries, and
has grown to be the largest therapeutic area in terms of number
of projects, investments in research and development (R&D),
and number of clinical trials (Arrowsmith, 2012). However,
discovering and approving new efficient cancer therapies is a
challenge (Hoelder et al., 2012) mainly because cancer is a highly
heterogeneous disease with multiple mechanisms of action. The
hallmarks of cancer indicate that the transformation of normal
cells into malignant cancer cells is a multistep process reflecting
genetic alterations affecting six physiological processes. These
processes include self-sufficient growth signaling, insensitivity to
growth-inhibitory (antigrowth) signals, evasion of programmed
cell death (apoptosis), limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis (Hanahan and
Weinberg, 2000).

The majority of the cancer drugs developed in the past decades
have been discovered using target-based approaches (Swinney
and Anthony, 2011). This is expected, as our knowledge of the
molecular basis of cancer is growing (Garraway and Lander,
2013) and as a consequence new cancer therapeutics are focused
on targets known to be related to the above-mentioned multistep
processes. For example, as kinases play key roles in signal
transduction and regulation of a range of cellular activities, kinase
inhibitors represent 21 out of the 29 approved drugs developed
using TDD between 1999 and 2008 (Zhang et al., 2009; Swinney
and Anthony, 2011).

It is important to highlight that when researchers focus only
on known targets for drug discovery, they lose the opportunity
to identify potential drugs that may have different—and new—
targeted mechanisms of action. Between 1999 and 2008, 19 of
the approved cancer therapeutics were discovered using some
level of phenotypic screening (Swinney and Anthony, 2011).
Among them are the thalidomide analog Lenalidomide, for
which the selection of second-generation analogs with anticancer
activity was conducted using only phenotypic assays (Shortt
et al., 2013). In addition, the observation that dimethyl sulfoxide
(DMSO) caused growth arrest (Friend et al., 1971; Takase
et al., 1992; Teraoka et al., 1996) and terminal differentiation
of transformed cells (Friend et al., 1971) led researchers to
test other polar, small-molecule solvent species for antitumor
activity, resulting in the discovery of the histone deacetylase
inhibitor Vorinostat (Marks and Breslow, 2007). Furthermore,
Romidepsin, an anticancer agent approved for the treatment of
cutaneous T-cell lymphoma was identified through phenotypic
screening of microbial metabolites in tumor cell lines (Ueda et al.,
1994).

In general, PDD remains a crucial approach in selecting,
validating, and developing potential cancer drugs, even though it
represents a minority of the investigational and recently approved
oncology treatments (Moffat et al., 2014). PDD screening is
only the first step in the long and expensive journey of drug
discovery. The next stage, represented by animal experimentation
in pre-clinical trials, must validate the promising results obtained
in the initial screening. Therefore, both steps are complementary
and equally important.

IMPORTANCE OF ANIMAL MODELS IN
DRUG DISCOVERY

Animal models are essential tools in the drug development
process. Due to ethical and regulatory issues, it is necessary
to test new biomedical products in animal models during the
pre-clinical phase before initiating human experimentation to
evaluate efficacy, toxicity, and safety. However, many drugs
that display promising results in pre-clinical animal studies
do not produce the same response in humans (Mak et al.,
2014). This is especially true for oncology due to difficulties in
mirroring the heterogeneity and complex tumor characteristics
in animal models (Huszthy et al., 2012; van Marion et al.,
2016). Disregarding the approach used for drug discovery (TDD
or PDD), there are several examples of candidate therapeutics
failing in clinical trials even though they showed promising
results in previous phases of drug development (Williams, 2013,
2015). In fact, about 85% of therapies tested in clinical trials fail
(Ledford, 2011), with cancer therapeutics representing the largest
proportion of these failures (Arrowsmith, 2011). Only 5% of
agents that demonstrate anticancer activity in preclinical phases
are approved after demonstrating sufficient efficacy in phase III
testing (Hutchinson and Kirk, 2011).

One of the key takeaways from these failures is the need for
improvements in the early steps of drug discovery, specifically
in the use of adequate animal models in pre-clinical trials.
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Suitable animal models are crucial for the continued validation
and discovery of new drugs, as compounds displaying promising
results in phenotypic in vitro cell-based and in vivo small animal
model screenings often fail in clinical trials.

Rodents are the most widely used platform for tumor
pre-clinical screening and biological models in general. Some of
their characteristics, such as small size, inexpensiveness, well-
known genetics, and their ability to be easily genetically modified
make them a standard tool for evaluating novel therapeutics.
However, they are actually poor models for many human
diseases (Seok et al., 2013; Burns et al., 2015), including cancer
(de Jong and Maina, 2010). Consequently, difficulties translating
the results obtained in pre-clinical studies to the clinical realm are
quite common when rodents are chosen as the biological model.
One example is the phase II clinical trial of IPI-926 (Saridegib) in
patients with advanced chondrosarcoma. The trial was stopped
early because no relevant effects were observed in humans treated
with Saridegib compared to the placebo group (Wagner et al.,
2013), even though medulloblastoma mice models treated with
IPI-926 demonstrated a fivefold increase in survival (Lee et al.,
2012). This work demonstrates the need for more relevant animal
models as complementary tools for cancer drug discovery.

Even though genetically engineered mouse models are
important tools for studying mechanisms associated with cancer
biology (Jeong, 2016; Jiang and Yu, 2017; Perez-Guijarro et al.,
2017) and represent improved models compared to wild mice
models, they still have several limitations. We believe that the
use of a suitable large animal model of cancer would improve the
results of PDD for cancer therapeutics.

PIGS AS BIOLOGICAL MODELS

Pigs have proven to be more predictive of therapeutic treatments
in humans than rodents (Meurens et al., 2012; Schook et al.,
2015a). Pigs provide an ideal platform to study cancer due to
their similarities with humans at the anatomical, physiological,
metabolic, and genetic levels (Table 1). The pig genome sequence
was published in 2012, providing insights into their genetic
similarities to humans (Groenen et al., 2012) and furthering
their acceptance as a large animal biomedical model for human
diseases (Prather, 2013; Schook et al., 2015a). In addition to the
high homology between the pig and human genome, the swine
genome also exhibits highly conserved epigenetic regulation
demonstrated by the similar genome wide DNA methylation
patterns observed between pigs and humans (Schachtschneider
et al., 2015). Regarding their cancer genetics, a previous study
using genetically engineered porcine cells showed that swine
cells could be transformed by mutated oncogenes and tumor
suppressor genes commonly found in human cancers (Adam
et al., 2007). Furthermore, these transformed cells were able
to form tumors following autologous injection (Adam et al.,
2007). Also, normal murine cells can be transformed with fewer
mutations (Rangarajan et al., 2004) compared to swine and
human cells (Rangarajan et al., 2004; Adam et al., 2007). Together,
this work demonstrates that porcine tumorigenic pathways are
more similar to human pathways than rodents (Table 1).

Pigs provide an ideal large animal model for preclinical drug
screening due to their metabolic similarities with humans. For
instance, pigs have proven to be a suitable model for CYP3A-
related drug metabolism. Cytochromes P450 enzymes (CYP)
are known for their role in compound metabolism, and the
CYP3A subfamily is responsible for metabolizing more than
half of all drugs available on the market (Zuber et al., 2002).
The swine xenosensor pregnane C receptors also displays high
homology to the ones found in humans (Pollock et al., 2007;
Gray et al., 2010). In addition, the CYP family receptors and
enzymes display similar expression levels in pigs and humans
(Nielsen et al., 2017). On the other hand, some rodents (e.g., rats)
are not considered good models for CYP3A4 related metabolism
due to the dissimilarities with humans in metabolism related to
this enzyme, resulting in differential therapeutic metabolization
(Martignoni et al., 2006). In contrast, swine models can and have
been very useful for pharmacology and toxicology studies (Thorn
et al., 2009, 2011).

Another beneficial feature of pigs that makes them a relevant
biological model is the fact that they can live up to 10 years. For
purposes of cancer drug development, this is especially relevant
because it allows for therapeutic testing and posterior monitoring
in a pre-clinical platform able to mimic multiple stages of tumor
development, progression, invasion, and metastasis, thereby
enabling the evaluation of the long-term effects of a variety of
compounds. In addition, the large size of the pig is ideal not
only for administration of therapeutics in the same manner
as in human patients (Table 1), but also for the collection
of larger volumes of bodily fluids (Helke and Swindle, 2013),
allowing blood collection procedures to mirror those performed
in humans. We thus hypothesize that the pig’s implementation
as an ideal biomedical model for drug discovery could help fill
the existing gap between early phenotypic screening of potential
new therapeutics, identification of prognostic biomarkers, and
testing of beneficial products and devices in human clinical
patients.

Genetic engineering allows for the development of transgenic
porcine models that recapitulate particular genetic alterations
found in human diseases for translational biomedical research
purposes. These models can be obtained using several techniques
such as microinjection of DNA into the pronuclei of fertilized
oocytes, lentiviral transgenesis (LVGT), sperm mediated gene
transfer (SMGT), and somatic cell nuclear transfer (SCNT) using
genetically modified nuclear donor cells (Aigner et al., 2010).
Currently, transgenic pigs are increasingly being accepted as
large animal models for several human diseases (Aigner et al.,
2010), including neurodegenerative diseases (Kragh et al., 2009),
cystic fibrosis (Rogers et al., 2008), cardiovascular diseases (Hao
et al., 2006), diabetes mellitus (Renner et al., 2010), and cancer
(Flisikowska et al., 2012; Schook et al., 2015b).

GENETICALLY DEFINED SWINE
MODELS OF CANCER

The advancement of genetic engineering techniques combined
with knowledge of the pig genome sequence and its similarity
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TABLE 1 | Characteristics of murine and swine pre-clinical trial cancer models compared to humans.

Murine Humans Swine

Size Small (around 3000 times smaller than
humans)

Large Large

Mouse average weight: 20 g Human average weight: 62 kg Minipig average weight: 40 kg

Metabolism (total
Cyp450 content)

Twofold higher compared to humans
(Donato et al., 1999)

Approximately 300–450 pmol/mg
protein (Snawder and Lipscomb, 2000)

Comparable to humans (approximately
300–450 pmol/mg protein) (Snawder
and Lipscomb, 2000; Burkina et al.,
2017)

Metabolism (Cyp3A4) Mouse Cyp3a11, Cyp3a16, Cyp3a41a,
Cyp3a41b, and Cyp3a44 are less than
80% homologous to the human
CYP3A4 nucleotide sequence (Renaud
et al., 2011)

N/A Pig CYP3A22, CYP3A29, CYP3A39,
and CYP3A46 are more than 80%
homologous to the human CYP3A4
nucleotide sequence (Puccinelli et al.,
2011)

Cancer genetics Telomerase activity is found in several
mouse tissues (Chadeneau et al., 1995)

Telomerase expression is suppressed in
most tissues (Kim et al., 1994)

Telomerase expression is suppressed in
most tissues (Pathak et al., 2000)

Drug administration Routes include oral, intravenous (i.v.),
intraperitorial (i.p.), intramuscular,
intradermal, and intranasal, all of which
require smaller volumes compared to
humans (Morton et al., 2001)

Routes include oral, i.v., i.p., by
inhalation, subcutaneous,
intramuscular, epidural, dermal
absorption, and transmucosal

Routes include oral, i.v., i.p., by
inhalation, subcutaneous,
intramuscular, epidural, dermal
absorption, and transmucosal – same
routes and volumes as humans

Costs ($ per animal) Mutant/genetically modified mice:
±$50-$200;

N/A Genetically modified swine: ±$1,725;

Wild-type mice: ±$75 Wild-type swine: ±$575

Model development
time

Months N/A Months

to humans (Groenen et al., 2012) make genetic engineering
a powerful tool for developing suitable transgenic porcine
biological models for cancer drug discovery (Schook et al.,
2016).

With the aim of producing a genetically defined porcine
cancer model, Schook and collaborators developed the Oncopig
Cancer Model (OCM), which contains Cre recombinase
inducible mutated tumor suppressor and oncogene transgenes
(TP53R167H and KRASG12D, respectively). Exposure to adenoviral
vectors encoding Cre recombinase (AdCre) results in cellular
transformation in a temporal and spatial manner that closely
mimics the spontaneous tumor formation that occurs in
humans (Schook et al., 2015b). The intramuscular injection of
AdCre into the OCM results in the development of soft-tissue
sarcomas (STSs) that display pathological characteristics of
human leiomyosarcomas (Schook et al., 2015b). Furthermore,
transcriptional profiling of Oncopig STS cell lines and tumors
indicates Oncopig STS exhibits altered TP53 signaling, Wnt
signaling activation, and signs of epigenetic reprogramming,
all of which represent transcriptional hallmarks of human STS
(Schachtschneider et al., 2017a). In addition, the transcriptional
regulator FOSL1, which was previously identified as a
potential human STS therapeutic target, was identified as a
master regulator of Oncopig STS (Schachtschneider et al.,
2017a).

Two other cancer types have been developed to date in
the OCM: hepatocellular carcinoma (HCC) and pancreatic
cancer. By isolating and transforming Oncopig hepatocytes
via exposure to AdCre in vitro, researchers were able to

develop Oncopig HCC cell lines expressing TP53R167H and
KRASG12D (Schachtschneider et al., 2017b). These cells display
histopathological characteristics similar to human HCC and form
tumors upon autologous injection into Oncopigs. Furthermore,
human HCC transcriptional hallmarks were also observed in
Oncopig HCC cells along with conserved gene expression
profiles compared to human HCC cell lines (Schachtschneider
et al., 2017b). The Oncopig pancreatic ductal adenocarcinoma
(PDAC) model is still in development. However, the two
most predominant pancreatic cancer histotypes (exocrine and
neuroendocrine) have already been developed in this PDAC
model via delivery of AdCre into the main pancreatic duct (Diaz
et al., 2016).

In a recently published article, Schachtschneider et al.
(2017c) presented multiple applications of the OCM as an
innovative large animal translational oncology platform,
ranging from the above-mentioned potential for therapeutic
screening and development to its use for developing
diagnostic imaging modalities. It also highlights the numerous
advantages that swine models have over other commonly
used biological models (Schachtschneider et al., 2017c),
indicating large animal platforms can serve as predictable
models of human therapeutic responses using PDD approaches
(Figure 1).

Regarding the ethical responsibilities of conducting animal
experiments (Perry, 2007) and the three R’s paradigm (Reduce,
Replace, and Refine) (Russell and Burch, 1959), the OCM
provides an ideal platform capable of discretely inducting
localized tumors that can be closely monitored to meet scientific
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FIGURE 1 | Drug discovery in the Oncopig Bladder Cancer Model. (A) Bladder Cancer PDD. (B) Pre-clinical trials: in vivo drug testing in rodent model. (C) Oncopig
Bladder Cancer Model: intravesical AdCre injection activates expression of the mutated oncogenes (TP53R167H and KRASG12D), resulting in tumor formation.
(D) Pre-clinical trial II: in vivo drug testing in the Oncopig Bladder Cancer Model. (E) Clinical trials. (F) Drug selection.

goals while still minimizing the animal’s comorbidities and
mortality.

In addition to the OCM, other transgenic swine cancer
models have been developed. They include the human familial
adenomatous polyposis model in which the APC gene was
inactivated by introduction of a premature termination
codon through electroporation of linearized vector DNA into
mesenchymal stem cells followed by SCNT. The animals carrying
the APC1311 mutation develop polyps in the colon and rectum
after 1 year (Flisikowska et al., 2012). In addition, two models
utilizing TP53 mutations have been developed: a genetically
modified pig expressing mutant TP53R167H , which develops
lymphomas and osteogenic tumors in homozygous individuals
(Sieren et al., 2014), and TP53 knockout pigs that develop
spontaneous osteosarcomas in older heterozygous animals and
multiple large osteosarcomas in 7 to 8-month-old homozygous
pigs (Saalfrank et al., 2016). More recently, a genetic model
of intestinal cancer was developed using a Flp-recombinase
inducible oncogene cassette containing KRASG12D, cMYC, and
SV40LT in addition to a 4-hydroxytamoxifen (4-OHT) activator
cassette controlled by an intestinal epithelium tissue-specific
promoter. Activation of the oncogene cassette in vivo resulted
in a duodenal neuroendocrine carcinoma with a lymph node
metastasis in the minipig (Callesen et al., 2017). Finally, an
attempt to develop a breast cancer model was performed
using a recombinant adeno-associated virus (rAAV) mediated
BRCA1 knockout. Unfortunately, these animals died before
they were able to demonstrate any relevant phenotypic changes
(Luo et al., 2011).

FUTURE APPROACHES

We believe the use of porcine models in pre-clinical trials
will increase the benefits of PDD. More punctually, the OCM
could fulfill the needs of the pharmaceutical industry and
academic researchers by providing a model more predictable
of therapeutic responses in humans. These higher genetically
defined swine cancer models have huge potential to serve as
biomedical models in preclinical trials. Since the International
Committee on Harmonization requires toxicity testing in two
relevant animal species (Food and Drug Administration [FDA],
2010), these models can serve as translational models by testing
the efficacy of new therapies that show promising results in small
animal PDD screenings before moving to human clinical trials,
ultimately decreasing the failure rates of clinical trials (Figure 1).
In fact, although swine models are more expensive than rodents
(Table 1), the use of pigs as a second animal model in pre-
clinical trials is cheaper than using non-human primates. It can
also provide a cost reduction in drug discovery by confirming
the trial results before initiating a highly costly human clinical
trial.

Furthermore, we hypothesize that intravesical injection
of AdCre in the OCM platform could result in tumor
formation in the bladder (Figure 1); resulting in a
highly valuable bladder cancer model in which new
compounds and immunotherapies such as recombinant
BCG (a promising immunotherapeutic approach for
bladder cancer (Begnini et al., 2015) could be tested.
Our research group has tested the antitumoral activity
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of several compounds in bladder cancer cells lines using
PDD approaches, including Brazilian red propolis (Begnini
et al., 2014) and pyrazoline derivatives (Tessmann et al.,
2017). A suitable animal model platform such as the OCM
would further advance in vivo testing of the most promising
compounds selected in these previous studies. To this end, we
are currently evaluating the ability of OCM cells to mimic human
bladder cancer cell line responses to commercially available
therapeutics in vitro. We believe that this work will confirm
the important role that the OCM can play in PDD of cancer
drugs.
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