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Institute, Brisbane, QLD, Australia

The development of new drugs has become challenging as the necessary investments
in time and money have increased while drug approval rates have decreased. A potential
solution to this problem is drug repositioning which aims to use existing drugs to treat
conditions for which they were not originally intended. One approach that may enhance
the likelihood of success is to reposition drugs against a target that has a genetic basis.
The multitude of genome-wide association studies (GWASs) conducted in recent years
represents a large potential pool of novel targets for drug repositioning. Although trait-
associated variants identified from GWAS still need to be causally linked to a target
gene, recently developed functional genomic techniques, databases, and workflows
are helping to remove this bottleneck. The pre-clinical validation of repositioning against
these targets also needs to be carefully performed to ensure that findings are not
confounded by off-target effects or limitations of the techniques used. Nevertheless,
the approaches described in this review have the potential to provide a faster, cheaper
and more certain route to clinical approval.
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INTRODUCTION

Over 6,000 human medical conditions have defined molecular phenotypes (Johns Hopkins
University, 2017) but only ∼500 conditions have approved therapies (National Institutes of Health,
2015). Furthermore, many approved therapies have suboptimal efficacy or are accompanied by
unacceptable toxicity. Despite scientific advancements, drug development remains challenging as
development time and costs are increasing while drug success rates are low. Indeed, for every US
dollar spent on research and development, the number of new drugs that are approved by the
US Food and Drug Administration (FDA) has roughly halved every 9 years since 1950 (Scannell
et al., 2012). The magnitude and duration of this phenomenon suggest that current approaches
addressing the research and development productivity problem are having a weak effect. Not
surprisingly, pharmaceutical companies often cannot afford to pursue development of promising
drug candidates. It is apparent that alternative directions are required to address these critical
issues. This review will focus on promising approaches to improve the success of therapeutic
development by repositioning existing drugs against molecular targets identified from genetic
studies.

DRUG REPOSITIONING

Drug repositioning, also known as drug repurposing, aims to use existing therapies or drugs
that have stalled in development to treat conditions for which they were not originally
intended. Given that in the US alone there are ∼3000 approved drugs (U.S. Department
of Health and Human Services, 2017) and thousands more which have not reached
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clinical approval, drug repositioning supplies a vast
armamentarium to expedite the development of new therapies.
The development of a new drug takes on average 13–15 years
and costs between US$2–3 billion (Nosengo, 2016) with only a
∼10% chance that a new therapy will be successfully approved
by government regulatory agencies (Smietana et al., 2016). In
contrast, drug repositioning represents increased efficiency
and lower costs because candidates already have established
safety profiles from Phase I clinical trials, with time to approval
estimated at 6.5 years at an average cost of US$300 million
(Nosengo, 2016). One of the most successful drug repositioning
examples is thalidomide, a drug whose use was originally
discontinued due to severe skeletal birth defects (Kim and Scialli,
2011). After repositioning, thalidomide and its derivatives are
now indicated for the treatment of multiple myeloma and a skin
condition related to leprosy with sales revenues of billions of
dollars.

IDENTIFYING DRUG TARGETS FROM
GENETIC STUDIES

An approach that may increase the likelihood of drug
repositioning success is the use of genetic studies to identify
“druggable” targets. Drugs that have been linked to disease traits
through genetic studies are reported to be twice as likely to
be clinically approved compared to drugs with no such links
(Nelson et al., 2015). The advent of large-scale genetic studies,
primarily involving genome-wide association studies (GWASs),
has greatly advanced our knowledge of the genetic basis for many
diseases (Visscher et al., 2017), allowing researchers to leverage
this information to identify targets for therapy. Indeed, genetic
studies have identified a large number of genes whose proteins
are already targeted by drugs used in clinical practice. For
example, the genes encoding drug targets of tamoxifen (ESR1)
and aromatase inhibitors (CYP19A1) have been linked to genetic
variation associated with risk for breast (Dunning et al., 2016)
and endometrial cancer (Thompson et al., 2016), diseases that are
treated using these drugs. Moreover, genetic studies are revealing
novel drug targets such as PCSK9. It was initially reported that
PCSK9 nonsense mutation carriers had lower plasma levels of
LDL cholesterol and a significantly reduced risk of coronary
heart disease (Horton et al., 2007). A common genetic variant
(rs11206510) ∼10 kb upstream of PCSK9 was also subsequently
found to associate with coronary heart disease (Schunkert et al.,
2011). Based on these genetic findings, two human monoclonal
antibodies have been developed to lower cholesterol by inhibiting
PCSK9 (Markham, 2015; Paton, 2016) and one of these drugs was
recently found to lower LDL cholesterol levels by ∼60% in a large
clinical trial (Sabatine et al., 2017). Additionally, findings from
genetic studies have led to drug repositioning as is demonstrated
by secukinumab, an antibody therapy that targets IL-17A, which
was originally tested for efficacy in the treatment of psoriasis,
rheumatoid arthritis and uveitis (Hueber et al., 2010). However,
IL-17A belongs to an immune axis with IL-23 (Gaffen et al., 2014)
and the association of a variant (rs11209032) ∼15 kb downstream
of the gene encoding the IL-23 receptor (IL23R) with ankylosing

spondylitis (Burton et al., 2007) thus provided a rationale for
repositioning secukinumab to treat this additional inflammatory
disease.

GENOME-WIDE ASSOCIATION STUDIES
(GWASs)

Although GWAS have transformed the study of common genetic
variation over the last 10 years, there has been criticism of their
limited clinical impact. However, sample sizes for many diseases
have only recently reached sufficient size to detect significant
numbers of genome-wide significant loci (Visscher et al., 2017).
As of November 2017, the GWAS catalog contains ∼53,000
unique variant-trait associations for more than 800 human
traits and diseases (MacArthur et al., 2017), likely representing
a large number of genes that could provide targets for drug
repositioning studies. While ∼10% of GWAS variants affect
the coding sequence and, therefore, have a high probability of
affecting the function of the gene or encoded protein in which
they are located, the vast majority of GWAS variants are found
in intergenic or intronic regions and their gene targets are less
clear. These non-coding variants likely affect the trait of interest
through regulation of gene expression, but determining their
gene targets is a complex task because GWAS variants may
only regulate the nearest gene one third of the time (Gusev
et al., 2016; Zhu et al., 2016). Long-range chromatin looping
interactions allow genetic variants to potentially regulate a large
number of genes over megabase distances (Mifsud et al., 2015).
Thus, assigning the gene nearest a GWAS variant as a target
may lead to false assignment of causation. An example of this
is studies that were conducted on FTO. Intronic variants in
FTO had been associated with obesity and body mass index and
FTO was thought to be the regulatory target of these variants
(Dina et al., 2007; Frayling et al., 2007). However, it was later
determined through functional genetic experiments and mouse
knockout studies that IRX3, a gene distally located from the
GWAS variants, was the likely causal gene (Ragvin et al., 2010;
Smemo et al., 2014).

The complexity of determining the causal genes through
which trait-association variants act has constituted a major
roadblock in the clinical translation of GWAS findings. However,
in recent years, workflows have been developed to establish these
causal genes (Edwards et al., 2013) and much progress is being
made toward systematically identifying these genes using new
functional genomic techniques that assess chromatin interactions
and gene expression associations.

APPROACHES TO IDENTIFY THE
TARGET GENES OF TRAIT-ASSOCIATED
VARIANTS

Sophisticated computational approaches have been developed
to identify disease-gene associations from GWAS data and
include NetWAS which incorporates functional genomic data
to identify tissue-specific gene networks (Greene et al., 2015).
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However, these bioinformatic tools require firstly assigning
trait-associated variants to a gene. Experimental techniques
such as chromatin Confirmation Capture (3C) and related
high-throughput techniques (e.g., 5C, ChIA-PET, Hi-C) have
been successful in identifying long-range chromatin interactions
between genomic regions (Schmitt et al., 2016). These data are
extremely useful in identifying interactions between GWAS loci
and potential target genes (Michailidou et al., 2015; Mifsud
et al., 2015; Cheng et al., 2016). However, large scale chromatin
interaction assays which assess all possible interactions (e.g.,
Hi-C) are costly, with billions of sequencing reads required to
ensure suitable resolution and confidence to accurately assess
interactions. Fortunately, there are numerous databases housing
publicly available data from chromatin confirmation experiments
across multiple tissues and cell types (Table 1). These databases
also provide for standardization of the complex analysis of
such experiments. 3C also allows for the identification of
allele-specific interactions between genes and genomic regions
containing trait-associated alleles (Glubb et al., 2017), implicating
the involvement of the trait-associated variant in the chromatin
interaction. Importantly, bioinformatic tools have now been
developed to systematically identify allele-specific interactions
from large-scale 3C experiments (Servant et al., 2015; Li
et al., 2017). Approaches have also been developed to integrate
functional genomic data to predict interactions between genes
and regulatory regions (Table 1; e.g., PreSTIGE and IM-
PET). These approaches take advantage of the vast amount of
public data provided by consortia such as ENCODE (Encode
Project Consortium, 2012) and Roadmap Epigenomics Project
(Chadwick, 2012), as well as data made publicly available by
researchers, such as the Gene Expression Omnibus (Barrett et al.,
2013). Moreover, the experiments required to generate data for
these integrative approaches, commonly ChIP-seq and RNA-seq,
can be performed at a fraction of the cost of a Hi-C experiment.

IDENTIFICATION OF CAUSAL GENES BY
INTEGRATING GENOTYPE AND GENE
EXPRESSION DATA

The methods described above are useful in identifying target
genes but it is still necessary to demonstrate the effect of trait-
associated variants on target gene activity. The directionality of
the effect is also crucial information that is used to inform the
need for drugs with either antagonistic or agonistic actions on
the target. In vitro experiments such as reporter gene assays can
provide this information by identifying trait-associated variants
that modulate the promoter activity of target genes through
regulatory elements (Glubb et al., 2015, 2017). A powerful
complementary approach is to link the genotype of trait-
associated variants to gene expression using in vivo data, thus
identifying target genes and the directionality of the effect of
trait-variants. Expression quantitative trait loci (eQTL) analyses
are useful in this regard as they can provide genome-wide lists
of genetic variants that associate with gene expression in a
particular tissue. There are now a number of eQTL databases
(Table 1) that can be queried to determine if a trait-associated

variant (or variants in linkage disequilibrium) associates with the
expression of a specific gene. One of the most comprehensive
of these in terms of the diversity of data is the Genotype-Tissue
Expression (GTEx) project (Ardlie et al., 2015), which now has
eQTL data available for 44 human tissues. Although some tissues
currently have a relatively small number of samples (n< 100) and
consequently suffer from low statistical power for eQTL analysis,
data generation is ongoing (Ardlie et al., 2015). Furthermore,
the GTEx project provides splicing QTL data, enabling the
identification of genetic variants that associate with alternative
gene transcripts. Other eQTL studies already include data from a
large number of individuals providing statistical power to detect
both cis- and trans-eQTLs with high confidence. For example,
Westra et al. (2013) identified eQTLs using data from more than
5,000 blood samples (Table 1; Blood eQTL browser).

The linking of gene expression and genotype data can be
applied at a multi-variant or gene-based level by combining
genotype data to determine the cumulative effect of genetic
variants on expression (Gamazon et al., 2015; Gusev et al., 2016).
These data are used to predict gene expression levels in cohorts
of genotyped individuals, allowing case-control transcriptome-
wide association studies to examine whether the predicted gene
expression associates with clinical phenotypes and the potentially
causal genes identified could provide further targets for drug
repositioning.

TOOLS FOR IDENTIFICATION OF DRUG
REPOSITIONING CANDIDATES

Once evidence indicates that a gene is likely regulated by
a trait-associated variant, the next step would be to assess
whether an existing drug can be repositioned to target this
gene or its encoded protein. Numerous databases can be
accessed for this purpose, summarized in Table 2. These
include databases that link drugs to genes through their
known pharmacological targets (e.g., DrugBank and ChEMBL).
However, many drugs have an array of off-target effects and
these unintended pharmacological interactions are often not
well known. Therefore, to identify additional pharmacological
targets, other databases extract data from the literature that
demonstrate the effects of drugs on gene/protein expression and
function [e.g., Comparative Toxicogenomics Database (CTD)]
or binding interactions between drugs and proteins [e.g., The
Binding Database (BindingDB)].

A novel approach for identifying drug repositioning
opportunities is provided through the Connectivity Map
(CMap) database (Table 2). CMap is a resource that uses
gene expression changes in response to drug treatment and
gene perturbation (i.e., knockdown/overexpression) to find
relationships between genes and drugs. CMap contains over
one million gene expression signatures from the treatment
of a variety of cell types with drug and gene perturbations.
Differential expression signatures that arise from treatment
can be compared to signatures in the database to perform
both positive and negative correlations. These data could be
applied to the identification of drug candidates for repositioning.
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TABLE 1 | Databases and tools for the identification of gene targets.

Database/tool
type

Name Description Website Citation

eQTL ExSNP The ExSNP database can be used to query genetic variants
and genes for associations with gene expression using 16
publicly available human eQTL studies. These data allow
tissue- and population-specific eQTLs to be identified.

www.exsnp.org/ Yu et al., 2016

Blood eQTL
browser

The Westra blood dataset is an eQTL meta-analysis of
peripheral blood samples from ∼5,300 individuals with
replication in ∼2,700 individuals. Cis- and trans-eQTLs can
be queried by gene or variant.

Westra et al., 2013

DAGS Depression Genes and Network results of eQTL analyses
for blood samples from 922 individuals are available for
download.

http://dags.stanford.edu/dgn/ Battle et al., 2014

GTEx GTEx has matching gene expression and genotype
information for >50 human tissues from >400 individuals.
eQTL and splice QTL data can be queried by gene or
variant.

https://gtexportal.org/home/ Ardlie et al., 2015

Braineac The Braineac dataset contains 134 neurodegenerative-free
brains and can be queried for variants and genes
associated with neurological disorders. Up to 12 brain
regions were extracted per brain in parallel for mRNA
quantification. Results of eQTL and genotyping analyses
can be downloaded.

www.braineac.org/ Ramasamy et al., 2014

Functional
genomic

NCBI GEO NCBI GEO database contains 4348 genomic data sets and
2,184,488 samples that are cross-linked from
high-throughput microarray and next-generational sequence
functional genomic data sets. It can be queried for raw,
processed or meta-data. All data are also available for
download.

www.ncbi.nlm.nih.gov/geo/ Barrett et al., 2013

ENCODE ENCODE contains data from 13,393 biosamples. Queries
can be made for the following experimental data: open
chromatin (DNase-seq, ATAC-seq); histone mark
enrichment (ChIP-seq); transcription factor binding (TF
ChIP-seq); gene expression (RNA-seq); and 3D chromatin
interactions (ChIA-PET).

www.encodeproject.org/ Encode Project
Consortium (2012)

Roadmap
Epigenomics
Project

The Roadmap Epigenomics Project contains includes 1,821
histone modification datasets, 360 DNase datasets, 277
DNA methylation datasets, and 166 RNA-Seq datasets.
Epigenomics data can be browsed and downloaded.

www.roadmapepigenomics.org/ Roadmap Epigenomics
Consortium et al., 2015

GWAS3D Sets of genetic variants can be queried to identify the most
probable functional variants affecting transcriptional
regulation, prioritize leading variants, evaluate
deleteriousness of genetic variants affecting the gene
regulation and annotate genetic variants from a regulatory
perspective.

http://jjwanglab.org/gwas3d Li et al., 2013

HumanBase
(NetWAS)

HumanBase is the integration of GWAS and tissue-specific
networks to identify relevant disease-gene associations. It
contains 144 tissue-specific functional networks and 214
biological process-specific functional networks. GWAS data
files can be uploaded for analysis or HumanBase predicted
tissue-specific interactions can be downloaded.

http://hb.flatironinstitute.org/ Greene et al., 2015

EnhancerAtlas EnhancerAtlas provides annotation of enhancers in the
human genome and contains enhancers for 76 cell lines
and 29 tissues. The database allows users to examine
experimental evidences for predicted enhancers in a given
genomic region; compare enhancers across different
cell/tissue types; identify enhancers associated with a gene;
predict genes regulated by a set of cis-regulatory elements.

http://enhanceratlas.org/ Gao et al., 2016

3D Genome
Browser

3DGenome is a platform to explore publicly available
chromatin interaction data (e.g., Hi-C, ChIA-PET, Capture
Hi-C, and PLAC-seq). It also provides multiple methods to
link distal cis-regulatory elements with their potential target
genes.

http://3dgenome.org Wang et al.,
unpublished

(Continued)
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TABLE 1 | Continued

Database/tool
type

Name Description Website Citation

4DGenome 4DGenome is a repository for chromatin interaction
data (i.e., 3C, 4C, 5C, ChIA-PET, and Hi-C) and
bioinformatically predicted interactions (i.e., IM-PET).
Records can be queried by genomic regions, gene
names, organism, and detection technology.

https://4dgenome.research.chop.edu/ Teng et al., 2015

3DSNP 3DSNP contains publicly available data from Hi-C
experiments and can be queried by variant, gene or
genomic region.

www.cbportal.org/3dsnp/index.html Lu et al., 2017

Chromatin
Chromatin Space
Interaction

CCSI presents ∼3,000,000 chromatin interaction
pairs with annotation of genes, enhancers and SNPs
in many cell lines of human, mouse and yeast. The
data was obtained by means of 3C, 4C, 5C,
ChIA-PET, and Hi-C technology and can be searched
by Ensembl ID, gene name, or chromatin fragment.

Xie et al., 2016

Functional
genomic tools

IM-PET IM-PET integrates gene expression and epigenomic
data to predict genes targeted by enhancers.

http://tanlab4generegulation.org/IM-
PET.html

He et al., 2014

PreSTIGE PreSTIGE makes cell-specific predictions of
gene/enhancer pairs by integrating H3K4Me1 histone
modification and gene expression data. Publicly
available data for 12 cell types can be browsed by
gene or enhancer.

http://genetics.case.edu/prestige/ Corradin et al., 2014

Genetic
associations

OMIM OMIM is an online database of >24,000 human
genes and all known genetic disorders (including
associated variants) that is updated daily and can be
queried for clinical features, phenotypes, and genes.

www.omim.org/ Amberger et al., 2015

GWASdb GWASdb is a database of published GWAS that can
be searched by trait, variant identifier, study or gene.
Catalog contains data from 3,092 publications and
53,096 unique SNP-trait associations.

www.ebi.ac.uk/gwas/ MacArthur et al., 2017

Open Targets Open Targets collates publicly available data to enable
the identification of genes associated with disease
through genetic variants and gene expression. Genes
can also be queried to identify disease associations.

www.targetvalidation.org/ Koscielny et al., 2017

Phenome Wide
Association Studies

>3,000 GWAS variants were analyzed for
associations with 1,358 clinical phenotypes in 13,835
European-ancestry individuals from the Electronic
Medical Records and Genomics network. Data can
be queried by gene, variant, or clinical phenotype.

https://phewascatalog.org/ Denny et al., 2013

For example, if a gene is known to be down-regulated by a
trait-associated variant, a search can be performed to identify
drugs that may have a beneficial expression signature, i.e., drugs
with a similar signature to the opposite gene perturbation (in this
case gene overexpression).

PRE-CLINICAL VALIDATION OF DRUG
REPOSITIONING

Before clinical drug repositioning trials can be performed, pre-
clinical studies are crucial to validate targeting of the gene or
protein of interest and demonstrate a desired effect in cellular or
animal models. Definitive proof that the target is necessary for the
desired effect is not a trivial exercise and requires manipulation
of the target in the model system, which is often accompanied
with caveats (Kaelin, 2017). With the vast array of tools now
available, it is now relatively straightforward to genetically

manipulate targets by transcript overexpression/knockdown
(e.g., cDNA clones and siRNA), gene knockout/knock-in and
even by the introduction of gain or loss of function mutations
(e.g., CRISPR/Cas9). These gene perturbation techniques can
also be applied in a high throughput fashion to cellular or
animal models using pooled cDNA, siRNA, or gRNA libraries to
characterize gene function (Joung et al., 2017; Tsherniak et al.,
2017) with image-based profiling providing the capability to
measure multiple phenotypes at the same time (Caicedo et al.,
2016). However, gene perturbation approaches themselves often
have off-target effects that might confound findings and thus
experiments need to be well controlled to ensure the correct
interpretations are made (Kaelin, 2017). To unambiguously
validate targets, rescue experiments are required. In these
experiments, the desired phenotype is reversed (or rescued) by
a drug resistant version of the target or reintroduction of the
target through some means which is resistant to the original
gene perturbation or ablation (Kaelin, 2017). Difficulties in
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TABLE 2 | Databases for the identification of drug candidates for repositioning.

Database Description Website Citation

DGIdb DGIdb contains 28,000 drug-gene interactions from 27 sources and can be
queried by gene or drug.

http://dgidb.genome.wustl.edu/ Wagner et al., 2016

RE:fine Drugs RE:fine provides a triad approach linking drugs to genes and disease at the
same time as linking genes/variants to disease. The database contains 1,770
diseases, 916 drugs, and 567 genes and findings can be queried by drug,
disease, or gene.

http://drug-repurposing.
nationwidechildrens.org/

Moosavinasab et al., 2016

CMap CMap is a library of nearly 500,000 gene expression signatures from human cell
lines exposed chemical and genetic perturbation, and supports queries by gene
and drug. The database also contains detailed drug information including
known targets, stage of development and mechanism of action.

https://clue.io/ Lamb et al., 2006

DrugBank DrugBank contains information on 9,591 FDA approved and experimental
drugs with links to 4,661 targets. DrugBank supports general queries by drug,
target, pathway and indication.

https://www.drugbank.ca/ Law et al., 2014

ChEMBL ChEMBL contains 11,538 target and 2.1 million compound records that can be
searched by ligand or target and browsed for drugs, targets or indications.

https://www.ebi.ac.uk/chembl/ Gaulton et al., 2017

PharmGKB PharmGKB contains information on 621 drugs, 118 pathways and 474
pharmacogenetic labels as well as encompassing clinical information including
gene-drug associations and genotype–phenotype relationships. PharmGKB
can be queried for molecule, gene, variant, or combination.

https://www.pharmgkb.org/ Whirl-Carrillo et al., 2012

CTD The Comparative Toxicogenomics Database (CTD) contains 34 million
relationships between drugs (and other chemical entities) and genes/proteins.
and can be queried by chemical, chemical-gene interaction, gene, gene form,
disease, pathway, organism, or gene ontology.

http://ctdbase.org/ Davis et al., 2017

STITCH STITCH is a database of known and predicted interactions between chemical
entities and proteins, containing data from ∼500,000 chemicals, 9.6 million
proteins and 1.6 billion interactions. The database supports queries by
chemical, protein or gene name as well as by chemical structures or protein
sequences.

http://stitch.embl.de/ Szklarczyk et al., 2017

BindingDB BindingDB is a database of measured binding affinities focusing on the
interactions of proteins considered to be drug-targets and small, drug-like
molecules. It contains data for 7,225 protein targets and 621,060 small
molecules. Searches can be conducted by small molecule, target, or assay.

http://bindingdb.org/bind/index.jsp Gilson et al., 2016

reproducing experimental results between laboratories (Prinz
et al., 2011) also highlights the need for multiple experimental
lines of evidence and findings that are robust to different
conditions and models.

THE IDENTIFICATION OF FURTHER
DISEASES FOR REPOSITIONING

Another method for identification of drug repositioning
opportunities leverages the fact that genetic variation can
have pleiotropic effects and associate with multiple clinical
phenotypes. Therefore, a drug successfully repositioned using
genetic data may be able to be repositioned for the treatment
of further diseases if the underlying genetic variant(s) has a
pleiotropic effect. A relatively new technique that can be applied
to this is the phenome-wide association study (PheWAS), where
a single variant is tested for association with a large number of
phenotypes, enabling the identification of variants that confer
susceptibility to multiple diseases (Denny et al., 2010). Databases
that contain de-identified Electronic Medical Records (EMRs)
are an efficient source of data for PheWAS (Manolio et al.,
2009). EMR databases contain longitudinal health records that
include prescription records, family histories, laboratory and
image testing results, physician notes and, importantly, the

International Classification of Disease codes (Hebbring, 2014).
An additional approach would be to use genetic correlation
analyses, such as LD-score regression, that use GWAS data to
identify genetic similarities between diseases which could then
provide an avenue for further repositioning.

LIMITATIONS OF DRUG REPOSITIONING
AND FUTURE DIRECTIONS

Although drug repositioning appears to have many advantages
over traditional drug development, there are some caveats.
Firstly, there needs to be a drug that can be repositioned
against the target of interest. This may not always be the
case and, therefore, drug repositioning should be considered a
complementary approach to the development of novel drugs. In
terms of clinical trials, Phase I studies may still be necessary if
an increased dosage of the repositioned drug is required, if a
new drug delivery method is used, or if it the drug is intended
to be used in a new population. Nevertheless, by repositioning
a drug against a target on the basis of genetic evidence, the
increased likelihood of approval may still offset the costs of
Phase I trials. Intellectual property for drug repositioning needs
to be considered as drug repositioning uses drugs that are already
published cannot be patented because they have already been
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publicly disclosed. Lack of patentability reduces opportunity for
profit dis-incentivizing pharmaceutical companies from pursuing
that target. For example, generic drugs with well characterized
safety profiles may appear amenable to drug repositioning, but
a lack of intellectual property could prevent pharmaceutical
companies from recouping costs spent on testing in clinical
trials (Nosengo, 2016). However, repositioning drug candidates
could be refined or modified to provide better targeting and thus
generate new intellectual property. Current patent law regarding
drug repositioning is complex and inconsistent and thus greater
clarity and uniformity is required (Kremer and Jones, 2015). It
is also important that exclusivity and patent strategies exist to
provide incentives for pharmaceutical companies to invest in this
area of research (Kremer and Jones, 2015). Furthermore, the drug
repositioning process could be promoted by collaborative models
involving academic researchers, pharmaceutical companies and
other stake holders. For example, the MRC-Industry Asset
Sharing Initiative1 and the NIH National Center for Advancing
Translational Sciences (NIH-NCATS2) aim to deliver treatments
and cures for disease to patients faster by improving the
translational process.

CONCLUSION

Drug repositioning potentially provides a faster and cheaper
approach to the development of new therapies and, if targets

1 https://www.mrc.ac.uk/funding/browse/industry-asset-sharing-initiative/mrc-
industry-asset-sharing-initiative/
2 https://ncats.nih.gov/

have a genetic basis, should carry less risk. Yet, a concerted
effort still needs to be made to overcome the bottleneck of
identifying targets from large-scale genetic studies and rigorous
approaches need to be taken in the pre-clinical validation of
drug repositioning to maximize likelihood of success in clinical
studies.
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