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Comprehensively understanding pharmacological functions of natural products is a key
issue to be addressed for the discovery of new drugs. Unlike some single-target drugs,
natural products always exert diverse therapeutic effects through acting on a “network”
that consists of multiple targets, making it necessary to develop a systematic approach,
e.g., network pharmacology, to reveal pharmacological functions of natural products
and infer their mechanisms of action. In this work, to identify the “network target” of
a natural product, we perform a functional analysis of matrine, a marketed drug in
China extracted from a medical herb Ku-Shen (Radix Sophorae Flavescentis). Here, the
network target of matrine was firstly predicted by drugCIPHER, a genome-wide target
prediction method. Based on the network target of matrine, we performed a functional
gene set enrichment analysis to computationally identify the potential pharmacological
functions of matrine, most of which are supported by the literature evidence,
including neurotoxicity and neuropharmacological activities of matrine. Furthermore,
computational results demonstrated that matrine has the potential for the induction of
macropinocytosis and the regulation of ATP metabolism. Our experimental data revealed
that the large vesicles induced by matrine are consistent with the typical characteristics
of macropinosome. Our verification results also suggested that matrine could decrease
cellular ATP level. These findings demonstrated the availability and effectiveness of the
network target strategy for identifying the comprehensive pharmacological functions of
natural products.

Keywords: matrine, macropinocytosis, network target, network pharmacology, natural products

INTRODUCTION

Structurally diverse compounds from natural products have historically been used as therapeutic
agents for disease control and prevention and as a fertile source of lead compounds for
the development of novel drugs (Cordell, 2014). However, a more thorough use of natural
products for drug discovery is hampered by a lack of a complete mechanistic understanding
of their pharmacological functions. With the rising of natural products as drug candidates,
comprehensively determining small molecule compound–target interaction profiles have become
increasingly necessary. Target and mechanism study of natural products is a central requirement
for understanding the complexity of natural products and developing new drugs (Xu, 2011).
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Traditionally, identification strategies of targets have included
genomic, biochemical and chemical biology-based approaches
(Farha and Brown, 2016). However, more alternative theoretical
and practical approaches are still required to better honed for
natural product discovery.

To comprehensively understand the pharmacological
functions of natural products, we for the first time proposed a
new therapeutic concept “network target,” a core idea that is
distinct from the current “one target, one drug” paradigm often
associated with reductionist medicine (Li, 2011; Li et al., 2011).
From the perspective of the network target, natural products
can target a biological network of several key molecules that
derived from the multi-target nature of traditional medicine
(Li et al., 2007; Li, 2009). The network target concept represents
a description of complex mechanism of drug action, which
suggests that the action of many small molecule compounds may
have diverse effects on many proteins, leading to a perturbation
of biological networks at different levels (including changes
in gene expression, post-translational modifications, protein–
protein interactions and metabolites) (Li and Zhang, 2013).
Furthermore, the enriched biological processes associated with a
set of interacting targets in a perturbed network target can be used
to unveil the pleiotropic effects of natural products (Li et al., 2014;
Liang et al., 2014). At the same time, the network pharmacology is
evolving as a holistic strategy for drug research and development
by integrating information science and systematic medicine
(Hopkins, 2007; Li, 2015). Recent advances in experimental and
computational strategies, such as chemogenomics and in silico
approach, have provided big biological data of natural products
toward network pharmacology, yielding important insights into
pharmacological actions (Brehme et al., 2009; Zhao and Iyengar,
2012; Qi et al., 2016) and toxicological effects (Zhang et al., 2015).
Accordingly, the network-target-based network pharmacology
for a natural product is now critical to provide precise and
complete functional characterization that could be useful for
drug discovery and development.

Recently, a proven group of Chinese patent medicines has
held and still holds an important position in the treatment of
a variety of cancers in China, and statistical analysis results
from nationwide medical insurance data have suggested that
Sophorae Flavescentis Radix, namely Ku-Shen, is widely used
in the treatment of a variety of cancers in China (Wu et al.,
2015). Matrine is a main active constituent in Ku-Shen which
has been approved as herbal medicine in China, and has
polypharmacology including anti-inflammatory (Zhang B. et al.,
2011; Wu G. et al., 2017), anti-tumor (Wu J. et al., 2017), anti-
angiogenic (Li et al., 2010) and so on. It is a kind of quinolizidine
alkaloid compound and very similar in structure to oxymatrine
and sophoridine. Yet, despite considerable previous research
and development efforts to date, functional characterization
of matrine endures a wonderful and complex challenge for
pharmacologists.

Trying to approach the comprehensive mechanisms of
matrine, here we took a systematic approach based on targets
prediction and network target analysis to identifying the
network target and functional characterization of matrine.
Taking advantage of the extensive literature and experimental

evidence, we systematically examined the effects of matrine
on different biological processes involved and identified the
network target of matrine. The influence of network target by
matrine offers a unified molecular mechanism for the diverse
pharmacological actions of matrine. Our preliminary evidence
also revealed a previously unknown activity of matrine, induction
of macropinocytosis, which has important implication in the
therapeutic efficacy of Ku-Shen.

MATERIALS AND METHODS

Computational Procedure
Target Prediction, Network Target and Functional
Enrichment Analysis for Matrine
The potential targets were predicted by the drugCIPHER-CS
method (Zhao and Li, 2010). The drugCIPHER-CS method
uses a regression model to predict relationships between
compounds and proteins by correlating the closeness of the global
pharmacological network and the protein–protein interaction
network. DrugCIPHER-CS calculated the correlation between
the chemical similarity vector of matrine-seed drugs and drug-
protein closeness vector as the likelihood of the interactions of
drug-target. Accordingly, we define the similarity vector CSd for
matrine d as {CSdd1, CSdd2, . . ., CSddn} and extend equation (1)
into:

8p = β′p +
∑

dj∈B(p)

α′ pdjCSdj (1)

where dj is the known drug j binding to the given protein p.
β′p and α′pdj are the model coefficients. The likelihood between
matrine d and protein p is defined as concordance score:

ρpd =
cov(CSd, 8p)

σ(CSd)σ(8p)
(2)

According to the concordance score of each target protein for
matrine, drugCIPHER-CS prioritizes the proteins in the PPI
network, and the candidate proteins with high concordance score
are hypothesized to be predicted targets of matrine with high
confidence.

As the top 100 predicted targets of drug prediction can
achieve the high prediction accuracy (77.3%), the network
target of matrine is composed of the top 100 predicted targets
of matrine in the protein–protein interaction network (Zhao
and Li, 2010). To gain insight into the detailed functions
of the matrine, we examined the overrepresented biological
processes of the network target of matrine using the Database
for Annotation, Visualization and Integrated Discovery (DAVID)
(Huang et al., 2009). The network target of matrine was
mainly examined for enrichment Gene Ontology (GO) biological
process (BP) (Supplementary Table S1) (Ashburner et al., 2000).
Here, we reserved all the enriched biological processes. The
steps for constructing BP network were depicted as followed.
First, PPI network was generated with 137,037 interactions
among 13,388 (Zhao and Li, 2010). Then, we used gene
sets of enriched biological processes of matrine to generate
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a sub network. Finally, an edge will be added between two
classes of biological processes if there are shared genes in two
classes.

Experimental Validation
Reagents and Cell Culture
Matrine and amiloride hydrochloride was purchased from
Sigma (Shanghai, China). Lucifer yellow (LY), pHrodoTM Green
Dextran and Alexa Fluor R©488 Phalloidin were purchased from
Invitrogen (Shanghai, China). EIPA was purchased from Tocris.
HepG2, PLC, HCT-8, HCT-116, HT29 and DLD-1 were obtained
from ATCC (American Type Culture Collection, Rockville, MD,
United States).

Transmission Electron Microscopy
Human colon cancer DLD-1 cells were exposed to 1.25, 2.5
and 5 mM matrine for 12 h and then fixed, dehydrated, and
infiltrated for Transmission Electron Microscopy (TEM) as
described previously (Kitambi et al., 2014). Ultrathin sections
were collected on copper 300-mesh support grids, stained with
uranyl acetate and lead citrate, and examined under a Hitachi
H-7650B TEM.

Time-Lapse Microscopy
DLD-1 cells (200,000 cells) were plated in a 35-mm glass-
bottom microwell culture dish. One day after plating, cells
were treated with 5 mM matrine in RPMI-1640 medium with
10% FBS. The dish was immediately placed in a humidified
Live Cell chamber (Pathology Devices, Westminster, MD,
United States) equilibrated with 5% CO2 at 37◦C. The chamber
was placed on the stage of a Nikon Eclipse Ti inverted
microscope, equipped with a digital camera and Slide-book
software (Intelligent Imaging Innovations, Inc., Denver, CO,
United States). The software was set to automatically acquire
phase-contrast images every 1 s for the indicated period of
time.

The Uptake of Fluid-Phase Fluorescent Tracers
Labeling of endocytic compartments with these fluid-phase
tracers was performed as previously described (Overmeyer et al.,
2008). Briefly, cells were incubated with LY (500 µg/ml in the
phenol red-free DMEM containing 10% fetal bovine serum) and
pHrodoTM Green dextran (50 µg/ml in the same medium) for 5 h
and 10 h in a 37◦C, 5% CO2 incubator, respectively. The tracer
was removed and the cells were washed once or twice with the
medium. Phase-contrast and fluorescent images of the living cells
were acquired on a Nikon Eclipse Ti fluorescence microscope
with a digital camera and NIS-Elements AR software (Nikon
Instruments, Inc., Melville, NY, United States).

Confocal Fluorescence Microscopy
For colocalization experiments, DLD-1 cells that had been treated
with matrine were prepared for immunofluorescence microscopy
as described previously (Kitambi et al., 2014). Phalloidin-FITC to
detect cytoskeletons was purchased from Sigma. The cells were
examined by Nikon A1+/A1R+ confocal microscopy.

Treatment of Cells with EIPA and Amiloride
To inhibit macropinocytosis, DLD-1 cells were washed twice with
PBS and then pretreated for 30 min with RPMI-1640+ 0.5% BSA
in the presence or absence of 50 µM EIPA or 4 mM Amiloride.
Following pretreatment, matrine was added to the dishes at a final
concentration of 5 mM and phase-contrast images were acquired
5 h later.

Statistical Analysis
At least three independent experiments were conducted in each
study. The values are expressed as the means± SEM. A two-tailed
t-test was performed to determine the statistical significance.
P < 0.05 was considered significant.

RESULTS

The Network Target and Literature
Validation of Matrine
Actually, matrine is one of several alkaloids in Ku-Shen that
has not only been experimentally shown to cause a neurotoxic
response, but has been shown to exert neuropharmacological
activities, e.g., antinociceptive effects, hypothermic actions,
neuroprotective role, antiepileptic effects, sedative effects,
memory enhancement and sleep improvement. In addition,
matrine may serve other pleiotropic functions, such as
immunological regulation, anti-inflammatory activity, cardiac
effects and anti-tumor effect (Supplementary Table S1).
Therefore, we hope to construct a simple, rapid and lower-
cost strategy on overall interpretation of biological functions
of natural products like matrine. Here, the network target
of matrine was performed by our network-based method
drugCIPHER (Zhao and Li, 2010). We selected top 100
predicted targets in the protein–protein interaction network
as the network target of matrine. Further, we examined the
overrepresented ontological terms of the network target
using enrichment analysis (Huang et al., 2009). Expectedly,
the most representative GO BP terms of the network target
of matrine include “neurological system process,” “sensory
perception of pain,” “learning or memory,” “immune response,”
“inflammatory response,” “regulation of heart contraction,”
“tissue remodeling,” “ion homeostasis,” “regulation of lipase
activity,” “regulation of blood pressure,” “response to oxidative
stress,” “regulation of cell proliferation,” “regulation of apoptosis,”
“cell migration,” “angiogenesis,” “leukocyte differentiation,”
and “viral reproduction,” thus validating the reliability of the
predicted targets given the well-documented pharmacological
and biological effects of matrine (Figure 1A).

It is true that bioactive natural products can essentially
regulate a molecular network by binding multiple targets, which
may imply possible multiple effects. Therefore, to obtain a
comprehensive functional characterization of matrine, we firstly
validated the reliability of the predicted molecular network
regulated by matrine. Here, we searched for reported molecular
mechanisms related to matrine from Pubmed and CNKI database
by the way of literature mining. The predicted targets of
matrine can be connected to its reported biomolecules by direct
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FIGURE 1 | Target prediction results of matrine and extensive literature verification. (A) Matrine-targeting molecular network with annotation labels comprising GO
BP classes. (B) The coverage rate of the predicted targets of matrine toward reported biomolecules, which was calculated by [the intersection of the predicted
targets and reported biomolecules/the number of reported biomolecules] × 100%. There are two main relationships between the predicted targets and reported
biomolecules, direct and indirect association. Direct association represents that the predicted targets are identical with reported biomolecules. Indirect association
represents that the predicted targets are linked to reported biomolecules by protein–protein interactions or pathways.

or indirect targeting (protein–protein interactions or signaling
pathways) (Rubio-Perez et al., 2015). The results suggested that
the predicted targets of matrine can be related to the molecular
mechanisms reported in the literature. The statistical results
showed that the predicted targets of matrine can cover 86.4%
of the reported molecular mechanisms and the reliability of the
predicted targets of matrine was found to be very high, which
can be used for the comprehensive functional characterization of
matrine (Figure 1B).

Comprehensive Functional Assignment
and Preliminary Validation of Matrine
It has been reported that matrine possesses a variety of
pharmacological effects. Besides, oral administration of large
doses of Ku-Shen is reported to cause toxicity and side effects,
including salivation, tachycardia and abnormal gait (Drew et al.,
2002). Larger doses that induce more severe poisoning may result
in central nervous system (CNS) excitement with muscle spasm
and seizures, followed by signs of CNS (primarily respiratory)
depression with a decreased respiratory rate and promotes
oligodendrocyte development, potentially progressing to apnea
(Kamei et al., 1997; Liu et al., 2017). Therefore, we need to provide
an analysis strategy based on the network target of matrine that
derive a set of biological functions for revealing the bioactive
diversity and side effects of matrine.

To explore comprehensively functional annotations of the
matrine, all of enriched terms, regardless of P-value, are shown in
Supplementary Table S1. Enrichment analysis results showed that
the network target of matrine are involved in neurological system
processes, which may substantially disturb these biological
processes. Indeed, the top 10 GO BP terms in the functional
enrichment list significantly focused on nervous system, for
example, synaptic transmission (P = 1.41E-15) as well as the
transmission of nerve impulses (P = 2.92E-15). The results of

literature validation suggested that many enriched biological
processes have been reported in the literature (Table 1). Further,
to evaluate this enrichment results, we manually collected
101 literatures related to biological processes of matrine. The
results showed that 90.1% of reported biological processes were
covered by enriched biological processes of the network target of
matrine (Figure 2A). The representative biological functions of
matrine are summarized in Table 1 and Figure 2B. Anti-tumor
effect, anti-viral effect, lipid metabolism, cardiovascular and
blood pressure-lowing effect in the enriched biological functions
of predicted targets of matrine are completely supported
by literature evidence. Other important enriched biological
functions of matrine can also be partly validated. These results
suggested that featured as high-throughput, computational and
capable of rapid analyses, our network pharmacology approach
would have a strong potential to be applicable to other
natural products for precise and comprehensive functional
characterization.

Multiple and complex actions of natural products can be
described in terms of molecular networks capturing the intricate
web of connections among their targets (Burkard et al., 2010).
To further explore the functional characterization of matrine
on a large scale, we constructed an enriched functional
network for better interpreting the global functional connections
of matrine (Figure 3A). The structure of this functional
network shown that known and novel GO BP functions
share the same molecular mechanisms. Despite being a
drug with well-characterized pharmacological actions, matrine
has never been previously linked to ATP metabolism and
membrane organization/endocytosis. To verify the effect of
matrine on the ATP metabolism, we evaluated the ATP
levels in the DLD-1 cells treated with matrine by a well-
established assay for the levels of ATP. Following treatment
with matrine, we observed the decrease of cellular ATP
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TABLE 1 | Enriched biological processes of predicted targets for matrine.

Biological process
class

Gene ontology
term

Reference

Neuroprotective or
neurotoxic effect

Synaptic transmission Yin and Zhu, 2005

Neurological system
process

Lu et al., 2014

Glutamate signaling
pathway

Zhang and Song, 2014

Analgesic effect Sensory perception of
pain

Wang et al., 2013

Memory enhancement
and sleep improvement

Learning or memory Cui et al., 2017

Rhythmic process Liu and Li, 2012

Lipid and energy
metabolism

Fatty acid metabolic
process

Zeng et al., 2015

ATP metabolic process NA

Pharmacological action
on ion channel

Ion transport Wei et al., 2013

Anti-inflammatory and
immunological
regulation

Inflammatory response Zhang B. et al., 2011

Lymphocyte activation Zhao et al., 2011

Cardiovascular effect Regulation of
catecholamine
secretion

Wang and Liu, 2012

Tissue remodeling Zhang et al., 2006

Anti-viral effect Viral reproduction Li et al., 2005

Vesicle formation and
endocytosis

Membrane invagination NA

Endocytosis NA

Anti-tumor effect Regulation of cell
proliferation

Liang et al., 2012

Biological adhesion Zhang et al., 2013

Angiogenesis Liu et al., 2014

Cell migration Wang et al., 2017

level in a concentration-dependent manner as shown in
Figure 3B.

Based on the molecular network regulated by matrine, we tried
to infer the response of different cancer cell lines to endocytosis
induced by matrine. We extracted the mRNA expression data
of hepatocellular and colorectal cancer cell lines from the
Cancer Cell Line Encyclopedia (Barretina et al., 2012). The
result demonstrates that genes in endocytosis-associated network
module of matrine are expressed more highly in DLD-1 cell
line (Figure 3C). Then, we examined whether induction of
cytoplasmic vacuolization by matrine is cell-specific. Therefore,
we performed the same treatment experiments in various cancer
cell lines. Strikingly, we observed more significant morphological
changes with increasing concentrations of matrine in the DLD-1
than other cancer cell lines (Figure 3D).

Matrine as a Novel Macropinocytosis
Inducer in Cancer Cells
In fact, previous studies have demonstrated that matrine
increases the cell volume and induces the formation of abundant

cytoplasmic vacuoles in the SGC-7901 human gastric cancer cells
and human hepatoma G2 cells (Zhang et al., 2010; Zhang J. et al.,
2011), but how these vacuoles are formed is not fully understood.
To further verify the effect of matrine on the regulation of
membrane organization, we set out to determine the membrane
changes in different cancer cells treated with matrine and also
observed vesicle formation by endocytosis.

The endocytosis-associated network module of matrine with
expression in DLD-1 is shown in Figure 4A. The results suggest
that high expression of these predicted targets of matrine in
DLD-1 cells is associated with biological response to matrine.
Therefore, observation of DLD-1 cells with standard phase
contrast optics and a transmission electron microscope revealed
that the biological processes initiated by the addition of matrine
at increasing concentrations (1.25–10 mM) to DLD-1 cells within
24 h involve massive membrane ruffling and blebbing as well as
cell rounding, followed by the formation of vacuoles that increase
in number and size in a concentration-dependent manner
(Figures 4B,C). 5 mM matrine was selected for further study
because this concentration yielded the most significant number
of vacuoles. Time-lapse phase-contrast microscopy was also used
to capture the dynamic changes of cytoplasmic vacuolization
over time within 6 h and found that nascent vesicles could fuse
with each other to form progressively larger vacuoles within
the cytoplasm (Figure 4D). The results confirm the induction
of endocytic-like activity by matrine. Since macropinocytosis is
defined as the formation of large endocytic vesicles of irregular
sizes and shapes by cells that avidly incorporate extracellular fluid
(Swanson, 2008; Kerr and Teasdale, 2009), we reasoned that this
cellular process mediated by matrine could be macropinocytosis.

Matrine-Induced Vacuoles Are
Macropinosomes
Macropinocytosis is known to be a form of actin-dependent
endocytosis that leads to the internalization of fluid and
membranes into large vesicles as macropinosomes. Next, we
tested whether the large vesicles induced by matrine are
consistent with the typical characteristics of macropinosome. As
we know, rapid incorporation of extracellular-phase fluid tracers
is a hallmark of macropinosomes (Swanson, 2008). Therefore, to
confirm that the vacuoles were derived from macropinosomes,
DLD-1 cells were subjected to short-term incubation with a
bulk fluid-phase tracer, FITC-dextran, together with matrine.
Our results showed that the uptake of FITC-dextrans by
the vacuoles was almost equal during the 5 mM matrine
treatment, indicating that the origins of many of these vacuoles
could be macropinosomes (Figure 5A). To further confirm
that the matrine-induced vacuoles observed by phase-contrast
microscopy were indeed derived from macropinosomes, DLD-
1 cells were incubated with the tracer LY during the first 5 h
after the addition of matrine. As shown in Figure 5B, LY
was also incorporated into most of the phase-lucent vacuoles.
After fixing and staining with rhodamine-phalloidin, phalloidin
counterstaining on DLD-1 cells shows that matrine disturbed
the actin filament cytoskeleton of DLD-1 cells (Figure 5C).
Macropinocytosis can be distinguished from some types of
endocytosis by its susceptibility to EIPA and amiloride (inhibitors

Frontiers in Pharmacology | www.frontiersin.org 5 January 2018 | Volume 9 | Article 10

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00010 January 24, 2018 Time: 18:51 # 6

Zhang et al. Network Target of Matrine

FIGURE 2 | Literature verification of the GO terms in BP category at all levels enriched from the network target of matrine. (A) The coverage rate of potential
biological processes with literature evidence for matrine, which is defined as [the intersection of reported GO terms and enriched GO terms/the number of reported
GO terms] × 100%. (B) Pie chart for the coverage rate of enriched GO terms in different classes from predicted targets of matrine covered by known biological
processes of matrine. The coverage rate of each sector is calculated by [the intersection of reported GO terms and enriched GO terms/the number of enriched GO
terms in one class] × 100%.

FIGURE 3 | Identification and preliminary validation of novel functions of matrine. (A) Biological process network represents the comprehensive functional
characterization of matrine using our network pharmacology approach. Blue nodes represent unreported biological processes of matrine. (B) Dose-effect
relationship of matrine on cellular ATP level. (C) The endocytosis-associated network module of matrine with expression in different cancer cell lines.
(D) Cell phenotype changing after different cancer cells treated with matrine (1.25–5 µM).

for Na+/H+ exchangers). We investigated the effects of
EIPA and amiloride on macropinocytosis in DLD-1 cells.
Figures 5D,E show that the cytoplasmic vacuolization during
the 5 mM matrine treatment was markedly inhibited by
50 µM EIPA and 4 mM amiloride, respectively. We concluded
that the origin of a substantial portion of the cytoplasmic

vacuoles was macropinocytosis. These results demonstrated that
macropinocytosis was involved in matrine-induced vacuolization
and verified the efficiency of our computational method.

Macropinocytosis plays an important role in multifunctional
biological processes, such as nutrient supply and non-apoptotic
death of tumor cells (Commisso et al., 2013; Kitambi et al., 2014).

Frontiers in Pharmacology | www.frontiersin.org 6 January 2018 | Volume 9 | Article 10

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00010 January 24, 2018 Time: 18:51 # 7

Zhang et al. Network Target of Matrine

FIGURE 4 | Matrine induces vesicle formation, endocytosis and macropinocytosis in a time-and concentration-dependent manner. (A) The endocytosis-associated
network module of matrine with expression in DLD-1. (B) Phase-contrast microscopy of the matrine-treated DLD-1 cells for 12 h shows extensive accumulation of
cytoplasmic vacuoles and cell detachment in a concentration-dependent manner. (C) TEM images of matrine-treated DLD-1 cells at different concentrations for 12 h.
Red arrow points at cytoplasmic vacuoles. Bar, 10 µM. (D) Live imaging of DLD-1 cells (5 mM matrine). Images collected at times of major phenotypic changes.

DISCUSSION

Experimental methods for target identification of natural
products have had substantial success, yet many limitations
still remain, including a high false-positive rate and bioactivity
changes in labeled ligands (Sche et al., 1999; Terstappen et al.,
2007). In recent years, many computational methods and
algorithms have been developed to predict target profiles, such
as phenotypic effect-based (Parsons et al., 2004; Campillos et al.,
2008) and chemical structure-based approaches (Keiser et al.,
2009). Iorio et al. (2010) developed a computation approach
to predict drug effect similarities and modes of action using
‘consensus’ transcript signatures following compound treatment.
However, their method is largely dependent on drugs with known
transcriptional signatures, therefore limiting the application of
this system in high-throughput compound screening. Cheng

et al. (2012) proposed different methods to predict drug-target
interactions and demonstrated that network-based methods
achieved the best performance in benchmark tests (Cheng
et al., 2012). Nevertheless, their method only considers proteins
that are known targets. To identify global targets of natural
products, we used a network-based target prediction approach,
which is not limited to the structural information of target
proteins and requires the chemical structure of natural products.
This computational approach can meet the characteristics of
mechanism of natural products. More broadly, we can also
extend the application of our general network-based approach
to identifying pharmacological functions of full-scale ingredients
from one herb.

Several alkaloids, as the main active constituents of Ku-Shen,
have been approved as drugs, including matrine, oxymatrine,
and sophoridine. In fact, the biological activities of matrine
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FIGURE 5 | The vacuoles were derived from macropinosomes. (A) Vacuolated cells were preincu-bated with FITC-dextran (green). Arrowhead points to a FITC
dextran-containing vacuole. (B) LY accumulation in DLD-1 cells (green). Arrowhead points to a LY-containing vacuole. Macropinocytosis index (MI) was ∗∗P < 0.01,
compared with control. (C) DLD-1 cells were stimulated with 5 mM matrine. Nuclei were stained with DAPI (blue), and cells were stained for actin with
rhodamine-phalloidin (red). (D) Effect of EIPA on matrine-induced macropinocytosis. (E) Effect of amiloride on matrine-induced macropinocytosis.

are more relevant to other applications of Ku-Shen other than
anti-tumor activities. It is reported to possess a variety of
pharmacological activities, including antipyretic (Cho et al.,
1986; Xiang and Jiang, 2013), antiepileptic (Xiang and Jiang,
2013), antinociceptive (Wang et al., 2013; Dun et al., 2014),
anti-inflammatory (Zhang B. et al., 2011; Wu G. et al., 2017),
myocardial preservation (Zhang et al., 2006), antifibrotic (Zhang
et al., 2001), anti-tumor (Wu J. et al., 2017), anti-viral (Li et al.,
2005) and anti-angiogenic (Li et al., 2010). Our predicted results
demonstrated that matrine could target a molecular network
related to multiple functions, which is consistent with the
multi-target nature of traditional medicine. Therefore, matrine
regulates ATP metabolism and the induction of vesicle formation
and endocytosis by regulating the network target of matrine. The

pharmacological functions of matrine based on network target
and experimental verification reveal that the biological processes
initiated by matrine involves massive membrane reorganization
and cell rounding, followed by vacuole formation, which is
a typical macropinocytosis process. Recently, macropinocytosis
has been reported to be involved in the phagocytosis of apoptotic
cells and promote the resolution of inflammation (Hoffmann
et al., 2001; Ogden et al., 2001). Moreover, the small GTPase Rac1,
which mediates the formation of the initial membrane ruffles
and macropinosomes, is crucial for mammary alveolar epithelia
to switch from secretion mode to phagocytic mode to rapidly
remove dying neighbors and inhibit chronic inflammation
(Akhtar et al., 2016). Therefore, a novel anti-inflammatory
mechanism of matrine may be associated with the clearance of
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apoptotic cells by the macropinocytosis process. This finding can
be used to better elucidate the “clearing hot” efficacy of Ku-Shen
in TCM.

In order to further obtain the evidence of the mechanism of
matrine, the observation that amiloride and EIPA can attenuate
the macropinocytosis induced by matrine suggested that its
mechanism may be correlated with the proton channel. The
genes related to Vesicle formation and Endocytosis in the
network target of matrine are APP, GRIA2, GRIA1, ATP5B,
DLG4, MERTK, THBS1 and the genes in Endocytosis-associated
module also include SCEL, THBS1, CORO1A, CXCL5, CLU,
and SH3GL2. Therefore, we inferred that matrine-induced
macropinocytosis occurs through ATP5B signaling or GRIA2
and GRIA1. These hypotheses need to be further validated
prospectively.

In summary, we developed a network target strategy for
comprehensive functions of matrine in a Chinese medical
herb, Sophorae Flavescentis Radix (Ku-Shen), and provided
experimental evidence to demonstrate the availability of a
network-target-based approach. The network target regulated
by matrine provides evidence for the diverse functions of
matrine in Ku-Shen and shows that matrine can induce
macropinocytosis in cancer cells and can decrease cellular ATP
level. Our general network-based approach to fully elucidate
comprehensive functions of matrine can be applied to many other

natural products for the identification of their pharmacological
functions.
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